PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  TRIP11-PDGFRB fusion in a patient with a therapy-related myeloid neoplasm with t(5;14)(q33;q32) after treatment for acute promyelocytic leukemia 
Molecular Cytogenetics  2014;7(1):103.
Background
Therapy-related myeloid neoplasm after treatment for acute promyelocytic leukemia (APL) is a relatively infrequent but severe complication. Most therapy-related myeloid neoplasms after treatment for APL are classified as therapy-related myelodysplastic syndrome or therapy-related acute myeloid leukemia. Translocation of 5q31-33, PDGFRB occur rarely in therapy-related myeloid neoplasm and there has been two identified PDGFRB partner genes located at 14q32, TRIP11 and KIAA1509.
Results
The TRIP11-PDGFRB fusion was identified in a patient with therapy-related myeloid neoplasm with t(5;14)(q33;q32) after treatment of APL using conventional cytogenetics, fluorescence in situ hybridization (FISH) and molecular methods. Cytogenetic analysis of the bone marrow aspirate revealed 46, XY, t(5;14)(q33;q32) in all 20 analyzed cells. No other cytogenetic abnormalities were observed. Break-apart FISH analysis demonstrated that rearrangement of PDGFRB at 5q33 was positive in 460 of 500 cells analyzed, while the PML-RARA rearrangement remained undetectable by RT-PCR. Sequencing of RT-PCR products revealed fusion between exon 16 of TRIP11 and exon 11 of PDGFRB. However, the KIAA1509-PDGFRB fusion was not detected by RT-PCR.
Conclusion
We firstly demonstrated that therapy-related myeloid neoplasm with TRIP11-PDGFRB fusion was identified after treatment of APL.
doi:10.1186/s13039-014-0103-6
PMCID: PMC4299380  PMID: 25606057
PDGFRB; TRIP11; Therapy-related myeloid neoplasm; Acute promyelocytic leukemia; t(5;14)(q33;32)
2.  A Trp33Arg Mutation at Exon 1 of the MYH9 Gene in a Korean Patient with May-Hegglin Anomaly 
Yonsei Medical Journal  2012;53(3):662-666.
In this report, we describe a Korean patient with May-Hegglin anomaly from a mutation of the MYH9 gene. The proband was a 21-year-old man with thrombocytopenia. He did not have a bleeding tendency. His neutrophil count was normal at 7490/mm3; however, the neutrophils contained abnormal basophilic inclusions in their cytoplasm. The platelet count was decreased at 15000/mm3 with giant platelets. Coagulation test results were not remarkable. Direct sequencing of MYH9 revealed that he was heterozygous for a mutation in exon 1, which was a 97T>A substitution mutation affecting codon 33, substituting tryptophan with arginine (Trp33Arg). Family study showed that both of his parents had normal phenotype and genotypes, indicating a de novo occurrence of the mutation in the proband.
doi:10.3349/ymj.2012.53.3.662
PMCID: PMC3343441  PMID: 22477015
May-Hegglin anomaly; MYH9; thrombocytopenia; Korean
3.  Identification of Clinical Mold Isolates by Sequence Analysis of the Internal Transcribed Spacer Region, Ribosomal Large-Subunit D1/D2, and β-Tubulin 
Annals of Laboratory Medicine  2012;32(2):126-132.
Background
The identification of molds in clinical laboratories is largely on the basis of phenotypic criteria, the classification of which can be subjective. Recently, molecular methods have been introduced for identification of pathogenic molds in clinical settings. Here, we employed comparative sequence analysis to identify molds.
Methods
A total of 47 clinical mold isolates were used in this study, including Aspergillus and Trichophyton. All isolates were identified by phenotypic properties, such as growth rate, colony morphology, and reproductive structures. PCR and direct sequencing, targeting the internal transcribed spacer (ITS) region, the D1/D2 region of the 28S subunit, and the β-tubulin gene, were performed using primers described previously. Comparative sequence analysis by using the GenBank database was performed with the basic local alignment search tool (BLAST) algorithm.
Results
For Aspergillus, 56% and 67% of the isolates were identified to the species level by using ITS and β-tubulin analysis, respectively. Only D1/D2 analysis was useful for Trichophyton identification, with 100% of isolates being identified to the species level. Performances of ITS and D1/D2 analyses were comparable for species-level identification of molds other than Aspergillus and Trichophyton. In contrast, the efficacy of β-tubulin analysis was limited to genus identification because of the paucity of database information for this gene.
Conclusions
The molecular methods employed in this study were valuable for mold identification, although the different loci used had variable usefulness, according to mold genus. Thus, a tailored approach is recommended when selecting amplification targets for molecular identification of molds.
doi:10.3343/alm.2012.32.2.126
PMCID: PMC3289777  PMID: 22389879
Molds; Sequencing; Internal transcribed spacer; D1/D2; Tubulin
4.  Streptococcus suis Meningitis with Bilateral Sensorineural Hearing Loss 
Streptococcus suis infection is an emerging zoonosis in Asia. The most common disease manifestation is meningitis, which is often associated with hearing loss and cochleovestibular signs. S. suis infection in humans mainly occurs among risk groups that have frequent exposure to pigs or raw pork. Here, we report a case of S. suis meningitis in a 67-yr-old pig carcass handler, who presented with dizziness and sensorineural hearing loss followed by headaches. Gram-positive diplococci were isolated from cerebrospinal fluid (CSF) and blood cultures and showed gray-white colonies with α-hemolysis. S. suis was identified from CSF and blood cultures by using a Vitek 2 system (bioMérieux, France), API 20 STREP (bioMérieux), and performing 16S rRNA and tuf gene sequencing. Even after receiving antibiotic treatment, patients with S. suis infection frequently show complications such as hearing impairment and vestibular dysfunction. To the best of our knowledge, this is the first case of S. suis meningitis in Korea. Prevention through public health surveillance is recommended, especially for individuals who have occupational exposures to swine and raw pork.
doi:10.3343/kjlm.2011.31.3.205
PMCID: PMC3129354  PMID: 21779197
Streptococcus suis; Meningitis; Hearing loss; Korea

Results 1-4 (4)