PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (76)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Perceptual-Cognitive Expertise in Elite Volleyball Players 
The goal of the current study was to investigate the relationship between sport expertise and perceptual and cognitive skills, as measured by the component skills approach. We hypothesized that athletes would outperform non-athlete controls in a number of perceptual and cognitive domains and that sport expertise would minimize gender differences. A total of 154 individuals (87 professional volleyball players and 67 non-athlete controls) participated in the study. Participants performed a cognitive battery, which included tests of executive control, memory, and visuo-spatial attention. Athletes showed superior performance speed on three tasks (two executive control tasks and one visuo-spatial attentional processing task). In a subset of tasks, gender effects were observed mainly in the control group, supporting the notion that athletic experience can reduce traditional gender effects. The expertise effects obtained substantiate the view that laboratory tests of cognition may indeed enlighten the sport-cognition relationship.
doi:10.3389/fpsyg.2013.00036
PMCID: PMC3590639  PMID: 23471100
cognition; expertise; sport
2.  Exercise is Medicine, For the Body and the Brain 
British journal of sports medicine  2014;48(12):943-944.
Dementia is one of the most pressing health care issues of the 21st century. Exercise is a modifiable lifestyle factor that has been identified as positively impacting cognitive functioning across the lifespan. Despite surmounting evidence linking exercise and cognitive functions in older adults, there is reluctance to adopt exercise as a prevention strategy; this view has been partially fueled by published reviews that have failed to include all the relevant literature. Therefore, in this commentary, we provide an update on the recent converging neuroimaging, behavioural, and biomarker evidence linking exercise with cognitive and brain health. We highlight that endorsing exercise as an effective strategy for improving health and well-being among older adults may potentially have a high impact for mitigating multiple health concerns, and should therefore be considered as a leading treatment strategy for dementia prevention.
doi:10.1136/bjsports-2013-093224
PMCID: PMC4330095  PMID: 24659507 CAMSID: cams4566
Exercise; Physical activity; Cognition; Brain health; Aging
3.  The Relationship between Intelligence and Training Gains Is Moderated by Training Strategy 
PLoS ONE  2015;10(4):e0123259.
We examined the relationship between training regimen and fluid intelligence in the learning of a complex video game. Fifty non-game-playing young adults were trained on a game called Space Fortress for 30 hours with one of two training regimens: 1) Hybrid Variable-Priority Training (HVT), with part-task training and a focus on improving specific skills and managing task priorities, and 2) Full Emphasis Training (FET) in which participants practiced the whole game to obtain the highest overall score. Fluid intelligence was measured with the Raven’s Progressive Matrix task before training. With FET, fluid intelligence was positively associated with learning, suggesting that intellectual ability played a substantial role in determining individual differences in training success. In contrast, with HVT, fluid intelligence was not associated with learning, suggesting that individual differences in fluid intelligence do not factor into training success in a regimen that emphasizes component tasks and flexible task coordination. By analyzing training effects in terms of individual differences and training regimens, the current study offers a training approach that minimizes the potentially limiting effect of individual differences.
doi:10.1371/journal.pone.0123259
PMCID: PMC4393125  PMID: 25860978
4.  White Matter Integrity Supports BOLD Signal Variability and Cognitive Performance in the Aging Human Brain 
PLoS ONE  2015;10(4):e0120315.
Decline in cognitive performance in old age is linked to both suboptimal neural processing in grey matter (GM) and reduced integrity of white matter (WM), but the whole-brain structure-function-cognition associations remain poorly understood. Here we apply a novel measure of GM processing–moment-to-moment variability in the blood oxygenation level-dependent signal (SDBOLD)—to study the associations between GM function during resting state, performance on four main cognitive domains (i.e., fluid intelligence, perceptual speed, episodic memory, vocabulary), and WM microstructural integrity in 91 healthy older adults (aged 60-80 years). We modeled the relations between whole-GM SDBOLD with cognitive performance using multivariate partial least squares analysis. We found that greater SDBOLD was associated with better fluid abilities and memory. Most of regions showing behaviorally relevant SDBOLD (e.g., precuneus and insula) were localized to inter- or intra-network “hubs” that connect and integrate segregated functional domains in the brain. Our results suggest that optimal dynamic range of neural processing in hub regions may support cognitive operations that specifically rely on the most flexible neural processing and complex cross-talk between different brain networks. Finally, we demonstrated that older adults with greater WM integrity in all major WM tracts had also greater SDBOLD and better performance on tests of memory and fluid abilities. We conclude that SDBOLD is a promising functional neural correlate of individual differences in cognition in healthy older adults and is supported by overall WM integrity.
