PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-17 (17)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Do Athletes Excel at Everyday Tasks? 
Purpose
Cognitive enhancements are associated with sport training. We extended the sport-cognition literature by using a realistic street crossing task to examine the multitasking and processing speed abilities of collegiate athletes and nonathletes.
Methods
Pedestrians navigated trafficked roads by walking on a treadmill in a virtual world, a challenge that requires the quick and simultaneous processing of multiple streams of information.
Results
Athletes had higher street crossing success rates than nonathletes, as reflected by fewer collisions with moving vehicles. Athletes also showed faster processing speed on a computer-based test of simple reaction time, and shorter reaction times were associated with higher street crossing success rates.
Conclusions
The results suggest that participation in athletics relates to superior street crossing multitasking abilities and that athlete and nonathlete differences in processing speed may underlie this difference. We suggest that cognitive skills trained in sport may transfer to performance on everyday fast-paced multitasking abilities.
doi:10.1249/MSS.0b013e318218ca74
PMCID: PMC3953501  PMID: 21407125
COGNITION; MULTITASKING; PROCESSING SPEED; SPORT; STREET CROSSING
2.  A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children 
Brain research  2010;1358:172-183.
Because children are becoming overweight, unhealthy, and unfit, understanding the neurocognitive benefits of an active lifestyle in childhood has important public health and educational implications. Animal research has indicated that aerobic exercise is related to increased cell proliferation and survival in the hippocampus as well as enhanced hippocampal-dependent learning and memory. Recent evidence extends this relationship to elderly humans by suggesting that high aerobic fitness levels in older adults are associated with increased hippocampal volume and superior memory performance. The present study aimed to further extend the link between fitness, hippocampal volume, and memory to a sample of preadolescent children. To this end, magnetic resonance imaging was employed to investigate whether higher- and lower-fit 9- and 10-year-old children showed differences in hippocampal volume and if the differences were related to performance on an item and relational memory task. Relational but not item memory is primarily supported by the hippocampus. Consistent with predictions, higher-fit children showed greater bilateral hippocampal volumes and superior relational memory task performance compared to lower-fit children. Hippocampal volume was also positively associated with performance on the relational but not the item memory task. Furthermore, bilateral hippocampal volume was found to mediate the relationship between fitness level (VO2 max) and relational memory. No relationship between aerobic fitness, nucleus accumbens volume, and memory was reported, which strengthens the hypothesized specific effect of fitness on the hippocampus. The findings are the first to indicate that aerobic fitness may relate to the structure and function of the preadolescent human brain.
doi:10.1016/j.brainres.2010.08.049
PMCID: PMC3953557  PMID: 20735996
Brain; Children; Exercise; Hippocampus; MRI; Physical activity
3.  Neurobiological markers of exercise-related brain plasticity in older adults 
The current study examined how a randomized one-year aerobic exercise program for healthy older adults would affect serum levels of brain-derived neurotrophic factor (BDNF), insulin-like growth factor type 1 (IGF-1), and vascular endothelial growth factor (VEGF) - putative markers of exercise-induced benefits on brain function. The study also examined whether (a) change in the concentration of these growth factors was associated with alterations in functional connectivity following exercise, and (b) the extent to which pre-intervention growth factor levels were associated with training-related changes in functional connectivity. In 65 participants (mean age = 66.4), we found that although there were no group-level changes in growth factors as a function of the intervention, increased temporal lobe connectivity between the bilateral parahippocampus and the bilateral middle temporal gyrus was associated with increased BDNF, IGF-1, and VEGF for an aerobic walking group but not for a non-aerobic control group, and greater pre-intervention VEGF was associated with greater training-related increases in this functional connection. Results are consistent with animal models of exercise and the brain, but are the first to show in humans that exercise-induced increases in temporal lobe functional connectivity are associated with changes in growth factors and may be augmented by greater baseline VEGF.
doi:10.1016/j.bbi.2012.10.021
PMCID: PMC3544982  PMID: 23123199
exercise; aging; functional connectivity; fMRI; default mode network; aerobic fitness; growth factors
4.  Functional connectivity: a source of variance in the association between cardiorespiratory fitness and cognition? 
Neuropsychologia  2010;48(5):1394-1406.
