Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Recent advances in targeted endoscopic imaging: Early detection of gastrointestinal neoplasms 
Molecular imaging has emerged as a new discipline in gastrointestinal endoscopy. This technology encompasses modalities that can visualize disease-specific morphological or functional tissue changes based on the molecular signature of individual cells. Molecular imaging has several advantages including minimal damage to tissues, repetitive visualization, and utility for conducting quantitative analyses. Advancements in basic science coupled with endoscopy have made early detection of gastrointestinal cancer possible. Molecular imaging during gastrointestinal endoscopy requires the development of safe biomarkers and exogenous probes to detect molecular changes in cells with high specificity anda high signal-to-background ratio. Additionally, a high-resolution endoscope with an accurate wide-field viewing capability must be developed. Targeted endoscopic imaging is expected to improve early diagnosis and individual therapy of gastrointestinal cancer.
PMCID: PMC3309894  PMID: 22442742
Autofluorescence endoscopy; Confocal endomicroscopy; Endoscopy; Molecular imaging; Molecular probes, Near-infrared fluorescence imaging; Targeted endoscopic imaging
2.  Induction of the Intrinsic Apoptotic Pathway by 3-Deazaadenosine Is Mediated by BAX Activation in HL-60 Cells 
3-Deazaadenosine (DZA), a potent inhibitor of S-adenosylhomocysteine hydrolase, was previously proposed to induce intrinsic apoptosis in human leukemic cells. In the present study, we analyzed the mechanism underlying the DZA-induced intrinsic apoptotic pathway. DZA activated typical caspase-dependent apoptosis in HL-60 cells, as demonstrated by an accumulation of hypo-diploidic cells, the processing of multiple procaspases and an inhibitory effect of z-VAD-Fmk on this cell death. During DZA-induced apoptosis, cytochrome c (cyt c) was released into the cytosol. This was neither prevented by z-VAD-Fmk and nor was it associated with the dissipation of mitochondrial membrane potential (ΔΨm). Prior to the release of cyt c, BAX was translocated from the cytosol to mitochondria and underwent oligomerization. Finally, the overexpression of BCL-XL protected HL-60 cells from apoptosis by blocking both the cyt c release and BAX oligomerization. Collectively, these findings suggest that DZA may activate intrinsic apoptosis by stimulating BAX activation and thereby the release of cyt c.
PMCID: PMC3034121  PMID: 21311682
Apoptosis; BAX protein; BCL-XL protein; Cytochrome c; 3-Deazaadenosine
3.  Silencing of KIF14 interferes with cell cycle progression and cytokinesis by blocking the p27Kip1 ubiquitination pathway in hepatocellular carcinoma 
Although it has been suggested that kinesin family member 14 (KIF14) has oncogenic potential in various cancers, including hepatocellular carcinoma (HCC), the molecular mechanism of this potential remains unknown. We aimed to elucidate the role of KIF14 in hepatocarcinogenesis by knocking down KIF14 in HCC cells that overexpressed KIF14. After KIF14 knockdown, changes in tumor cell growth, cell cycle and cytokinesis were examined. We also examined cell cycle regulatory molecules and upstream Skp1/Cul1/F-box (SCF) complex molecules. Knockdown of KIF14 resulted in suppression of cell proliferation and failure of cytokinesis, whereas KIF14 overexpression increased cell proliferation. In KIF14-silenced cells, the levels of cyclins E1, D1 and B1 were profoundly decreased compared with control cells. Of the cyclin-dependent kinase inhibitors, the p27Kip1 protein level specifically increased after KIF14 knockdown. The increase in p27Kip1 was not due to elevation of its mRNA level, but was due to inhibition of the proteasome-dependent degradation pathway. To explore the pathway upstream of this event, we measured the levels of SCF complex molecules, including Skp1, Skp2, Cul1, Roc1 and Cks1. The levels of Skp2 and its cofactor Cks1 decreased in the KIF14 knockdown cells where p27Kip1 accumulated. Overexpression of Skp2 in the KIF14 knockdown cells attenuated the failure of cytokinesis. On the basis of these results, we postulate that KIF14 knockdown downregulates the expression of Skp2 and Cks1, which target p27Kip1 for degradation by the 26S proteasome, leading to accumulation of p27Kip1. The downregulation of Skp2 and Cks1 also resulted in cytokinesis failure, which may inhibit tumor growth. To the best of our knowledge, this is the first report that has identified the molecular target and oncogenic effect of KIF14 in HCC.
