PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Phospholipase D1 Has a Pivotal Role in Interleukin-1β-Driven Chronic Autoimmune Arthritis through Regulation of NF-κB, Hypoxia-Inducible Factor 1α, and FoxO3a 
Molecular and Cellular Biology  2013;33(14):2760-2772.
Interleukin-1β (IL-1β) is a potent proinflammatory and immunoregulatory cytokine playing an important role in the progression of rheumatoid arthritis (RA). However, the signaling network of IL-1β in synoviocytes from RA patients is still poorly understood. Here, we show for the first time that phospholipase D1 (PLD1), but not PLD2, is selectively upregulated in IL-1β-stimulated synoviocytes, as well as synovium, from RA patients. IL-1β enhanced the binding of NF-κB and ATF-2 to the PLD1 promoter, thereby enhancing PLD1 expression. PLD1 inhibition abolished the IL-1β-induced expression of proinflammatory mediators and angiogenic factors by suppressing the binding of NF-κB or hypoxia-inducible factor 1α to the promoter of its target genes, as well as IL-1β-induced proliferation or migration. However, suppression of PLD1 activity promoted cell cycle arrest via transactivation of FoxO3a. Furthermore, PLD1 inhibitor significantly suppressed joint inflammation and destruction in IL-1 receptor antagonist-deficient (IL-1Ra−/−) mice, a model of spontaneous arthritis. Taken together, these results suggest that the abnormal upregulation of PLD1 may contribute to the pathogenesis of IL-1β-induced chronic arthritis and that a selective PLD1 inhibitor might provide a potential therapeutic molecule for the treatment of chronic inflammatory autoimmune disorders.
doi:10.1128/MCB.01519-12
PMCID: PMC3700130  PMID: 23689131
2.  Grape-Seed Proanthocyanidin Extract as Suppressors of Bone Destruction in Inflammatory Autoimmune Arthritis 
PLoS ONE  2012;7(12):e51377.
Chronic autoimmune inflammation, which is commonly observed in rheumatoid arthritis (RA), disrupts the delicate balance between bone resorption and formation causing thedestruction of the bone and joints. We undertook this study to verify the effects of natural grape-seed proanthocyanidin extract (GSPE), an antioxidant, on chronic inflammation and bone destruction. GSPE administration ameliorated the arthritic symptoms of collagen-induced arthritis (CIA), which are representative of cartilage and bone destruction. GSPE treatment reduced the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells and osteoclast activity and increased differentiation of mature osteoblasts. Receptor activator of NFκB ligand expression in fibroblasts from RA patients was abrogated with GSPE treatment. GSPE blocked human peripheral blood mononuclear cell-derived osteoclastogenesis and acted as an antioxidant. GSPE improved the arthritic manifestations of CIA mice by simultaneously suppressing osteoclast differentiation and promoting osteoblast differentiation. Our results suggest that GSPE may be beneficial for the treatment of inflammation-associated bone destruction.
doi:10.1371/journal.pone.0051377
PMCID: PMC3519627  PMID: 23251512
3.  IL-17-deficient allogeneic bone marrow transplantation prevents the induction of collagen-induced arthritis in DBA/1J mice 
Experimental & Molecular Medicine  2012;44(11):694-705.
IL-17-producing CD4+ T cells (Th17) play important functions in autoimmune diseases and allograft rejection of solid organs. We examined the effects of IL 17 and its mechanism of action on arthritis in a murine collagen-induced arthritis (CIA) model using bone marrow transplantation (BMT) system. DBA/1J mice were administered a lethal radiation dose and then rescued with bone marrow derived from either wild-type (WT) or IL-17-/- mice on C57BL/6 background mice. CIA was induced after the bone marrow transplant, and disease progression was characterized. DBA/1J mice with CIA that received IL-17-/- donor bone marrow showed potently inhibited development and severity of clinical arthritis as compared with CIA mice that received WT bone marrow. Reduced secretion of the pro-inflammatory cytokines tumor necrosis factor-α, IL-1β, and IL-6, and collagen-specific T cell responses were observed in mice that received IL-17-/- bone marrow. IL-17 blockade also inhibited effector T cell proliferation by reciprocally regulating the Treg/Th17 ratio. IL-17 blockade prevented joint destruction in mice with CIA. These findings suggest that CIA with BMT is a viable method of immunological manipulation and that IL-17 deficiency suppresses severe joint destruction and inflammation in CIA mice. There may be clinical benefits in blocking IL-17 and BMT in the treatment of rheumatoid arthritis.
