Search tips
Search criteria

Results 1-12 (12)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Poor agreement between QuantiFERON-TB Gold test and tuberculin skin test results for the diagnosis of latent tuberculosis infection in rheumatoid arthritis patients and healthy controls 
We investigated the agreement between the QuantiFERON-TB Gold (QFT-Gold) test and the tuberculin skin test (TST) in the diagnosis of latent tuberculosis infection in patients with rheumatoid arthritis (RA), compared with healthy controls, in Korea.
We recruited 64 patients with RA and 79 healthy controls at two university hospitals in South Korea. The participants underwent both the QFT-Gold test and the TST simultaneously between August 2006 and February 2009. All patients were diagnosed using the classification criteria for RA revised in 1987 by the American College of Rheumatology. Bacillus Calmette-Guérin vaccination status and current medications were evaluated, and disease activities were assessed using the Disease Activity Score in 28 joints. Eleven patients with RA produced indeterminate QFT-Gold test results and were thus excluded from the kappa analysis.
Based on an induration of 10 mm in diameter as the TST cutoff value, the QFT-Gold test and TST demonstrated 75.0% agreement (κ = 0.23) in patients with RA and 75.9% agreement (κ = 0.19) in healthy controls. Among the 56 patients with RA who had negative TST results, 11 patients (17.2%) also yielded indeterminate QFT-Gold results.
Our study showed poor agreement between the results of the QFT-Gold test and the TST in both RA patients and healthy controls. Based on these findings, we emphasize the importance of making clinical decisions in the diagnosis of latent tuberculosis in Koreans with or without RA.
PMCID: PMC3932398  PMID: 24574836
QuantiFERON-TB Gold test; Tuberculin skin test; Latent tuberculosis; Arthritis, rheumatoid
2.  Correction: Membrane Fusion Proteins of Type I Secretion System and Tripartite Efflux Pumps Share a Binding Motif for TolC in Gram-Negative Bacteria 
PLoS ONE  2012;7(10):10.1371/annotation/4d57bc21-d540-496b-8220-2e90d3586b16.
PMCID: PMC3506366
3.  A nationwide seroprevalence of total antibody to hepatitis A virus from 2005 to 2009: age and area-adjusted prevalence rates 
Recent outbreak of hepatitis A in Korea is clearly related to the epidemiological shift of hepatitis A virus (HAV). However, nationwide seroprevalence data have been limited. This study estimated the nationwide, age- and area-adjusted anti-HAV prevalence from 2005 to 2009.
Retrospective analysis of the results of total anti-HAV test in 25,140 cases which were requested by 1,699 medical institutions throughout the nation to Seoul Clinical Laboratory from Jan. 1 2005 to Dec. 31 2009 was performed. The estimated seroprevalence was adjusted by area and age of the standard population based on the 2005 Census data from Korea National Statistical Office.
The area-adjusted anti-HAV prevalence in the children younger than 10 years were 33.4% in 2005 and 69.9% in 2009. The most susceptible age groups to HAV infection during the last 5 years were teenagers and the young adults in their age of twenties. The area-adjusted seroprevalence in 2009 were 11.9% in the age group of 20-29 years, 23.4% in the age group of 10-19 years, 48.4% in the age group of 30-39 years. The population in 40-49 years showed geographically different seroprevalence with the lowest rate in Seoul (80%).
The most susceptible age group to HAV infection is 10-29 years, while the young children less than 10 years showed about 70% seropositivity. The changing seroepidemiology should be monitored continuously for the proper vaccination and patient care.
PMCID: PMC3304627  PMID: 21494077
Hepatitis A virus; Hepatitis A antibodies; Epidemiology; Prevalence; Korea
4.  Direct ROS Scavenging Activity of CueP from Salmonella enterica serovar Typhimurium 
Molecules and Cells  2014;37(2):100-108.
Salmonella enterica serovar Typhimurium (S. Typhimurium) is an intracellular pathogen that has evolved to survive in the phagosome of macrophages. The periplasmic copper-binding protein CueP was initially known to confer copper resistance to S. Typhimurium. Crystal structure and biochemical studies on CueP revealed a putative copper binding site surrounded by the conserved cysteine and histidine residues. A recent study reported that CueP supplies copper ions to periplasmic Cu, Zn-superoxide dismutase (SodCII) at a low copper concentration and thus enables the sustained SodCII activity in the periplasm. In this study, we investigated the role of CueP in copper resistance at a high copper concentration. We observed that the survival of a cueP-deleted strain of Salmonella in macrophage phagosome was significantly reduced. Subsequent biochemical experiments revealed that CueP specifically mediates the reduction of copper ion using electrons released during the formation of the disulfide bond. We observed that the copper ion-mediated Fenton reaction in the presence of hydrogen peroxide was blocked by CueP. This study provides insight into how CueP confers copper resistance to S. Typhimurium in copper-rich environments such as the phagosome of macrophages.
