Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  The Relationship between Intelligence and Training Gains Is Moderated by Training Strategy 
PLoS ONE  2015;10(4):e0123259.
We examined the relationship between training regimen and fluid intelligence in the learning of a complex video game. Fifty non-game-playing young adults were trained on a game called Space Fortress for 30 hours with one of two training regimens: 1) Hybrid Variable-Priority Training (HVT), with part-task training and a focus on improving specific skills and managing task priorities, and 2) Full Emphasis Training (FET) in which participants practiced the whole game to obtain the highest overall score. Fluid intelligence was measured with the Raven’s Progressive Matrix task before training. With FET, fluid intelligence was positively associated with learning, suggesting that intellectual ability played a substantial role in determining individual differences in training success. In contrast, with HVT, fluid intelligence was not associated with learning, suggesting that individual differences in fluid intelligence do not factor into training success in a regimen that emphasizes component tasks and flexible task coordination. By analyzing training effects in terms of individual differences and training regimens, the current study offers a training approach that minimizes the potentially limiting effect of individual differences.
PMCID: PMC4393125  PMID: 25860978
2.  Three layers of working memory: Focus-switch costs and retrieval dynamics as revealed by the N-count task 
Two experiments explored the process of switching items in and out of the focus of attention using a new paradigm, the N count task (adapted from Garavan, 1998; N varied from 1 to 4). This task yielded a focus size of one, indicated by a substantial focus switch cost for 2 count. Additionally, the focus switch costs in response time increased with working memory load, indicating an effortful search process occurring at a speed of about 240 ms/item. Maintaining and switching to and from a passive load did not increase the focus switch costs or decrease memory accuracy, indicating that there is no crosstalk between passive and active items. The results support a concentric theory of working memory: a small focus at its core, a surrounding area of (at least) three readily available items referred to as the outer store, and a still wider region of passive storage, possibly more long term memory than working memory.
PMCID: PMC4375963  PMID: 25821579
Focus switching; Ageing; Working memory; Focus of attention; Retrieval
3.  Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults 
Higher cardiorespiratory fitness is associated with better cognitive performance and enhanced brain activation. Yet, the extent to which cardiorespiratory fitness-related brain activation is associated with better cognitive performance is not well understood. In this cross-sectional study, we examined whether the association between cardiorespiratory fitness and executive function was mediated by greater prefrontal cortex activation in healthy older adults. Brain activation was measured during dual-task performance with functional magnetic resonance imaging in a sample of 128 healthy older adults (59–80 years). Higher cardiorespiratory fitness was associated with greater activation during dual-task processing in several brain areas including the anterior cingulate and supplementary motor cortex (ACC/SMA), thalamus and basal ganglia, right motor/somatosensory cortex and middle frontal gyrus, and left somatosensory cortex, controlling for age, sex, education, and gray matter volume. Of these regions, greater ACC/SMA activation mediated the association between cardiorespiratory fitness and dual-task performance. We provide novel evidence that cardiorespiratory fitness may support cognitive performance by facilitating brain activation in a core region critical for executive function.
PMCID: PMC4532928  PMID: 26321949
exercise; aging; fMRI; dual-task; cardiorespiratory fitness; executive function
4.  Can Training in a Real-Time Strategy Videogame Attenuate Cognitive Decline in Older Adults? 
Psychology and aging  2008;23(4):765-777.
Declines in various cognitive abilities, particularly executive control functions, are observed in older adults. An important goal of cognitive training is to slow or reverse these age-related declines. However, opinion is divided in the literature regarding whether cognitive training can engender transfer to a variety of cognitive skills in older adults. Yet, recent research indicates that videogame training of young adults may engender broad transfer to skills of visual attention. In the current study, we used a real-time strategy videogame to attempt to train executive functions in older adults, such as working memory, task switching, short-term memory, inhibition, and reasoning. Older adults were either trained in a real-time strategy videogame for 23.5 hours (RON, n=20) or not (CONTROLS, n=20). A battery of cognitive tasks, including tasks of executive control and visuo-spatial skills, were assessed before, during, and after video game training. The trainees improved significantly in the measures of game performance. They also improved significantly more than the controls in a subset of the cognitive tasks, such as task switching, working memory, visual short term memory, and mental rotation. Trends in improvement were also observed, for the video game trainees, in inhibition and reasoning. Individual differences in changes in game performance were correlated with improvements in task-switching. The study has implications for the enhancement of executive control processes of older adults.