Over the next twenty years the number of Americans diagnosed with dementia is expected to more than double (CDC 2007). It is, therefore, an important public health initiative to understand what factors contribute to the longevity of a healthy mind. Both default mode network (DMN) function and increased aerobic fitness have been associated with better cognitive performance and reduced incidence of Alzheimer’s disease among older adults. Here we examine the association between aerobic fitness, functional connectivity in the DMN, and cognitive performance. Results showed significant age-related deficits in functional connectivity in both local and distributed DMN pathways. However, in a group of healthy elderly adults, almost half of the age-related disconnections showed increased functional connectivity as a function of aerobic fitness level. Finally, we examine the hypothesis that functional connectivity in the DMN is one source of variance in the relationship between aerobic fitness and cognition. Results demonstrate instances of both specific and global DMN connectivity mediating the relationship between fitness and cognition. We provide the first evidence for functional connectivity as a source of variance in the association between aerobic fitness and cognition, and discuss results in the context of neurobiological theories of cognitive aging and disease.
doi:10.1016/j.neuropsychologia.2010.01.005
PMCID: PMC3708614  PMID: 20079755
cognitive aging; fMRI; functional connectivity; aerobic exercise; executive function; spatial memory
5.  The association between aerobic fitness and executive function is mediated by prefrontal cortex volume 
Brain, Behavior, and Immunity  2011;26(5):811-819.
Aging is marked by a decline in cognitive function, which is often preceded by losses in gray matter volume. Fortunately, higher cardiorespiratory fitness (CRF) levels are associated with an attenuation of age-related losses in gray matter volume and a reduced risk for cognitive impairment. Despite these links, we have only a rudimentary understanding of whether fitness-related increases in gray matter volume lead to elevated cognitive function. In this cross-sectional study, we examined whether the association between higher aerobic fitness levels and elevated executive function was mediated by greater gray matter volume in the prefrontal cortex (PFC). One hundred and forty-two older adults (mean age = 66.6 years) completed structural magnetic resonance imaging (MRI) scans, CRF assessments, and performed Stroop and spatial working memory (SPWM) tasks. Gray matter volume was assessed using an optimized voxel-based morphometry approach. Consistent with our predictions, higher fitness levels were associated with (a) better performance on both the Stroop and SPWM tasks, and (b) greater gray matter volume in several regions, including the dorsolateral PFC (DLPFC). Volume of the right inferior frontal gyrus and precentral gyrus mediated the relationship between CRF and Stroop interference while a non-overlapping set of regions bilaterally in the DLPFC mediated the association between CRF and SPWM accuracy. These results suggest that specific regions of the DLPFC differentially relate to inhibition and spatial working memory. Thus, fitness may influence cognitive function by reducing brain atrophy in targeted areas in healthy older adults.
doi:10.1016/j.bbi.2011.11.008
PMCID: PMC3321393  PMID: 22172477
cardiorespiratory fitness; executive function; voxel-based morphometry; cortical volume; prefrontal cortex; mediation
6.  Aerobic fitness is associated with greater efficiency of the network underlying cognitive control in preadolescent children 
Neuroscience  2011;199:166-176.
This study examined whether individual differences in aerobic fitness are associated with differences in activation of cognitive control brain networks in preadolescent children. As expected, children performed worse on a measure of cognitive control compared to a group of young adults. However, individual differences in aerobic fitness were associated with cognitive control performance among children. Lower-fit children had disproportionate performance cost in accuracy with increasing task difficulty, relative to higher-fit children. Brain activation was compared between performance-matched groups of lower- and higher-fit children. Fitness groups differed in brain activity for regions associated with response execution and inhibition, task set maintenance, and top-down regulation. Overall, differing activation patterns coupled with different patterns of brain-behavior correlations suggest an important role of aerobic fitness in modulating task strategy and the efficiency of neural networks that implement cognitive control in preadolescent children.
doi:10.1016/j.neuroscience.2011.10.009
PMCID: PMC3237764  PMID: 22027235
exercise; physical activity; aerobic fitness; executive control; fMRI; development
7.  Caudate Nucleus Volume Mediates the Link between Cardiorespiratory Fitness and Cognitive Flexibility in Older Adults 
Journal of Aging Research  2012;2012:939285.