PMCID: PMC3935622  PMID: 24598994
copper resistance; CueP; Fenton reaction; Salmonella
5.  Crystallization and preliminary X-ray crystallographic analysis of the β-N-acetylglucosaminidase CbsA from Thermotoga neapolitana  
CbsA from T. neapolitana has been crystallized. Native data were collected to 2.0 Å resolution.
The β-N-acetylglucosaminidase CbsA was cloned from the thermophilic Gram-negative bacterium Thermotoga neapolitana. Although CbsA contains a family 3 glycoside hydrolase-type (GH3-type) catalytic domain, it can be distinguished from other GH3-type β-N-acetylglucosaminidases by its high activity towards chitobiose. The homodimeric CbsA contains a unique domain at the C-terminus for which the three-dimensional structure is not yet known. In this study, CbsA was overexpressed and the recombinant protein was purified using Ni–NTA affinity and gel-filtration chromatography. The purified CbsA protein was crystallized using the vapour-diffusion method. A diffraction data set was collected to a resolution of 2.0 Å at 100 K. The crystal belonged to space group R32. To obtain initial phases, the crystallization of selenomethionyl-substituted protein and the production of heavy-atom derivative crystals are in progress.
PMCID: PMC3253835  PMID: 22232172
CbsA; Thermotoga neapolitana; thermostable enzymes; β-N-acetylglucosaminidases
6.  Grape Seed Proanthocyanidin Extract–Mediated Regulation of STAT3 Proteins Contributes to Treg Differentiation and Attenuates Inflammation in a Murine Model of Obesity-Associated Arthritis 
PLoS ONE  2013;8(11):e78843.
Grape seed proanthocyanidin extract (GSPE) is a natural flavonoid that exerts anti-inflammatory properties. Obesity is an inflammatory condition and inflammatory cells and their secretion of pro-inflammatory molecules contribute to the pathogenesis of obesity. Rheumatoid arthritis (RA) is a chronic autoimmune disease that is characterized by inflammation of joints lined by synovium. Previously, we demonstrated that obesity augmented arthritis severity in collagen induced arthritis (CIA), a murine model of human RA. Here, we investigated whether oral administration of GSPE showed antiobesity and anti-arthritic effects in high-fat diet-induced obese (DIO) mice and in obese CIA mice, respectively. The pathophysiologic mechanisms by which GSPE attenuates weight gain and arthritis severity in vivo were also investigated. In DIO mice, GSPE administration significantly inhibited weight gain, reduced fat infiltration in liver and improved serum lipid profiles. The antiobesity effect of GSPE was associated with increased populations of regulatory T (Treg) cells and those of decreased Th17 cells. Decrease of Th17 cells was associated with significant inhibition of their key transcriptional factors, pSTAT3Tyr705 and pSTAT3Ser727. On the contrary, GSPE-induced Treg induction was associated with enhanced pSTAT5 expression. To identify the anti-arthritis effects of GSPE, GSPE was given orally for 7 weeks after type II collagen immunization. GSPE treatment significantly attenuated the development of autoimmune arthritis in obese CIA model. In line with DIO mice, GSPE administration decreased Th17 cells and reciprocally increased Treg cells by regulating STAT proteins in autoimmune arthritis model. The expressions of pro-inflammatory cytokines and nitrotyrosine in synovium were significantly inhibited by GSPE treatment. Taken together, GSPE functions as a reciprocal regulator of T cell differentiation – suppression of Th17 cells and induction of Tregs in both DIO and obese CIA mice. GSPE may act as a therapeutic agent to treat immunologic diseases related with enhanced STAT3 activity such as metabolic disorders and autoimmune diseases.
PMCID: PMC3818494  PMID: 24223854
7.  IL-17-deficient allogeneic bone marrow transplantation prevents the induction of collagen-induced arthritis in DBA/1J mice 
Experimental & Molecular Medicine  2012;44(11):694-705.