doi:10.1371/journal.pone.0120315
PMCID: PMC4390282  PMID: 25853882
5.  Education mitigates age-related decline in N-Acetylaspartate levels 
Brain and Behavior  2015;5(3):e00311.
Background
Greater educational attainment is associated with better neurocognitive health in older adults and is thought to reflect a measure of cognitive reserve. In vivo neuroimaging tools have begun to identify the brain systems and networks potentially responsible for reserve.
Methods
We examined the relationship between education, a commonly used proxy for cognitive reserve, and N-acetylaspartate (NAA) in neurologically healthy older adults (N = 135; mean age = 66 years). Using single voxel MR spectroscopy, we predicted that higher levels of education would moderate an age-related decline in NAA in the frontal cortex.
Results
After controlling for the variance associated with cardiorespiratory fitness, sex, annual income, and creatine levels, there were no significant main effects of education (B = 0.016, P = 0.787) or age (B = −0.058, P = 0.204) on NAA levels. However, consistent with our predictions, there was a significant education X age interaction such that more years of education offset an age-related decline in NAA (B = 0.025, P = 0.031). When examining working memory via the backwards digit span task, longer span length was associated with greater education (P < 0.01) and showed a trend with greater NAA concentrations (P < 0.06); however, there was no age X education interaction on digit span performance nor a significant moderated mediation effect between age, education, and NAA on digit span performance.
Conclusions
Taken together, these results suggest that higher levels of education may attenuate an age-related reduction in neuronal viability in the frontal cortex.
doi:10.1002/brb3.311
PMCID: PMC4356844  PMID: 25798329
Aging; brain reserve; cognitive reserve; education; fitness
6.  Relating Hippocampus to Relational Memory Processing across Domains and Delays 
Journal of cognitive neuroscience  2015;27(2):234-245.
The hippocampus has been implicated in a diverse set of cognitive domains and paradigms, including cognitive mapping, long-term memory, and relational memory, at long or short study–test intervals. Despite the diversity of these areas, their association with the hippocampus may rely on an underlying commonality of relational memory processing shared among them. Most studies assess hippocampal memory within just one of these domains, making it difficult to know whether these paradigms all assess a similar underlying cognitive construct tied to the hippocampus. Here we directly tested the commonality among disparate tasks linked to the hippocampus by using PCA on performance from a battery of 12 cognitive tasks that included two traditional, long-delay neuropsychological tests of memory and two laboratory tests of relational memory (one of spatial and one of visual object associations) that imposed only short delays between study and test. Also included were different tests of memory, executive function, and processing speed. Structural MRI scans from a subset of participants were used to quantify the volume of the hippocampus and other subcortical regions. Results revealed that the 12 tasks clustered into four components; critically, the two neuropsychological tasks of long-term verbal memory and the two laboratory tests of relational memory loaded onto one component. Moreover, bilateral hippocampal volume was strongly tied to performance on this component. Taken together, these data emphasize the important contribution the hippocampus makes to relational memory processing across a broad range of tasks that span multiple domains.