The basal ganglia play a central role in regulating the response selection abilities that are critical for mental flexibility. In neocortical areas, higher cardiorespiratory fitness levels are associated with increased gray matter volume, and these volumetric differences mediate enhanced cognitive performance in a variety of tasks. Here we examine whether cardiorespiratory fitness correlates with the volume of the subcortical nuclei that make up the basal ganglia and whether this relationship predicts cognitive flexibility in older adults. Structural MRI was used to determine the volume of the basal ganglia nuclei in a group of older, neurologically healthy individuals (mean age 66 years, N = 179). Measures of cardiorespiratory fitness (VO2max), cognitive flexibility (task switching), and attentional control (flanker task) were also collected. Higher fitness levels were correlated with higher accuracy rates in the Task Switching paradigm. In addition, the volume of the caudate nucleus, putamen, and globus pallidus positively correlated with Task Switching accuracy. Nested regression modeling revealed that caudate nucleus volume was a significant mediator of the relationship between cardiorespiratory fitness, and task switching performance. These findings indicate that higher cardiorespiratory fitness predicts better cognitive flexibility in older adults through greater grey matter volume in the dorsal striatum.
doi:10.1155/2012/939285
PMCID: PMC3415086  PMID: 22900181
8.  Aerobic Fitness and Response Variability in Preadolescent Children Performing a Cognitive Control Task 
Neuropsychology  2011;25(3):333-341.
OBJECTIVE
To investigate the relationship between aerobic fitness and cognitive variability in preadolescent children.
METHOD
Forty-eight preadolescent children (25 males, 23 females, mean age = 10.1 years) were grouped into higher- and lower-fit groups according to their performance on a test of aerobic capacity (VO2max). Cognitive function was measured via behavioral responses to a modified flanker task. The distribution in reaction time was calculated within each participant to assess intra-individual variability of performance. Specifically, the standard deviation and coefficient variation of reaction time were used to represent cognitive variability.
RESULTS
Preadolescent children, regardless of fitness, exhibited longer reaction time, increased response variability, and decreased response accuracy to incongruent compared to congruent trials. Further, higher-fit children were less variable in their response time and more accurate in their responses across conditions of the flanker task, while no group differences were observed for response speed.
CONCLUSION
These findings suggest that fitness is associated with better cognitive performance during a task that varies cognitive control demands, and extends this area of research to suggest that intra-individual variability may be a useful measure to examine the relationship between fitness and cognition during preadolescence.
doi:10.1037/a0022167
PMCID: PMC3086950  PMID: 21443340
Physical Activity; Executive Control; Standard Deviation; Coefficient of Variation; Reaction Time
9.  Beyond vascularization: aerobic fitness is associated with N-acetylaspartate and working memory 
Brain and Behavior  2012;2(1):32-41.
Aerobic exercise is a promising form of prevention for cognitive decline; however, little is known about the molecular mechanisms by which exercise and fitness impacts the human brain. Several studies have postulated that increased regional brain volume and function are associated with aerobic fitness because of increased vascularization rather than increased neural tissue per se. We tested this position by examining the relationship between cardiorespiratory fitness and N-acetylaspartate (NAA) levels in the right frontal cortex using magnetic resonance spectroscopy. NAA is a nervous system specific metabolite found predominantly in cell bodies of neurons. We reasoned that if aerobic fitness was predominantly influencing the vasculature of the brain, then NAA levels should not vary as a function of aerobic fitness. However, if aerobic fitness influences the number or viability of neurons, then higher aerobic fitness levels might be associated with greater concentrations of NAA. We examined NAA levels, aerobic fitness, and cognitive performance in 137 older adults without cognitive impairment. Consistent with the latter hypothesis, we found that higher aerobic fitness levels offset an age-related decline in NAA. Furthermore, NAA mediated an association between fitness and backward digit span performance, suggesting that neuronal viability as measured by NAA is important in understanding fitness-related cognitive enhancement. Since NAA is found exclusively in neural tissue, our results indicate that the effect of fitness on the human brain extends beyond vascularization; aerobic fitness is associated with neuronal viability in the frontal cortex of older adults.
doi:10.1002/brb3.30
PMCID: PMC3343297  PMID: 22574272
Aging; brain; exercise; fitness; human; N-acetylaspartate; working memory
10.  Basal Ganglia Volume Is Associated with Aerobic Fitness in Preadolescent Children 
Developmental Neuroscience  2010;32(3):249-256.