IL-17-producing CD4+ T cells (Th17) play important functions in autoimmune diseases and allograft rejection of solid organs. We examined the effects of IL 17 and its mechanism of action on arthritis in a murine collagen-induced arthritis (CIA) model using bone marrow transplantation (BMT) system. DBA/1J mice were administered a lethal radiation dose and then rescued with bone marrow derived from either wild-type (WT) or IL-17-/- mice on C57BL/6 background mice. CIA was induced after the bone marrow transplant, and disease progression was characterized. DBA/1J mice with CIA that received IL-17-/- donor bone marrow showed potently inhibited development and severity of clinical arthritis as compared with CIA mice that received WT bone marrow. Reduced secretion of the pro-inflammatory cytokines tumor necrosis factor-α, IL-1β, and IL-6, and collagen-specific T cell responses were observed in mice that received IL-17-/- bone marrow. IL-17 blockade also inhibited effector T cell proliferation by reciprocally regulating the Treg/Th17 ratio. IL-17 blockade prevented joint destruction in mice with CIA. These findings suggest that CIA with BMT is a viable method of immunological manipulation and that IL-17 deficiency suppresses severe joint destruction and inflammation in CIA mice. There may be clinical benefits in blocking IL-17 and BMT in the treatment of rheumatoid arthritis.
PMCID: PMC3509186  PMID: 23114425
arthritis, experimental; bone marrow transplantation; interleukin-17; Th17 cells; T-lymphocytes, regulatory; transplantation, homologous
8.  IL-32 and IL-17 interact and have the potential to aggravate osteoclastogenesis in rheumatoid arthritis 
Arthritis Research & Therapy  2012;14(6):R246.
Interleukin (IL)-32 and IL-17 play critical roles in pro-inflammatory responses and are highly expressed in the synovium of patients with rheumatoid arthritis (RA). We investigated the relations between these two cytokines (IL-17 and IL-32) for their ability to induce each other and to stimulate osteoclasts in RA fibroblast-like synoviocytes (FLSs) and T cells.
FLSs were isolated through surgical synovectomy obtained from patients with RA or osteoarthritis (OA). Real-time PCR were performed to evaluate the expression of IL-32, IL-17 and osteoclast-related genes. Immunohistochemical staining and tartrate-resistant acid phosphatase (TRAP) staining were performed to determine the distribution of inflammatory cytokines and the presence of osteoclastogenesis.
IL-17 induced the expression of IL-32 in the FLSs from RA patients, as assessed by microarray. IL-32 production was increased by IL-17. IL-32 in the FLSs from RA patients induced the production of IL-17 in CD4+ T cells. IL-32 and IL-17 were colocalized near TRAP-positive areas in joint specimens. IL-17 and IL-32 synergistically induced the differentiation of osteoclasts, as demonstrated by the expression of osteoclast-related genes. IL-32 and IL-17 also could induce resorption by osteoclasts in a RANKL-dependent manner.
IL-17 affected the expression of IL-32 in FLSs of RA patients and IL-32 induced the production of IL-17 in CD4+ T cells. Both IL-17 and IL-32 cytokines can reciprocally influence each other's production and amplify the function of osteoclastogenesis in the in RA synovium. Separately, IL-17 and IL-32 each stimulated osteoclastogenesis without RANKL. Together, the two cytokines synergistically amplified the differentiation of osteoclasts, independent of RANKL stimulation.
PMCID: PMC3674587  PMID: 23148681
9.  Obesity aggravates the joint inflammation in a collagen-induced arthritis model through deviation to Th17 differentiation 
Experimental & Molecular Medicine  2012;44(7):424-431.
White fat cells secrete adipokines that induce inflammation and obesity has been reported to be characterized by high serum levels of inflammatory cytokines such as IL-6 and TNF-α. Rheumatoid arthritis (RA) is a prototype of inflammatory arthritis, but the relationship between RA and obesity is controversial. We made an obese inflammatory arthritis model: obese collagen-induced arthritis (CIA). C57BL/6 mice were fed a 60-kcal high fat diet (HFD) from the age of 4 weeks and they were immunized twice with type II collagen (CII). After immunization, the obese CIA mice showed higher arthritis index scores and histology scores and a more increased incidence of developing arthritis than did the lean CIA mice. After treatment with CII, mixed lymphocyte reaction also showed CII-specific response more intensely in the obese CIA mice than lean CIA. The anti-CII IgG and anti-CII IgG2a levels in the sera of the obese CIA mice were higher than those of the lean CIA mice. The number of Th17 cells was higher and the IL-17 mRNA expression of the splenocytes in the obese CIA mice was higher than that of the lean CIA mice. Obese CIA mice also showed high IL-17 expression on synovium in immunohistochemistry. Although obesity may not play a pathogenic role in initiating arthritis, it could play an important role in amplifying the inflammation of arthritis through the Th1/Th17 response. The obese CIA murine model will be an important tool when we investigate the effect of several therapeutic target molecules to treat RA.