doi:10.1162/jocn_a_00717
PMCID: PMC4336790  PMID: 25203273
7.  Experience-Based Mitigation of Age-Related Performance Declines: Evidence From Air Traffic Control 
Previous research has found age-related deficits in a variety of cognitive processes. However, some studies have demonstrated age-related sparing on tasks where individuals have substantial experience, often attained over many decades. Here, the authors examined whether decades of experience in a fast-paced demanding profession, air traffic control (ATC), would enable older controllers to perform at high levels of proficiency. The authors also investigated whether older controllers would show diminished age-related decrements on domain-relevant cognitive abilities. Both young and old controllers and noncontrollers performed a battery of cognitive and ATC tasks. Results indicate that although high levels of experience can reduce the magnitude of age-related decline on the component processes that underlie complex task performance, this sparing is limited in scope. More important, however, the authors observed experience-based sparing on simulated ATC tasks, with the sparing being most evident on the more complex air traffic control tasks. These results suggest that given substantial experience, older adults may be quite capable of performing at high levels of proficiency on fast-paced demanding real-world tasks. The implications of these findings for global skilled labor shortages are discussed.
doi:10.1037/a0014947
PMCID: PMC2853479  PMID: 19309213
cognitive aging; human performance; air traffic control; workforce shortage
8.  Education mitigates age‐related decline in N‐Acetylaspartate levels 
Brain and Behavior  2015;e00311.
Abstract
Background
Greater educational attainment is associated with better neurocognitive health in older adults and is thought to reflect a measure of cognitive reserve. In vivo neuroimaging tools have begun to identify the brain systems and networks potentially responsible for reserve.
Methods
We examined the relationship between education, a commonly used proxy for cognitive reserve, and N‐acetylaspartate (NAA) in neurologically healthy older adults (N = 135; mean age = 66 years). Using single voxel MR spectroscopy, we predicted that higher levels of education would moderate an age‐related decline in NAA in the frontal cortex.
Results
After controlling for the variance associated with cardiorespiratory fitness, sex, annual income, and creatine levels, there were no significant main effects of education (B = 0.016, P = 0.787) or age (B = −0.058, P = 0.204) on NAA levels. However, consistent with our predictions, there was a significant education X age interaction such that more years of education offset an age‐related decline in NAA (B = 0.025, P = 0.031). When examining working memory via the backwards digit span task, longer span length was associated with greater education (P < 0.01) and showed a trend with greater NAA concentrations (P < 0.06); however, there was no age X education interaction on digit span performance nor a significant moderated mediation effect between age, education, and NAA on digit span performance.
Conclusions
Taken together, these results suggest that higher levels of education may attenuate an age‐related reduction in neuronal viability in the frontal cortex.
doi:10.1002/brb3.311
PMCID: PMC4356844  PMID: 25798329
Aging; brain reserve; cognitive reserve; education; fitness
9.  Neurovascular coupling in normal aging: A combined optical, ERP and fMRI study 
NeuroImage  2013;85(0 1):10.1016/j.neuroimage.2013.04.113.
Brain aging is characterized by changes in both hemodynamic and neuronal responses, which may be influenced by the cardiorespiratory fitness of the individual. To investigate the relationship between neuronal and hemodynamic changes, we studied the brain activity elicited by visual stimulation (checkerboard reversals at different frequencies) in younger adults and in older adults varying in physical fitness. Four functional brain measures were used to compare neuronal and hemodynamic responses obtained from BA17: two reflecting neuronal activity (the event-related optical signal, EROS, and the C1 response of the ERP), and two reflecting functional hemodynamic changes (functional magnetic resonance imaging, fMRI, and near-infrared spectroscopy, NIRS). The results indicated that both younger and older adults exhibited a quadratic relationship between neuronal and hemodynamic effects, with reduced increases of the hemodynamic response at high levels of neuronal activity. Although older adults showed reduced activation, similar neurovascular coupling functions were observed in the two age groups when fMRI and deoxy-hemoglobin measures were used. However, the coupling between oxy-and deoxy-hemoglobin changes decreased with age and increased with increasing fitness. These data indicate that departures from linearity in neurovascular coupling may be present when using hemodynamic measures to study neuronal function.
doi:10.1016/j.neuroimage.2013.04.113
PMCID: PMC3791333  PMID: 23664952
Neurovascular coupling; aging; fitness; Event-related optical signal (EROS); Near-infrared spectroscopy (NIRS); Functional magnetic resonance imaging (fMRI); Event-related brain potentials (ERPs)
10.  PERFORMANCE OF A COMPUTER-BASED ASSESSMENT OF COGNITIVE FUNCTION MEASURES IN TWO COHORTS OF SENIORS 
International journal of geriatric psychiatry  2013;28(12):10.1002/gps.3949.