doi:10.3858/emm.2012.44.11.078
PMCID: PMC3509186  PMID: 23114425
arthritis, experimental; bone marrow transplantation; interleukin-17; Th17 cells; T-lymphocytes, regulatory; transplantation, homologous
4.  IL-32 and IL-17 interact and have the potential to aggravate osteoclastogenesis in rheumatoid arthritis 
Arthritis Research & Therapy  2012;14(6):R246.
Introduction
Interleukin (IL)-32 and IL-17 play critical roles in pro-inflammatory responses and are highly expressed in the synovium of patients with rheumatoid arthritis (RA). We investigated the relations between these two cytokines (IL-17 and IL-32) for their ability to induce each other and to stimulate osteoclasts in RA fibroblast-like synoviocytes (FLSs) and T cells.
Methods
FLSs were isolated through surgical synovectomy obtained from patients with RA or osteoarthritis (OA). Real-time PCR were performed to evaluate the expression of IL-32, IL-17 and osteoclast-related genes. Immunohistochemical staining and tartrate-resistant acid phosphatase (TRAP) staining were performed to determine the distribution of inflammatory cytokines and the presence of osteoclastogenesis.
Results
IL-17 induced the expression of IL-32 in the FLSs from RA patients, as assessed by microarray. IL-32 production was increased by IL-17. IL-32 in the FLSs from RA patients induced the production of IL-17 in CD4+ T cells. IL-32 and IL-17 were colocalized near TRAP-positive areas in joint specimens. IL-17 and IL-32 synergistically induced the differentiation of osteoclasts, as demonstrated by the expression of osteoclast-related genes. IL-32 and IL-17 also could induce resorption by osteoclasts in a RANKL-dependent manner.
Conclusions
IL-17 affected the expression of IL-32 in FLSs of RA patients and IL-32 induced the production of IL-17 in CD4+ T cells. Both IL-17 and IL-32 cytokines can reciprocally influence each other's production and amplify the function of osteoclastogenesis in the in RA synovium. Separately, IL-17 and IL-32 each stimulated osteoclastogenesis without RANKL. Together, the two cytokines synergistically amplified the differentiation of osteoclasts, independent of RANKL stimulation.
doi:10.1186/ar4089
PMCID: PMC3674587  PMID: 23148681
5.  Obesity aggravates the joint inflammation in a collagen-induced arthritis model through deviation to Th17 differentiation 
Experimental & Molecular Medicine  2012;44(7):424-431.
White fat cells secrete adipokines that induce inflammation and obesity has been reported to be characterized by high serum levels of inflammatory cytokines such as IL-6 and TNF-α. Rheumatoid arthritis (RA) is a prototype of inflammatory arthritis, but the relationship between RA and obesity is controversial. We made an obese inflammatory arthritis model: obese collagen-induced arthritis (CIA). C57BL/6 mice were fed a 60-kcal high fat diet (HFD) from the age of 4 weeks and they were immunized twice with type II collagen (CII). After immunization, the obese CIA mice showed higher arthritis index scores and histology scores and a more increased incidence of developing arthritis than did the lean CIA mice. After treatment with CII, mixed lymphocyte reaction also showed CII-specific response more intensely in the obese CIA mice than lean CIA. The anti-CII IgG and anti-CII IgG2a levels in the sera of the obese CIA mice were higher than those of the lean CIA mice. The number of Th17 cells was higher and the IL-17 mRNA expression of the splenocytes in the obese CIA mice was higher than that of the lean CIA mice. Obese CIA mice also showed high IL-17 expression on synovium in immunohistochemistry. Although obesity may not play a pathogenic role in initiating arthritis, it could play an important role in amplifying the inflammation of arthritis through the Th1/Th17 response. The obese CIA murine model will be an important tool when we investigate the effect of several therapeutic target molecules to treat RA.
