Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Adherence to Guidelines for Avoiding Drug Interactions Associated with Warfarin - A Nationwide Swedish Register Study 
PLoS ONE  2014;9(5):e97388.
To investigate the extent to which clinicians avoid well-established drug-drug interactions associated with warfarin. We hypothesised that clinicians would avoid combining non-steroidal anti-inflammatory drugs (NSAIDs), tramadol and sulfamethoxazole with warfarin.
A cross-sectional analysis of nationwide dispensing data was performed in Swedish individuals 18 years or older (n =  7 563 649). Odds ratios of interacting NSAIDs, tramadol and sulfamethoxazole versus respective prevalence of comparator drugs codeine, and ciprofloxacin in patients co-dispensed interacting warfarin versus patients unexposed was calculated.
The odds of receiving an interacting NSAID versus the comparator codeine was markedly lower in patients with warfarin than in the remaining population (adjusted OR 0.21; 95% CI 0.20 – 0.22). Also, the interacting drugs tramadol and sulfamethoxazole were less common among patients dispensed warfarin as compared to the remaining population, although the decrease was much more modest (adjusted OR 0.83; CI 0.80–0.87 and 0.81; CI 0.73 – 0.90).
In conclusion, Swedish doctors in the vast majority of cases refrain from prescribing NSAIDs to patients already on warfarin. Tramadol and sulfamethoxazole are however rarely avoided.
PMCID: PMC4022627  PMID: 24830709
2.  Vitamin D and Respiratory Tract Infections: A Systematic Review and Meta-Analysis of Randomized Controlled Trials 
PLoS ONE  2013;8(6):e65835.
Low levels of 25-OH vitamin D are associated with respiratory tract infection (RTI). However, results from randomized controlled trials are inconclusive. Therefore, we performed a systematic review and meta-analysis to assess the preventive effect of vitamin D supplementation on RTI.
Randomized, controlled trials of vitamin D for prevention of RTI were used for the analysis. The risks of within-trial and publication bias were assessed. Odds ratios of RTI were pooled using a random-effects model. Heterogeneity was assessed using Cochran's Q and I2. Meta-regressions and subgroup analyses were used to assess the influence of various factors on trial outcome. The pre-defined review protocol was registered at the PROSPERO international prospective register of systematic reviews, registration number CRD42013003530.
Of 1137 citations retrieved, 11 placebo-controlled studies of 5660 patients were included in the meta-analysis. Overall, vitamin D showed a protective effect against RTI (OR, 0.64; 95% CI, 0.49 to 0.84). There was significant heterogeneity among studies (Cohran's Q p<0.0001, I2 = 72%). The protective effect was larger in studies using once-daily dosing compared to bolus doses (OR = 0.51 vs OR = 0.86, p = 0.01). There was some evidence that results may have been influenced by publication bias.
Results indicate that vitamin D has a protective effect against RTI, and dosing once-daily seems most effective. Due to heterogeneity of included studies and possible publication bias in the field, these results should be interpreted with caution.
PMCID: PMC3686844  PMID: 23840373
3.  Vitamin D3 supplementation in patients with frequent respiratory tract infections: a randomised and double-blind intervention study 
BMJ Open  2012;2(6):e001663.
Low serum levels of 25-hydroxyvitamin D3 are associated with an increased risk of respiratory tract infections (RTIs). Clinical trials with vitamin D3 against various infections have been carried out but data are so far not conclusive. Thus, there is a need for additional randomised controlled trials of effects of vitamin D3 on infections.
To investigate if supplementation with vitamin D3 could reduce infectious symptoms and antibiotic consumption among patients with antibody deficiency or frequent RTIs.
A double-blind randomised controlled trial.
Karolinska University Hospital, Huddinge.
140 patients with antibody deficiency (selective IgA subclass deficiency, IgG subclass deficiency, common variable immune disorder) and patients with increased susceptibility to RTIs (>4 bacterial RTIs/year) but without immunological diagnosis.
Vitamin D3 (4000 IU) or placebo was given daily for 1 year.
Primary and secondary outcome measures
The primary endpoint was an infectious score based on five parameters: symptoms from respiratory tract, ears and sinuses, malaise and antibiotic consumption. Secondary endpoints were serum levels of 25-hydroxyvitamin D3, microbiological findings and levels of antimicrobial peptides (LL-37, HNP1–3) in nasal fluid.
The overall infectious score was significantly reduced for patients allocated to the vitamin D group (202 points) compared with the placebo group (249 points; adjusted relative score 0.771, 95% CI 0.604 to 0.985, p=0.04).
A single study centre, small sample size and a selected group of patients. The sample size calculation was performed using p=0.02 as the significance level whereas the primary and secondary endpoints were analysed using the conventional p=0.05 as the significance level.