Background
Computer-administered assessment of cognitive function is being increasingly incorporated in clinical trials, however its performance in these settings has not been systematically evaluated.
Design
The Seniors Health and Activity Research Program (SHARP) pilot trial (N=73) developed a computer-based tool for assessing memory performance and executive functioning. The Lifestyle Interventions and Independence for Seniors (LIFE) investigators incorporated this battery in a full scale multicenter clinical trial (N=1635). We describe relationships that test scores have with those from interviewer-administered cognitive function tests and risk factors for cognitive deficits and describe performance measures (completeness, intra-class correlations).
Results
Computer-based assessments of cognitive function had consistent relationships across the pilot and full scale trial cohorts with interviewer-administered assessments of cognitive function, age, and a measure of physical function. In the LIFE cohort, their external validity was further demonstrated by associations with other risk factors for cognitive dysfunction: education, hypertension, diabetes, and physical function. Acceptable levels of data completeness (>83%) were achieved on all computer-based measures, however rates of missing data were higher among older participants (odds ratio=1.06 for each additional year; p<0.001) and those who reported no current computer use (odds ratio=2.71; p<0.001). Intra-class correlations among clinics were at least as low (ICC≤0.013) as for interviewer measures (ICC≤0.023), reflecting good standardization. All cognitive measures loaded onto the first principal component (global cognitive function), which accounted for 40% of the overall variance.
Conclusion
Our results support the use of computer-based tools for assessing cognitive function in multicenter clinical trials of older individuals.
doi:10.1002/gps.3949
PMCID: PMC3775886  PMID: 23589390
Cognitive function; Clinical trial; Performance measures
11.  The Brain-Games Conundrum: Does Cognitive Training Really Sharpen the Mind? 
Editor’s Note:
Few topics in the world of neuroscience evoke as much debate as the effectiveness of cognitive training. Do you misplace your keys regularly? Forget appointments? Have trouble remembering names? No worries. A host of companies promise to “train” your brain with games designed to stave off mental decline. Regardless of their effectiveness, their advertising has convinced tens of thousands of people to open their wallets. As our authors review the research on cognitive-training products, they expose the science surrounding the benefits of brain games as sketchy at best.
PMCID: PMC4445580  PMID: 26034522
12.  The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: Results of a one-year exercise intervention 
Human brain mapping  2012;34(11):2972-2985.
Cerebral white matter degeneration occurs with increasing age and is associated with declining cognitive function. Research has shown that cardiorespiratory fitness and exercise are effective as protective, even restorative, agents against cognitive and neurobiological impairments in older adults. In this study, we investigated whether the beneficial impact of aerobic fitness would extend to white matter integrity in the context of a one-year exercise intervention. Further, we examined the pattern of diffusivity changes to better understand the underlying biological mechanisms. Finally, we assessed whether training-induced changes in white matter integrity would be associated with improvements in cognitive performance independent of aerobic fitness gains. Results showed that aerobic fitness training did not affect group-level change in white matter integrity, executive function, or short-term memory, but that greater aerobic fitness derived from the walking program was associated with greater change in white matter integrity in the frontal and temporal lobes, and greater improvement in short-term memory. Increases in white matter integrity, however, were not associated with short-term memory improvement, independent of fitness improvements. Therefore, while not all findings are consistent with previous research, we provide novel evidence for correlated change in training-induced aerobic fitness, white matter integrity, and cognition among healthy older adults.
doi:10.1002/hbm.22119
PMCID: PMC4096122  PMID: 22674729
Diffusion tensor imaging; Anisotropy; Cerebrum; Cognition; Physical fitness; Aging
13.  Is the Effect of Aerobic Exercise on Cognition a Placebo Effect? 
PLoS ONE  2014;9(10):e109557.