doi:10.3858/emm.2012.44.7.047
PMCID: PMC3406287  PMID: 22513335
arthritis, experimental; inflammation; mice; obesity; Th17 cells
6.  TLR2 ligation induces the production of IL-23/IL-17 via IL-6, STAT3 and NF-kB pathway in patients with primary Sjogren's syndrome 
Introduction
The study was undertaken to investigate the interrelation of toll-like receptor (TLR) and interleukin (IL)-17 in the salivary glands of patients with primary Sjogren's syndrome (pSS) and to determine the role of TLR and IL-17 in the pathophysiology of pSS.
Methods
The expressions of various TLRs, IL-17 and the cytokines involved in Th17 cell differentiation including IL-6, IL-23, tumor necrosis factor-alpha (TNF-α) and IL-1β were examined by immunohistochemistry in salivary glands of pSS patients. The IL-17 producing CD4+ T cells (Th17 cells) were examined by flow cytometry and confocal staining in peripheral mononuclear blood cells (PMBCs) and salivary glands of pSS patients. After PBMCs were treated with TLR specific ligands, the induction of IL-17 and IL-23 was determined using real-time PCR and ELISA. The signaling pathway that mediates the TLR2 stimulated production of IL-17 and IL-23 was investigated by using treatment with specific signaling inhibitors.
Results
We showed that TLR2, TLR4, TLR6, IL-17 and the cytokines associated with Th17 cells were highly expressed in salivary glands of pSS patients but not in controls. The expressions of TLR2, TLR4 and TLR6 were observed in the infiltrating mononuclear cells and ductal epithelial cells, whereas IL-17 was mainly observed in infiltrating CD4+ T cells. The number of IL-17 producing CD4+ T cells was significantly higher in pSS patients both in PBMCs and minor salivary glands. The stimulation of TLR2, TLR4 and TLR6 additively induced the production of IL-17 and IL-23 from the PBMCs of pSS patients especially in the presence of TLR2 stimulation. IL-6, signal transducer and activator of transcription 3 (STAT3) and nuclear factor-kappaB (NF-kB) pathways were implicated in the TLR2 stimulated IL-17 and IL-23.
Conclusions
Our data demonstrate that TLR2 ligation induces the production of IL-23/IL-17 via IL-6, STAT3 and NF-kB pathway in pSS. Therefore, therapeutic strategies that target TLR/IL-17 pathway might be strong candidates for treatment modalities of pSS.
doi:10.1186/ar3780
PMCID: PMC3446432  PMID: 22417709
7.  Deficiency of Foxp3+ Regulatory T Cells Exacerbates Autoimmune Arthritis by Altering the Synovial Proportions of CD4+ T Cells and Dendritic Cells 
Immune Network  2011;11(5):299-306.
Background
CD4+Fop3+ regulatory T cells (Tregs) are needed to maintain peripheral tolerance, but their role in the development of autoimmune arthritis is still debated. The present study was undertaken to investigate the mechanism by which Tregs influence autoimmune arthritis, using a mouse model entitled K/BxN.
Methods
We generated Treg-deficient K/BxNsf mice by congenically crossing K/BxN mice with Foxp3 mutant scurfy mice. The arthritic symptoms of the mice were clinically and histopathologically examined. The proportions and activation of CD4+ T cells and/or dendritic cells were assessed in the spleens, draining lymph nodes and synovial tissue of these mice.
Results
K/BxNsf mice exhibited earlier onset and more aggressive progression of arthritis than their K/BxN littermates. In particular, bone destruction associated with the influx of numerous RANKL+ cells into synovia was very prominent. They also contained more memory phenotype CD4+ T cells, more Th1 and Th2 cells, and fewer Th17 cells than their control counterparts. Plasmacytoid dendritic cells expressing high levels of CD86 and CD40 were elevated in the K/BxNsf synovia.