The present investigation is the first to explore the association between childhood aerobic fitness and basal ganglia structure and function. Rodent research has revealed that exercise influences the striatum by increasing dopamine signaling and angiogenesis. In children, higher aerobic fitness levels are associated with greater hippocampal volumes, superior performance on tasks of attentional and interference control, and elevated event-related brain potential indices of executive function. The present study used magnetic resonance imaging to investigate if higher-fit and lower-fit 9- and 10-year-old children exhibited differential volumes of other subcortical brain regions, specifically the basal ganglia involved in attentional control. The relationship between aerobic fitness, dorsal and ventral striatum volumes and performance on an attention and inhibition Eriksen flanker task was also examined. The results indicated that higher-fit children showed superior flanker task performance compared to lower-fit children. Higher-fit children also showed greater volumes of the dorsal striatum, and dorsal striatum volume was negatively associated with behavioral interference. The results support the claim that the dorsal striatum is involved in cognitive control and response resolution and that these cognitive processes vary as a function of aerobic fitness. No relationship was found between aerobic fitness, the volume of the ventral striatum and flanker performance. The findings suggest that increased childhood aerobic fitness is associated with greater dorsal striatal volumes and that this is related to enhanced cognitive control. Because children are becoming increasingly overweight, unhealthy and unfit, understanding the neurocognitive benefits of an active lifestyle during childhood has important public health and educational implications.
doi:10.1159/000316648
PMCID: PMC3696376  PMID: 20693803
Brain; Development; Exercise; MRI; Physical activity; Neurocognition; Neuroimaging; Striatum
11.  Aerobic Fitness is Associated With Hippocampal Volume in Elderly Humans 
Hippocampus  2009;19(10):1030-1039.
Deterioration of the hippocampus occurs in elderly individuals with and without dementia, yet individual variation exists in the degree and rate of hippocampal decay. Determining the factors that influence individual variation in the magnitude and rate of hippocampal decay may help promote lifestyle changes that prevent such deterioration from taking place. Aerobic fitness and exercise are effective at preventing cortical decay and cognitive impairment in older adults and epidemiological studies suggest that physical activity can reduce the risk for developing dementia. However, the relationship between aerobic fitness and hippocampal volume in elderly humans is unknown. In this study, we investigated whether individuals with higher levels of aerobic fitness displayed greater volume of the hippocampus and better spatial memory performance than individuals with lower fitness levels. Furthermore, in exploratory analyses, we assessed whether hippocampal volume mediated the relationship between fitness and spatial memory. Using a region-of-interest analysis on magnetic resonance images in 165 nondemented older adults, we found a triple association such that higher fitness levels were associated with larger left and right hippocampi after controlling for age, sex, and years of education, and larger hippocampi and higher fitness levels were correlated with better spatial memory performance. Furthermore, we demonstrated that hippocampal volume partially mediated the relationship between higher fitness levels and enhanced spatial memory. Our results clearly indicate that higher levels of aerobic fitness are associated with increased hippocampal volume in older humans, which translates to better memory function.
