Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Ethanol Extract of Dianthus chinensis L. Induces Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells In Vitro 
Dianthus chinensis L. is used to treat various diseases including cancer; however, the molecular mechanism by which the ethanol extract of Dianthus chinensis L. (EDCL) induces apoptosis is unknown. In this study, the apoptotic effects of EDCL were investigated in human HepG2 hepatocellular carcinoma cells. Treatment with EDCL significantly inhibited cell growth in a concentration- and time-dependent manner by inducing apoptosis. This induction was associated with chromatin condensation, activation of caspases, and cleavage of poly (ADP-ribose) polymerase protein. However, apoptosis induced by EDCL was attenuated by caspase inhibitor, indicating an important role for caspases in EDCL responses. Furthermore, EDCL did not alter the expression of bax in HepG2 cells but did selectively downregulate the expression of bcl-2 and bcl-xl, resulting in an increase in the ratio of bax:bcl-2 and bax:bcl-xl. These results support a mechanism whereby EDCL induces apoptosis through the mitochondrial pathway and caspase activation in HepG2 cells.
PMCID: PMC3356935  PMID: 22645629
2.  Protective activity ethanol extract of the fruits of Illicium verum against atherogenesis in apolipoprotein E knockout mice 
Illicium verum Hook. fil. Illiciaceae (Illicium v.) has been traditionally used in herbal medicine for treating many inflammatory diseases, including skin inflammation and rheumatism. We investigated its use as a preventive agent against inflammatory and vascular diseases in a murine model of atherosclerosis using apolipoprotein E-knockout (ApoE−/−) mice fed on a high-fat diet (HFD).
We investigated the effect of Illicium v. on cytotoxicity, NF-κB activity, and adhesion molecule expression in TNF-α – stimulated HASMCs (Human Aortic smooth muscle cells). ApoE−/−mice, fed a HFD and treated daily for 12 weeks by oral administration of either Illicium v. (100 or 200 mg/kg) or atorvastatin (10 mg/kg), were evaluated for atherosclerotic lesions and inflammatory responses by performing Oil red O and iNOS staining, respectively. Expression of inflammatory cytokines (i.e., NF-κB, TNF-α, IL-1β, COX, IκB-α, Iκκ-α/β) and adhesion molecules in the aorta were measured by western blot analysis.
In TNF-α-stimulated HASMCs, Illicium v. treatment decreased NF-κB transcriptional activity, and NF-κB protein levels were reduced in a dose-dependent manner over a range of 10–100 μg/mL Illicium v. Also, Illicium v. attenuated the expression of adhesion molecules that are responsible for inflammation in these cells. In animal experiments, treatment with Illicium v. or atorvastatin counteracted the characteristic changes in body weight, blood pressure, and lipid levels seen in HFD-fed ApoE−/− mice. In addition, Illicium v. treatment reduced aortic atherosclerotic plaque lesions and the immunoreactivity of iNOS activation. The aortic expression of inflammatory adhesion molecules and cytokines (TNF-α, IL-1β, NF-κB, COX, IκB-α, Iκκ-α/β), which is characteristic of HFD-fed ApoE−/− mice, was attenuated by 12-week treatment with daily oral administration of Illicium v. or atorvastatin, and the most potent effect was seen with the herbal tincture.
The beneficial effects of Illicium v. are consistent with a significant decrease in the iNOS-mediated inflammatory response, resulting in reduction of inflammation-associated gene expression. Treatment with Illicium v. may be the basis of a novel therapeutic strategy for hyperlipidemia-atherosclerosis.
PMCID: PMC4501282  PMID: 26174316
Atherosclerosis; ApoE-knockout mice; Inflammation; Hypercholesterolemia; Illicium verum
3.  Pik3ip1 Modulates Cardiac Hypertrophy by Inhibiting PI3K Pathway 
PLoS ONE  2015;10(3):e0122251.
Cardiac hypertrophy is an adaptive response to various physiological and pathological stimuli. Phosphoinositide-3 kinase (PI3K) is a highly conserved lipid kinase involved in physiological cardiac hypertrophy (PHH). PI3K interacting protein1 (Pik3ip1) shares homology with the p85 regulatory subunit of PI3K and is known to interact with the p110 catalytic subunit of PI3K, leading to attenuation of PI3K activity in liver and immune cells. However, the role of Pik3ip1 in the heart remains unknown. In the present study, the effects of Pik3ip1 on cardiac hypertrophy were examined. We found that the expression level of Pik3ip1 was markedly higher in cardiomyocytes than in fibroblasts. The interaction of Pik3ip1 with the p110a subunit of PI3K in the heart was identified by immunoprecipitation using neonatal rat cardiomyocytes (NRCM). Approximately 35% knockdown of Pik3ip1 was sufficient to induce myocardial hypertrophy. Pik3ip1 deficiency was shown to lead to activation of PI3K/protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) signaling pathway, increasing protein synthesis and cell size. However, adenovirus-mediated overexpression of Pik3ip1 attenuated PI3K-mediated cardiac hypertrophy. Pik3ip1 was upregulated by PHH due to swimming training, but not by pathological cardiac hypertrophy (PAH) due to pressure-overload, suggesting that Pik3ip1 plays a compensatory negative role for PHH. Collectively, our results elucidate the mechanisms for the roles of Pik3ip1 in PI3K/AKT signaling pathway.
PMCID: PMC4380398  PMID: 25826393
4.  An ethyl acetate fraction derived from Houttuynia cordata extract inhibits the production of inflammatory markers by suppressing NF-кB and MAPK activation in lipopolysaccharide-stimulated RAW 264.7 macrophages 
Houttuynia cordata Thunb. (Saururaceae) has been used in traditional medicine for treatment of inflammatory diseases. This study evaluated the anti-inflammatory effects of an ethyl acetate fraction derived from a Houttuynia cordata extract (HCE-EA) on the production of inflammatory mediators and the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages.
To measure the effects of HCE-EA on pro-inflammatory cytokine and inflammatory mediator’s expression in RAW 264.7 cells, we used the following methods: cell viability assay, Griess reagent assay, enzyme-linked immunosorbent assay, real-time polymerase chain reaction and western blotting analysis.
HCE-EA downregulated nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin (IL-6) production in the cells, as well as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Furthermore, HCE-EA suppressed nuclear translocation of the NF-κB p65 subunit, which correlated with an inhibitory effect on IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha) phosphorylation. HCE-EA also attenuated the activation of MAPKs (p38 and JNK).
Our results suggest that the anti-inflammatory properties of HCE-EA may stem from the inhibition of pro-inflammatory mediators via suppression of NF-κB and MAPK signaling pathways.
PMCID: PMC4099023  PMID: 25012519
Houttuynia cordata; Inducible nitric oxide synthase; Cyclooxygenase-2; Nuclear factor-κB; Mitogen-activated protein kinase

Results 1-4 (4)