Conclusion
We conclude that Tregs oppose the progression of arthritis by inhibiting the development of RANKL+ cells, homeostatically proliferating CD4+ T cells, Th1, Th2 and mature plasmacytoid dendritic cells, and by inhibiting their influx into joints.
doi:10.4110/in.2011.11.5.299
PMCID: PMC3243004  PMID: 22194713
Regulatory T cells; Autoimmune arthritis; Synovium; Autoreactive T cells; Plasmacytoid dendritic cells
8.  Induction of Macrophage Migration Inhibitory Factor in ConA-Stimulated Rheumatoid Arthritis Synovial Fibroblasts through the P38 MAP Kinase-Dependent Signaling Pathway 
Background/Aims
This study was undertaken to identify the intracellular signaling pathway involved in induction of macrophage migration inhibitory factor (MIF) in human rheumatoid arthritis (RA) synovial fibroblasts.
Methods
Human RA synovial fibroblasts were treated with concanavalin A (ConA), various cytokines, and inhibitors of signal transduction molecules. The production of MIF by synovial fibroblasts was measured in culture supernatants by ELISA. The expression of MIF mRNA was determined using reverse transcriptase polymerase chain reaction (RT-PCR) and real-time PCR. Phosphorylation of p38 mitogen-activated protein (MAP) kinase in synovial fibroblasts was confirmed using Western blotting. The expression of MIF and p38 MAP kinase in RA synovium was determined using dual immunohistochemistry.
Results
The production of MIF by RA synovial fibroblasts increased in a dose-dependent manner after ConA stimulation. MIF was also induced by interferon-γ, CD40 ligand, interleukin-15, interleukin-1β, tumor necrosis factor-α, and transforming growth factor-β. The production of MIF by RA synovial fibroblasts was significantly reduced after inhibition of p38 MAP kinase. The expression of MIF and p38 MAP kinase was upregulated in the RA synovium compared with the osteoarthritis synovium.
Conclusions
These results suggest that MIF production was induced through a p38 MAP-kinase-dependent pathway in RA synovial fibroblasts.
doi:10.3904/kjim.2010.25.3.317
PMCID: PMC2932946  PMID: 20830230
Macrophage, migration-inhibitory factors; Arthritis rheumatoid; Synovial fibroblast; p38 mitogen-activated protein kinases
9.  IL-17 induces the production of IL-16 in rheumatoid arthritis 
Experimental & Molecular Medicine  2008;40(2):237-245.
The purpose of this study was to investigate the expression of IL-16 in the rheumatoid synovium and the role of inflammatory cytokines and Toll-like receptor (TLR) ligands in IL-16 production by fibroblastlike synoviocytes (FLS) of rheumatoid arthritis (RA) patients. Immunohistochemical staining was performed with a monoclonal antibody to IL-16 in synovial tissues from patients with RA and likewise in patients with osteoarthritis (OA). FLS were isolated from RA synovial tissues and stimulated with IL-15, IL-1β, IFN-γ, and IL-17. The IL-16 mRNA level was assessed by semiquantitative RT-PCR and real time (RT) PCR and a comparison was made between IL-16 mRNA levels produced by RA-FLS and OA-FLS. Production of IL-16 was identified by a western blot assay, and IL-16 production after stimulation by specific ligands of TLR2 and TLR4 was assessed by RT-PCR. While immunohistochemical staining demonstrated strong expression of IL-16 mRNA in synovial tissues from patients with RA, similar findings were not present in the OA group. Moreover, mRNA expression of IL-16 by RA-FLS increased after treatment with IL-17 but not with IL-15, IL-1β, and IFN-γ. Specifically, IL-17 increased IL-16 mRNA level by RA-FLS and peripheral blood mononuclear cells in a dose-dependent manner. However, IL-17 did not stimulate IL-16 production in OA-FLS. Peptidoglycan, a selective TLR2 ligand, also increased production of IL-16 by RA-FLS dosedependently, whereas LPS, a selective TLR4 ligand, had no such stimulatory effect. The results from our data demonstrate that IL-17 and TLR2 ligands stimulate the production of IL-16 by RA-FLS.
doi:10.3858/emm.2008.40.2.237
PMCID: PMC2679298  PMID: 18446062
interleukin-16; interleukin-17; rheumatoid arthritis; synovial membrane; Toll-like receptors

Results 1-9 (9)