PMCID: PMC3406287  PMID: 22513335
arthritis, experimental; inflammation; mice; obesity; Th17 cells
10.  Membrane Fusion Proteins of Type I Secretion System and Tripartite Efflux Pumps Share a Binding Motif for TolC in Gram-Negative Bacteria 
PLoS ONE  2012;7(7):e40460.
The Hly translocator complex of Escherichia coli catalyzes type I secretion of the toxin hemolysin A (HlyA). In this complex, HlyB is an inner membrane ABC (ATP Binding Cassette)-type transporter, TolC is an outer membrane channel protein, and HlyD is a periplasmic adaptor anchored in the inner membrane that bridges HlyB to TolC. This tripartite organization is reminiscent of that of drug efflux systems such as AcrA-AcrB-TolC and MacA-MacB-TolC of E. coli. We have previously shown the crucial role of conserved residues located at the hairpin tip region of AcrA and MacA adaptors during assembly of their cognate systems. In this study, we investigated the role of the putative tip region of HlyD using HlyD mutants with single amino acid substitutions at the conserved positions. In vivo and in vitro data show that all mutations abolished HlyD binding to TolC and resulted in the absence of HlyA secretion. Together, our results suggest that, similarly to AcrA and MacA, HlyD interacts with TolC in a tip-to-tip manner. A general model in which these conserved interactions induce opening of TolC during drug efflux and type I secretion is discussed.
PMCID: PMC3391258  PMID: 22792337
11.  Development of a Coronary Aneurysm at a Sirolimus-Eluting Stent-Implanted Lesion in a Patient With Churg-Strauss Syndrome 
Korean Circulation Journal  2011;41(9):559-562.
A coronary aneurysm (CA) can occur in sirolimus-eluting stent (SES)-implanted coronary lesions. Although several possible mechanisms have been suggested, the precise pathogenesis of a CA in SES-implanted lesions is still unknown. We report a patient with Churg-Strauss syndrome who underwent successful percutaneous coronary intervention with SES and then experienced a CA in an SES-implanted coronary lesion. We describe the CA characteristics through the use of coronary angiography, coronary 64-multidetector computed tomography, and intravascular ultrasound and discuss the etiological factors for the CA in this patient.
PMCID: PMC3193051  PMID: 22022335
Coronary aneurysm; Churg-Strauss syndrome
12.  Regulation of B cell activating factor (BAFF) receptor expression by NF-κB signaling in rheumatoid arthritis B cells 
Experimental & Molecular Medicine  2011;43(6):350-357.
B cells play an important role in the pathogenesis of rheumatoid arthritis (RA). High levels of B cell activating factor (BAFF) are detected in autoimmune diseases. BAFF and BAFF receptor (BAFF-R) are expressed in B and T cells of RA synovium. The study was undertaken to identify the NF-κB signal pathway involved in the induction of BAFF-R in human B cells. Immunohistochemical staining of NF-κB p65, NF-κB p50, BAFF, and BAFF-R was performed on sections of synovium from severe and mild RA and osteoarthritis (OA) patients. Peripheral blood mononuclear cells (PBMCs) were isolated from control and RA patients and B cells were isolated from controls. BAFF-R was analyzed by flow cytometry, realtime PCR and confocal staining after treatment with NF-κB inhibitors. NF-κB p65, NF-κB p50, BAFF, and BAFF-R were highly expressed in severe RA synovium relative to mild RA synovium or OA synovium. BAFF-R expression was reduced by NF-κB inhibitors in PBMCs and B cells from normal controls. We also showed reduction in expression of BAFF-R via inhibition of the NF-κB pathway in PBMCs of RA patients. BAFF/BAFF-R signaling is an important mechanism of pathogenesis in RA and that BAFF-R reduction by NF-κB blocking therapy is another choice for controlling B cells in autoimmune diseases such as RA.
PMCID: PMC3128913  PMID: 21515993
B-cell activation factor receptor; B-cell activating factor; B-lymphocytes; NF-κB; rheumatoid arthritis

Results 1-12 (12)