doi:10.1002/hipo.20547
PMCID: PMC3072565  PMID: 19123237
aging; MRI; spatial memory; cognition; brain
12.  BDNF is Associated With Age-Related Decline in Hippocampal Volume 
Hippocampal volume shrinks in late adulthood, but the neuromolecular factors that trigger hippocampal decay in aging humans remains a matter of speculation. In rodents, brain derived neurotrophic factor (BDNF) promotes the growth and proliferation of cells in the hippocampus and is important in long-term potentiation and memory formation. In humans, circulating levels of BDNF decline with advancing age and a genetic polymorphism for BDNF has been related to gray matter volume loss in old age. In this study, we tested whether age-related reductions in serum levels of BDNF would be related to shrinkage of the hippocampus and memory deficits in older adults. Hippocampal volume was acquired by automated segmentation of magnetic resonance images in 142 older adults without dementia. The caudate nucleus was also segmented and examined in relation to levels of serum BDNF. Spatial memory was tested using a paradigm in which memory load was parametrically increased. We found that increasing age was associated with smaller hippocampal volumes, reduced levels of serum BDNF, and poorer memory performance. Lower levels of BDNF were associated with smaller hippocampi and poorer memory, even when controlling for the variation related to age. In an exploratory mediation analysis, hippocampal volume mediated the age-related decline in spatial memory and BDNF mediated the age-related decline in hippocampal volume. Caudate nucleus volume was unrelated to BDNF levels or spatial memory performance. Our results identify serum BDNF as a significant factor related to hippocampal shrinkage and memory decline in late adulthood.
doi:10.1523/JNEUROSCI.6251-09.2010
PMCID: PMC3069644  PMID: 20392958
brain-derived neurotrophic factor; hippocampus; human; brain; caudate nucleus; aging
13.  A cross-sectional study of hormone treatment and hippocampal volume in postmenopausal women: Evidence for a limited window of opportunity 
Neuropsychology  2010;24(1):68-76.
The influence of hormone treatment on brain and cognition in postmenopausal women has been a controversial topic. Contradictory patterns of results have prompted speculation that a critical period, or a limited window of opportunity, exists for hormone treatment to protect against cognitive and neural decline in older women. Consistent with this hypothesis, studies in both humans and rodents indicate that the latency between the time of menopause and the initiation of hormone treatment is an important factor in determining whether hormone treatment will prevent or exacerbate cognitive impairment. In this cross-sectional study of 102 postmenopausal women, we examined whether hippocampal, amygdala, or caudate nucleus volumes and spatial memory performance were related to the interval between menopause and the initiation of hormone treatment. Consistent with a critical period hypothesis, we found that shorter intervals between menopause and the initiation of hormone treatment, as determined by self-report, were associated with larger hippocampal volumes compared with longer intervals between menopause and treatment initiation. Initiation of hormone treatment at the time of menopause was also associated with larger hippocampal volumes when compared to peers who had never used hormone treatment. Furthermore, these effects were independent from potentially confounding factors such as age, years of education, the duration of hormone treatment, current or past use of hormone therapy, the type of therapy, and the age at menopause. Larger hippocampal volumes in women who initiated hormone treatment at the time of menopause failed to translate to improved spatial memory performance. There was no relationship between the timing of hormone initiation, spatial memory performance, and amygdala or caudate nucleus volume. Our results provide support for the idea that there is a limited window of opportunity at the time of menopause for hormone treatment to influence hippocampal volume, yet the degree to which these effects translate to improved memory performance is uncertain.
doi:10.1037/a0017292
PMCID: PMC2843433  PMID: 20063947
14.  Plasticity of Brain Networks in a Randomized Intervention Trial of Exercise Training in Older Adults 
Research has shown the human brain is organized into separable functional networks during rest and varied states of cognition, and that aging is associated with specific network dysfunctions. The present study used functional magnetic resonance imaging (fMRI) to examine low-frequency (0.008 < f < 0.08 Hz) coherence of cognitively relevant and sensory brain networks in older adults who participated in a 1-year intervention trial, comparing the effects of aerobic and non-aerobic fitness training on brain function and cognition. Results showed that aerobic training improved the aging brain's resting functional efficiency in higher-level cognitive networks. One year of walking increased functional connectivity between aspects of the frontal, posterior, and temporal cortices within the Default Mode Network and a Frontal Executive Network, two brain networks central to brain dysfunction in aging. Length of training was also an important factor. Effects in favor of the walking group were observed only after 12 months of training, compared to non-significant trends after 6 months. A non-aerobic stretching and toning group also showed increased functional connectivity in the DMN after 6 months and in a Frontal Parietal Network after 12 months, possibly reflecting experience-dependent plasticity. Finally, we found that changes in functional connectivity were behaviorally relevant. Increased functional connectivity was associated with greater improvement in executive function. Therefore the study provides the first evidence for exercise-induced functional plasticity in large-scale brain systems in the aging brain, using functional connectivity techniques, and offers new insight into the role of aerobic fitness in attenuating age-related brain dysfunction.