Supplementation with vitamin D3 may reduce disease burden in patients with frequent RTIs.
PMCID: PMC3533016  PMID: 23242238
Infectious Diseases; Bacteriology; Respiratory Medicine (see Thoracic Medicine)
4.  Pharmacogenetic Warfarin Dose Refinements Remain Significantly Influenced by Genetic Factors after One Week of Therapy 
Thrombosis and Haemostasis  2011;107(2):232-240.
By guiding initial warfarin dose, pharmacogenetic (PGx) algorithms may improve the safety of warfarin initiation. However, once INR response is known, the contribution of PGx to dose refinements is uncertain. This study sought to develop and validate clinical and PGx dosing algorithms for warfarin dose refinement on days 6–11 after therapy initiation.
Materials and Methods
An international sample of 2,022 patients at 13 medical centers on 3 continents provided clinical, INR, and genetic data at treatment days 6–11 to predict therapeutic warfarin dose. Independent derivation and retrospective validation samples were composed by randomly dividing the population (80%/20%). Prior warfarin doses were weighted by their expected effect on S-warfarin concentrations using an exponential-decay pharmacokinetic model. The INR divided by that “effective” dose constituted a treatment response index.
Treatment response index, age, amiodarone, body surface area, warfarin indication, and target INR were associated with dose in the derivation sample. A clinical algorithm based on these factors was remarkably accurate: in the retrospective validation cohort its R2 was 61.2% and median absolute error (MAE) was 5.0 mg/week. Accuracy and safety was confirmed in a prospective cohort (N=43). CYP2C9 variants and VKORC1-1639 G→A were significant dose predictors in both the derivation and validation samples. In the retrospective validation cohort, the PGx algorithm had: R2= 69.1% (P<0.05 vs. clinical algorithm), MAE= 4.7 mg/week.
A pharmacogenetic warfarin dose-refinement algorithm based on clinical, INR, and genetic factors can explain at least 69.1% of therapeutic warfarin dose variability after about one week of therapy.
PMCID: PMC3292349  PMID: 22186998
warfarin; VKORC1; CYP2C9; pharmacogenetic
5.  Pharmacogenetics of Anticoagulants 
Warfarin, acenocoumarol, and phenprocoumon are among the major anticoagulant drugs worldwide. Because of their low therapeutic index and serious adverse reactions (ADRs), their wide use, and their varying kinetics and pharmacogenetic dependence, it is of great importance to explore further possibilities to forecast the dose beyond conventional INR measurements. Here, we describe particulars of the relative pharmacogenetic influence on the kinetics of these agents, the population distribution of genetics risk groups, and novel data on clinical features with influence on dose requirement and ADR risk. The usefulness of genetic information prior to and soon after start of therapy is also discussed. The current renewed focus on these issues is caused not only because of new genetic knowledge and genotyping facilities but also because of the high rate of serious ADRs. Application of these measures in the care of patients with anticoagulant therapy is important awaiting new therapeutic principles to be introduced, which may take long time still.
PMCID: PMC2958670  PMID: 20981234
6.  Statin Treatment and Mortality in Bacterial Infections – A Systematic Review and Meta-Analysis 
PLoS ONE  2010;5(5):e10702.
Several studies have reported improved survival in severe bacterial infections among statin treated patients. In addition, statins have been ascribed beneficial anti-inflammatory effects. The aim of this study was to evaluate the effect of statin-treatment on mortality in patients with bacterial infections, by means of a systematic review and a meta-analysis.
Methodology and Principal Findings
Studies investigating the association between statin use and mortality in patients with bacterial disease were identified in a systematic literature review and a meta-analysis was performed to calculate the overall odds ratio of mortality in statin users. The literature search identified 947 citations from which 40 relevant studies were extracted. In all, 15 studies comprising 113 910 patients were included in the final analysis. Statin use was associated with a significantly (p<0.0001) reduced mortality in patients suffering from bacterial infections (OR 0.52, 95% CI 0.42–0.66). However, all studies included were of observational design and funnel plot analyses indicated influence by a possible publication bias (Egger's bias test p<0.05). When a precision estimate test was used to adjust for publication bias the effect of statin treatment was no longer significant, with an OR of 0.79 (95% CI 0.58–1.07).
According to the meta-analysis of observational studies presented here, patients on statin therapy seem to have a better outcome in bacterial infections. However, the association did not reach statistical significance after adjustment for apparent publication bias. Thus, there is a great need for randomised controlled trials investigating the possible beneficial effect of statins in bacterial infections.
PMCID: PMC2873291  PMID: 20502712

Results 1-6 (6)