A number of studies and meta-analyses conclude that aerobic fitness (walking) interventions improve cognition. Such interventions typically compare improvements from these interventions to an active control group in which participants engage in non-aerobic activities (typically stretching and toning) for an equivalent amount of time. However, in the absence of a double-blind design, the presence of an active control group does not necessarily control for placebo effects; participants might expect different amounts of improvement for the treatment and control interventions [1]. We conducted a large survey to explore whether people expect greater cognitive benefits from an aerobic exercise intervention compared to a control intervention. If participants expect greater improvement following aerobic exercise, then the benefits of such interventions might be due in part to a placebo effect. In general, expectations did not differ between aerobic and non-aerobic interventions. If anything, some of the results suggest the opposite (e.g., respondents expected the control, non-aerobic intervention to yield bigger memory gains). These results provide the first evidence that cognitive improvements following aerobic fitness training are not due to differential expectations.
doi:10.1371/journal.pone.0109557
PMCID: PMC4188819  PMID: 25289674
14.  Physical Activity and Cardiorespiratory Fitness Are Beneficial for White Matter in Low-Fit Older Adults 
PLoS ONE  2014;9(9):e107413.
Physical activity (PA) and cardiorespiratory fitness (CRF) are associated with better cognitive function in late life, but the neural correlates for these relationships are unclear. To study these correlates, we examined the association of both PA and CRF with measures of white matter (WM) integrity in 88 healthy low-fit adults (age 60–78). Using accelerometry, we objectively measured sedentary behavior, light PA, and moderate to vigorous PA (MV-PA) over a week. We showed that greater MV-PA was related to lower volume of WM lesions. The association between PA and WM microstructural integrity (measured with diffusion tensor imaging) was region-specific: light PA was related to temporal WM, while sedentary behavior was associated with lower integrity in the parahippocampal WM. Our findings highlight that engaging in PA of various intensity in parallel with avoiding sedentariness are important in maintaining WM health in older age, supporting public health recommendations that emphasize the importance of active lifestyle.
doi:10.1371/journal.pone.0107413
PMCID: PMC4167864  PMID: 25229455
15.  White matter microstructure is associated with cognitive control in children 
Biological psychology  2013;94(1):109-115.
Cognitive control, which involves the ability to pay attention and suppress interference, is important for learning and achievement during childhood. The white matter tracts related to control during childhood are not well known. We examined the relationship between white matter microstructure and cognitive control in 61 children aged 7 to 9 years using diffusion tensor imaging (DTI). This technique enables an in vivo characterization of microstructural properties of white matter based on properties of diffusion. Such properties include fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity, measures thought to reflect specific biological properties of white matter integrity. Our results suggest that children with higher estimates of white matter integrity in the corona radiata, superior longitudinal fasciculus, posterior thalamic radiation, and cerebral peduncle, were more accurate during incongruent (>><>>, <<><<) and neutral (-->--, --<--) trials of a task of cognitive control. Importantly, less interference during the task (i.e., incongruent and neutral difference scores) was associated with greater white matter microstructure in the posterior thalamic radiation and cerebral peduncle. Fiber tracts in a frontal-parietal-striatal-motor circuit seem to play a role in cognitive control in children.
doi:10.1016/j.biopsycho.2013.05.008
PMCID: PMC3742734  PMID: 23714226
child; cognition; diffusion tensor imaging; flanker; MRI
16.  Can Training in a Real-Time Strategy Videogame Attenuate Cognitive Decline in Older Adults? 
Psychology and aging  2008;23(4):765-777.