doi:10.3389/fnagi.2010.00032
PMCID: PMC2947936  PMID: 20890449
exercise; aging; functional connectivity; fMRI; default mode network; executive function; aerobic fitness
15.  Cardiorespiratory Fitness and Attentional Control in the Aging Brain 
A growing body of literature provides evidence for the prophylactic influence of cardiorespiratory fitness on cognitive decline in older adults. This study examined the association between cardiorespiratory fitness and recruitment of the neural circuits involved in an attentional control task in a group of healthy older adults. Employing a version of the Stroop task, we examined whether higher levels of cardiorespiratory fitness were associated with an increase in activation in cortical regions responsible for imposing attentional control along with an up-regulation of activity in sensory brain regions that process task-relevant representations. Higher fitness levels were associated with better behavioral performance and an increase in the recruitment of prefrontal and parietal cortices in the most challenging condition, thus providing evidence that cardiorespiratory fitness is associated with an increase in the recruitment of the anterior processing regions. There was a top-down modulation of extrastriate visual areas that process both task-relevant and task-irrelevant attributes relative to the baseline. However, fitness was not associated with differential activation in the posterior processing regions, suggesting that fitness enhances attentional function by primarily influencing the neural circuitry of anterior cortical regions. This study provides novel evidence of a differential association of fitness with anterior and posterior brain regions, shedding further light onto the neural changes accompanying cardiorespiratory fitness.
doi:10.3389/fnhum.2010.00229
PMCID: PMC3024830  PMID: 21267428
cardiorespiratory fitness; Stroop task; cognitive and attentional control
16.  Trouble Crossing the Bridge: Altered Interhemispheric Communication of Emotional Images in Anxiety 
Emotion (Washington, D.C.)  2008;8(5):684-692.
Worry is thought to involve a strategy of cognitive avoidance, in which internal verbalization acts to suppress threatening emotional imagery. We tested the hypothesis that worry-prone individuals would exhibit patterns of between-hemisphere communication that reflect cognitive avoidance. Specifically, we predicted slower transfer of threatening images from the left to the right hemisphere among worriers. ERP measures of interhemispheric transfer time supported this prediction. Left-to-right hemisphere transfer times for angry faces were relatively slower for individuals scoring high in self-reported worry compared to those scoring low, while transfer of happy and neutral faces did not differ between groups. These results suggest that altered interhemispheric communication may constitute one mechanism of cognitive avoidance in worry.
doi:10.1037/a0012910
PMCID: PMC2575130  PMID: 18837618
anxiety; avoidance; interhemispheric communication; corpus callosum
17.  Anxiety and Error Monitoring: Increased Error Sensitivity or Altered Expectations? 
Brain and cognition  2007;64(3):247-256.
This study tested the prediction that the error-related negativity (ERN), a physiological measure of error monitoring, would be enhanced in anxious individuals, particularly in conditions with threatening cues. Participants made gender judgments about faces whose expressions were either happy, angry, or neutral. Replicating prior studies, midline scalp negativities were greater following errors than following correct responses. In addition, state anxiety interacted with facial expression to predict ERN amplitudes. Counter to predictions, participants high in state anxiety displayed smaller ERNs for angry-face blocks and larger ERNs for happy-face blocks, compared to less anxious participants. These results are inconsistent with the simple notion that anxiety enhances error-sensitivity globally. Rather, we interpret the findings within an expectancy violation framework, in which anxious participants have altered expectations for success and failure in the context of happy and angry facial cues, with greater ERN amplitudes when expectations are violated.
doi:10.1016/j.bandc.2007.03.006
PMCID: PMC1995669  PMID: 17482740

Results 1-17 (17)