PMCID: PMC4041116  PMID: 19140648
Cognitive training; aging; executive control; videogame; transfer of training
5.  Selling points: What cognitive abilities are tapped by casual video games? 
Acta psychologica  2012;142(1):74-86.
The idea that video games or computer-based applications can improve cognitive function has led to a proliferation of programs claiming to “train the brain.” However, there is often little scientific basis in the development of commercial training programs, and many research-based programs yield inconsistent or weak results. In this study, we sought to better understand the nature of cognitive abilities tapped by casual video games and thus reflect on their potential as a training tool. A moderately large sample of participants (n=209) played 20 web-based casual games and performed a battery of cognitive tasks. We used cognitive task analysis and multivariate statistical techniques to characterize the relationships between performance metrics. We validated the cognitive abilities measured in the task battery, examined a task analysis-based categorization of the casual games, and then characterized the relationship between game and task performance. We found that games categorized to tap working memory and reasoning were robustly related to performance on working memory and fluid intelligence tasks, with fluid intelligence best predicting scores on working memory and reasoning games. We discuss these results in the context of overlap in cognitive processes engaged by the cognitive tasks and casual games, and within the context of assessing near and far transfer. While this is not a training study, these findings provide a methodology to assess the validity of using certain games as training and assessment devices for specific cognitive abilities, and shed light on the mixed transfer results in the computer-based training literature. Moreover, the results can inform design of a more theoretically-driven and methodologically-sound cognitive training program.
PMCID: PMC3679476  PMID: 23246789
Working memory; Reasoning; Fluid intelligence; Video games; Cognitive training; Casual games
6.  Aging and Switching the Focus of Attention in Working Memory: Age Differences in Item Availability But Not in Item Accessibility 
To investigate age differences in working memory processing, specifically the accuracy of retrieval of items stored outside the immediate focus of attention.
Younger and older adults were tested on a modified N-Back task with probes presented in an unpredictable order (implying also that some trials necessitated a switch in the focus of attention and others that did not).
Older adults showed intact item accessibility, that is, after taking general slowing into account, older adults were as fast as younger adults in locating the item in working memory. We found age differences, however, in item availability: Older adults were less likely to correctly retrieve items stored outside the focus of attention. Smaller age differences in availability were also found for items stored inside the focus of attention.
These results strongly suggest that item availability is a cognitive primitive that is not reducible to more basic constructs such as item accessibility or simple speed of processing.
PMCID: PMC3155026  PMID: 21571704
Cognition; Executive function; Memory; Working memory
7.  Caudate Nucleus Volume Mediates the Link between Cardiorespiratory Fitness and Cognitive Flexibility in Older Adults 
Journal of Aging Research  2012;2012:939285.
The basal ganglia play a central role in regulating the response selection abilities that are critical for mental flexibility. In neocortical areas, higher cardiorespiratory fitness levels are associated with increased gray matter volume, and these volumetric differences mediate enhanced cognitive performance in a variety of tasks. Here we examine whether cardiorespiratory fitness correlates with the volume of the subcortical nuclei that make up the basal ganglia and whether this relationship predicts cognitive flexibility in older adults. Structural MRI was used to determine the volume of the basal ganglia nuclei in a group of older, neurologically healthy individuals (mean age 66 years, N = 179). Measures of cardiorespiratory fitness (VO2max), cognitive flexibility (task switching), and attentional control (flanker task) were also collected. Higher fitness levels were correlated with higher accuracy rates in the Task Switching paradigm. In addition, the volume of the caudate nucleus, putamen, and globus pallidus positively correlated with Task Switching accuracy. Nested regression modeling revealed that caudate nucleus volume was a significant mediator of the relationship between cardiorespiratory fitness, and task switching performance. These findings indicate that higher cardiorespiratory fitness predicts better cognitive flexibility in older adults through greater grey matter volume in the dorsal striatum.