Declines in various cognitive abilities, particularly executive control functions, are observed in older adults. An important goal of cognitive training is to slow or reverse these age-related declines. However, opinion is divided in the literature regarding whether cognitive training can engender transfer to a variety of cognitive skills in older adults. Yet, recent research indicates that videogame training of young adults may engender broad transfer to skills of visual attention. In the current study, we used a real-time strategy videogame to attempt to train executive functions in older adults, such as working memory, task switching, short-term memory, inhibition, and reasoning. Older adults were either trained in a real-time strategy videogame for 23.5 hours (RON, n=20) or not (CONTROLS, n=20). A battery of cognitive tasks, including tasks of executive control and visuo-spatial skills, were assessed before, during, and after video game training. The trainees improved significantly in the measures of game performance. They also improved significantly more than the controls in a subset of the cognitive tasks, such as task switching, working memory, visual short term memory, and mental rotation. Trends in improvement were also observed, for the video game trainees, in inhibition and reasoning. Individual differences in changes in game performance were correlated with improvements in task-switching. The study has implications for the enhancement of executive control processes of older adults.
doi:10.1037/a0013494
PMCID: PMC4041116  PMID: 19140648
Cognitive training; aging; executive control; videogame; transfer of training
17.  Corrigendum: Cognitive training with casual video games: points to consider 
doi:10.3389/fpsyg.2014.00234
PMCID: PMC3960918  PMID: 24688477
attention; working memory; reasoning; fluid intelligence; video games; cognitive training; casual games; transfer of training
18.  Do Athletes Excel at Everyday Tasks? 
Purpose
Cognitive enhancements are associated with sport training. We extended the sport-cognition literature by using a realistic street crossing task to examine the multitasking and processing speed abilities of collegiate athletes and nonathletes.
Methods
Pedestrians navigated trafficked roads by walking on a treadmill in a virtual world, a challenge that requires the quick and simultaneous processing of multiple streams of information.
Results
Athletes had higher street crossing success rates than nonathletes, as reflected by fewer collisions with moving vehicles. Athletes also showed faster processing speed on a computer-based test of simple reaction time, and shorter reaction times were associated with higher street crossing success rates.
Conclusions
The results suggest that participation in athletics relates to superior street crossing multitasking abilities and that athlete and nonathlete differences in processing speed may underlie this difference. We suggest that cognitive skills trained in sport may transfer to performance on everyday fast-paced multitasking abilities.
doi:10.1249/MSS.0b013e318218ca74
PMCID: PMC3953501  PMID: 21407125
COGNITION; MULTITASKING; PROCESSING SPEED; SPORT; STREET CROSSING
19.  A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children 
Brain research  2010;1358:172-183.
Because children are becoming overweight, unhealthy, and unfit, understanding the neurocognitive benefits of an active lifestyle in childhood has important public health and educational implications. Animal research has indicated that aerobic exercise is related to increased cell proliferation and survival in the hippocampus as well as enhanced hippocampal-dependent learning and memory. Recent evidence extends this relationship to elderly humans by suggesting that high aerobic fitness levels in older adults are associated with increased hippocampal volume and superior memory performance. The present study aimed to further extend the link between fitness, hippocampal volume, and memory to a sample of preadolescent children. To this end, magnetic resonance imaging was employed to investigate whether higher- and lower-fit 9- and 10-year-old children showed differences in hippocampal volume and if the differences were related to performance on an item and relational memory task. Relational but not item memory is primarily supported by the hippocampus. Consistent with predictions, higher-fit children showed greater bilateral hippocampal volumes and superior relational memory task performance compared to lower-fit children. Hippocampal volume was also positively associated with performance on the relational but not the item memory task. Furthermore, bilateral hippocampal volume was found to mediate the relationship between fitness level (VO2 max) and relational memory. No relationship between aerobic fitness, nucleus accumbens volume, and memory was reported, which strengthens the hypothesized specific effect of fitness on the hippocampus. The findings are the first to indicate that aerobic fitness may relate to the structure and function of the preadolescent human brain.