PMCID: PMC3415086  PMID: 22900181
8.  Examining neural correlates of skill acquisition in a complex videogame training program 
Acquisition of complex skills is a universal feature of human behavior that has been conceptualized as a process that starts with intense resource dependency, requires effortful cognitive control, and ends in relative automaticity on the multi-faceted task. The present study examined the effects of different theoretically based training strategies on cortical recruitment during acquisition of complex video game skills. Seventy-five participants were recruited and assigned to one of three training groups: (1) Fixed Emphasis Training (FET), in which participants practiced the game, (2) Hybrid Variable-Priority Training (HVT), in which participants practiced using a combination of part-task training and variable priority training, or (3) a Control group that received limited game play. After 30 h of training, game data indicated a significant advantage for the two training groups relative to the control group. The HVT group demonstrated enhanced benefits of training, as indexed by an improvement in overall game score and a reduction in cortical recruitment post-training. Specifically, while both groups demonstrated a significant reduction of activation in attentional control areas, namely the right middle frontal gyrus, right superior frontal gyrus, and the ventral medial prefrontal cortex, participants in the control group continued to engage these areas post-training, suggesting a sustained reliance on attentional regions during challenging task demands. The HVT group showed a further reduction in neural resources post-training compared to the FET group in these cognitive control regions, along with reduced activation in the motor and sensory cortices and the posteromedial cortex. Findings suggest that training, specifically one that emphasizes cognitive flexibility can reduce the attentional demands of a complex cognitive task, along with reduced reliance on the motor network.
PMCID: PMC3351675  PMID: 22615690
skill acquisition; training strategies; attentional control; functional MRI
9.  Striatal Volume Predicts Level of Video Game Skill Acquisition 
Cerebral Cortex (New York, NY)  2010;20(11):2522-2530.
Video game skills transfer to other tasks, but individual differences in performance and in learning and transfer rates make it difficult to identify the source of transfer benefits. We asked whether variability in initial acquisition and of improvement in performance on a demanding video game, the Space Fortress game, could be predicted by variations in the pretraining volume of either of 2 key brain regions implicated in learning and memory: the striatum, implicated in procedural learning and cognitive flexibility, and the hippocampus, implicated in declarative memory. We found that hippocampal volumes did not predict learning improvement but that striatal volumes did. Moreover, for the striatum, the volumes of the dorsal striatum predicted improvement in performance but the volumes of the ventral striatum did not. Both ventral and dorsal striatal volumes predicted early acquisition rates. Furthermore, this early-stage correlation between striatal volumes and learning held regardless of the cognitive flexibility demands of the game versions, whereas the predictive power of the dorsal striatal volumes held selectively for performance improvements in a game version emphasizing cognitive flexibility. These findings suggest a neuroanatomical basis for the superiority of training strategies that promote cognitive flexibility and transfer to untrained tasks.
PMCID: PMC3841463  PMID: 20089946
basal ganglia; caudate nucleus; cognitive flexibility; nucleus accumbens; procedural learning
10.  Plasticity of Brain Networks in a Randomized Intervention Trial of Exercise Training in Older Adults 
Research has shown the human brain is organized into separable functional networks during rest and varied states of cognition, and that aging is associated with specific network dysfunctions. The present study used functional magnetic resonance imaging (fMRI) to examine low-frequency (0.008 < f < 0.08 Hz) coherence of cognitively relevant and sensory brain networks in older adults who participated in a 1-year intervention trial, comparing the effects of aerobic and non-aerobic fitness training on brain function and cognition. Results showed that aerobic training improved the aging brain's resting functional efficiency in higher-level cognitive networks. One year of walking increased functional connectivity between aspects of the frontal, posterior, and temporal cortices within the Default Mode Network and a Frontal Executive Network, two brain networks central to brain dysfunction in aging. Length of training was also an important factor. Effects in favor of the walking group were observed only after 12 months of training, compared to non-significant trends after 6 months. A non-aerobic stretching and toning group also showed increased functional connectivity in the DMN after 6 months and in a Frontal Parietal Network after 12 months, possibly reflecting experience-dependent plasticity. Finally, we found that changes in functional connectivity were behaviorally relevant. Increased functional connectivity was associated with greater improvement in executive function. Therefore the study provides the first evidence for exercise-induced functional plasticity in large-scale brain systems in the aging brain, using functional connectivity techniques, and offers new insight into the role of aerobic fitness in attenuating age-related brain dysfunction.
PMCID: PMC2947936  PMID: 20890449
exercise; aging; functional connectivity; fMRI; default mode network; executive function; aerobic fitness

Results 1-10 (10)