doi:10.1016/j.brainres.2010.08.049
PMCID: PMC3953557  PMID: 20735996
Brain; Children; Exercise; Hippocampus; MRI; Physical activity
20.  Neurobiological markers of exercise-related brain plasticity in older adults 
The current study examined how a randomized one-year aerobic exercise program for healthy older adults would affect serum levels of brain-derived neurotrophic factor (BDNF), insulin-like growth factor type 1 (IGF-1), and vascular endothelial growth factor (VEGF) - putative markers of exercise-induced benefits on brain function. The study also examined whether (a) change in the concentration of these growth factors was associated with alterations in functional connectivity following exercise, and (b) the extent to which pre-intervention growth factor levels were associated with training-related changes in functional connectivity. In 65 participants (mean age = 66.4), we found that although there were no group-level changes in growth factors as a function of the intervention, increased temporal lobe connectivity between the bilateral parahippocampus and the bilateral middle temporal gyrus was associated with increased BDNF, IGF-1, and VEGF for an aerobic walking group but not for a non-aerobic control group, and greater pre-intervention VEGF was associated with greater training-related increases in this functional connection. Results are consistent with animal models of exercise and the brain, but are the first to show in humans that exercise-induced increases in temporal lobe functional connectivity are associated with changes in growth factors and may be augmented by greater baseline VEGF.
doi:10.1016/j.bbi.2012.10.021
PMCID: PMC3544982  PMID: 23123199
exercise; aging; functional connectivity; fMRI; default mode network; aerobic fitness; growth factors
21.  Cognitive training with casual video games: points to consider 
Frontiers in Psychology  2014;4:1010.
Brain training programs have proliferated in recent years, with claims that video games or computer-based tasks can broadly enhance cognitive function. However, benefits are commonly seen only in trained tasks. Assessing generalized improvement and practicality of laboratory exercises complicates interpretation and application of findings. In this study, we addressed these issues by using active control groups, training tasks that more closely resemble real-world demands and multiple tests to determine transfer of training. We examined whether casual video games can broadly improve cognition, and selected training games from a study of the relationship between game performance and cognitive abilities. A total of 209 young adults were randomized into a working memory–reasoning group, an adaptive working memory–reasoning group, an active control game group, and a no-contact control group. Before and after 15 h of training, participants completed tests of reasoning, working memory, attention, episodic memory, perceptual speed, and self-report measures of executive function, game experience, perceived improvement, knowledge of brain training research, and game play outside the laboratory. Participants improved on the training games, but transfer to untrained tasks was limited. No group showed gains in reasoning, working memory, episodic memory, or perceptual speed, but the working memory–reasoning groups improved in divided attention, with better performance in an attention-demanding game, a decreased attentional blink and smaller trail-making costs. Perceived improvements did not differ across training groups and those with low reasoning ability at baseline showed larger gains. Although there are important caveats, our study sheds light on the mixed effects in the training and transfer literature and offers a novel and potentially practical training approach. Still, more research is needed to determine the real-world benefits of computer programs such as casual games.
doi:10.3389/fpsyg.2013.01010
PMCID: PMC3882717  PMID: 24432009
attention; working memory; reasoning; fluid intelligence; video games; cognitive training; casual games; transfer of training
22.  Selling points: What cognitive abilities are tapped by casual video games? 
Acta psychologica  2012;142(1):74-86.
The idea that video games or computer-based applications can improve cognitive function has led to a proliferation of programs claiming to “train the brain.” However, there is often little scientific basis in the development of commercial training programs, and many research-based programs yield inconsistent or weak results. In this study, we sought to better understand the nature of cognitive abilities tapped by casual video games and thus reflect on their potential as a training tool. A moderately large sample of participants (n=209) played 20 web-based casual games and performed a battery of cognitive tasks. We used cognitive task analysis and multivariate statistical techniques to characterize the relationships between performance metrics. We validated the cognitive abilities measured in the task battery, examined a task analysis-based categorization of the casual games, and then characterized the relationship between game and task performance. We found that games categorized to tap working memory and reasoning were robustly related to performance on working memory and fluid intelligence tasks, with fluid intelligence best predicting scores on working memory and reasoning games. We discuss these results in the context of overlap in cognitive processes engaged by the cognitive tasks and casual games, and within the context of assessing near and far transfer. While this is not a training study, these findings provide a methodology to assess the validity of using certain games as training and assessment devices for specific cognitive abilities, and shed light on the mixed transfer results in the computer-based training literature. Moreover, the results can inform design of a more theoretically-driven and methodologically-sound cognitive training program.
doi:10.1016/j.actpsy.2012.11.009
PMCID: PMC3679476  PMID: 23246789
Working memory; Reasoning; Fluid intelligence; Video games; Cognitive training; Casual games
23.  Parietal plasticity after training with a complex video game is associated with individual differences in improvements in an untrained working memory task 
Researchers have devoted considerable attention and resources to cognitive training, yet there have been few examinations of the relationship between individual differences in patterns of brain activity during the training task and training benefits on untrained tasks (i.e., transfer). While a predominant hypothesis suggests that training will transfer if there is training-induced plasticity in brain regions important for the untrained task, this theory lacks sufficient empirical support. To address this issue we investigated the relationship between individual differences in training-induced changes in brain activity during a cognitive training videogame, and whether those changes explained individual differences in the resulting changes in performance in untrained tasks. Forty-five young adults trained with a videogame that challenges working memory, attention, and motor control for 15 2-h sessions. Before and after training, all subjects received neuropsychological assessments targeting working memory, attention, and procedural learning to assess transfer. Subjects also underwent pre- and post-functional magnetic resonance imaging (fMRI) scans while they played the training videogame to assess how these patterns of brain activity change in response to training. For regions implicated in working memory, such as the superior parietal lobe (SPL), individual differences in the post-minus-pre changes in activation predicted performance changes in an untrained working memory task. These findings suggest that training-induced plasticity in the functional representation of a training task may play a role in individual differences in transfer. Our data support and extend previous literature that has examined the association between training related cognitive changes and associated changes in underlying neural networks. We discuss the role of individual differences in brain function in training generalizability and make suggestions for future cognitive training research.
doi:10.3389/fnhum.2014.00169
PMCID: PMC3968753  PMID: 24711792
cognitive training; neuroplasticity; tranfser; working memory; video games
24.  Aerobic fitness is associated with greater white matter integrity in children 
Aerobic fitness has been found to play a positive role in brain and cognitive health of children. Yet, many of the neural biomarkers related to aerobic fitness remain unknown. Here, using diffusion tensor imaging, we demonstrated that higher aerobic fitness was related to greater estimates of white matter microstructure in children. Higher fit 9- and 10-year-old children showed greater fractional anisotropy (FA) in sections of the corpus callosum, corona radiata, and superior longitudinal fasciculus, compared to lower fit children. The FA effects were primarily characterized by aerobic fitness differences in radial diffusivity, thereby raising the possibility that estimates of myelination may vary as a function of individual differences in fitness during childhood. White matter structure may be another potential neural mechanism of aerobic fitness that assists in efficient communication between gray matter regions as well as the integration of regions into networks.
doi:10.3389/fnhum.2014.00584
PMCID: PMC4137385  PMID: 25191243
cardiorespiratory fitness; development; diffusion tensor imaging; fiber tracts; microstructure
25.  Cognitive control in the self-regulation of physical activity and sedentary behavior 
Cognitive control of physical activity and sedentary behavior is receiving increased attention in the neuroscientific and behavioral medicine literature as a means of better understanding and improving the self-regulation of physical activity. Enhancing individuals’ cognitive control capacities may provide a means to increase physical activity and reduce sedentary behavior. First, this paper reviews emerging evidence of the antecedence of cognitive control abilities in successful self-regulation of physical activity, and in precipitating self-regulation failure that predisposes to sedentary behavior. We then highlight the brain networks that may underpin the cognitive control and self-regulation of physical activity, including the default mode network, prefrontal cortical networks and brain regions and pathways associated with reward. We then discuss research on cognitive training interventions that document improved cognitive control and that suggest promise of influencing physical activity regulation. Key cognitive training components likely to be the most effective at improving self-regulation are also highlighted. The review concludes with suggestions for future research.
doi:10.3389/fnhum.2014.00747
PMCID: PMC4179677  PMID: 25324754
cognitive control; self-regulation; executive functioning; physical activity; sedentary behavior

Results 1-25 (76)