PMCID: PMC4044675  PMID: 24854087
cell cycle; cytokinesis; hepatocellular carcinoma; KIF14; p27kip1; ubiquitination
4.  Oncostatin M stimulates cell migration and proliferation by down-regulating E-cadherin in HTR8/SVneo cell line through STAT3 activation 
During the first trimester of pregnancy, trophoblastic E-cadherin expression is down-regulated, thereby allowing extravillous trophoblasts (EVTs) to acquire the potential for migration and invasiveness. The aim of the present study was to investigate the role of OSM on the migration and proliferation of EVT cell line HTR8/SVneo with regard to its effects on the expression of E-cadherin and STAT3 activation.
We investigated the effects of OSM on RNA and protein expression of E-cadherin by real time RT-PCR analyses, western blotting, and indirect immunofluorescence staining in HTR8/SVneo cells, as well as the effects on cell migration and proliferation. The selective signal transducer and activator of transcription (STAT)3 inhibitor, stattic, and STAT3 siRNA were used to investigate STAT3 activation by OSM.
OSM significantly reduced RNA and protein expression of E-cadherin. Indirect immunofluorescence staining of HTR8/SVneo cells also revealed the down-regulation of E-cadherin, compared with the controls. OSM-stimulated cell migration was attenuated by anti-gp130 antibodies. OSM-induced STAT3 phosphorylation, and the down-regulation of E-cadherin by OSM treatment was restored by stattic and STAT3 siRNA. In addition, OSM-stimulated migration and proliferation were significantly suppressed by STAT3 inhibition.
This study suggests that OSM stimulates the migration and proliferation of EVTs during the first trimester of pregnancy through the down-regulation of E-cadherin. In addition, this study suggests that the effects of OSM on migration and proliferation are related to STAT3 activation, which is important in trophoblast invasiveness.
PMCID: PMC3849455  PMID: 24060241
Oncostatin M (OSM); Trophoblast; Migration; Proliferation; E-cadherin; Signal transducer and activator of transcription (STAT)3
5.  Anthocyanin Extracts from Black Soybean (Glycine max L.) Protect Human Glial Cells Against Oxygen-Glucose Deprivation by Promoting Autophagy 
Biomolecules & Therapeutics  2012;20(1):68-74.
Anthocyanins have received growing attention as dietary antioxidants for the prevention of oxidative damage. Astrocytes, which are specialized glial cells, exert numerous essential, complex functions in both healthy and diseased central nervous system (CNS) through a process known as reactive astrogilosis. Therefore, the maintenance of glial cell viability may be important because of its role as a key modulator of neuropathological events. The aim of this study was to investigate the effect of anthocyanin on the survival of glial cells exposed to oxidative stress. Our results demonstrated that anthocyanin extracts from black soybean increased survival of U87 glioma cells in a dose dependent manner upon oxygen-glucose deprivation (OGD), accompanied by decrease levels of reactive oxygen species (ROS). While treatment cells with anthocyanin extracts or OGD stress individually activated autophagy induction, the effect was significantly augmented by pretreatment cells with anthocyanin extracts prior to OGD. The contribution of autophagy induction to the protective effects of anthocyanin was verified by the observation that silencing the Atg5 expression, an essential regulator of autophagy induction, reversed the cytoprotective effect of anthocyanin extracts against OGD stress. Treatment of U87 cells with rapamycin, an autophagy inducer, increased cell survival upon OGD stress comparable to anthocyanin, indicating that autophagy functions as a survival mechanism against oxidative stress-induced cytotoxicity in glial cells. Our results, therefore, provide a rationale for the use of anthocyanin as a preventive agent for brain dysfunction caused by oxidative damage, such as a stroke.
PMCID: PMC3792204  PMID: 24116277
Anthocyanin; Oxygen-glucose deprivation; Glial cells
6.  GS28 Protects Neuronal Cell Death Induced by Hydrogen Peroxide under Glutathione-Depleted Condition 
Golgi SNAP receptor complex 1 (GS28) has been implicated in vesicular transport between intra-Golgi networks and between endoplasmic reticulum (ER) and Golgi. Additional role(s) of GS28 within cells have not been well characterized. We observed decreased expression of GS28 in rat ischemic hippocampus. In this study, we examined the role of GS28 and its molecular mechanisms in neuronal (SK-N-SH) cell death induced by hydrogen peroxide (H2O2). GS28 siRNA-transfected cells treated with H2O2 showed a significant increase in cytotoxicity under glutathione (GSH)-depleted conditions after pretreatment with buthionine sulfoximine, which corresponded to an increase of intracellular reactive oxygen species (ROS) in the cells. Pretreatment of GS28 siRNA-transfected cells with p38 chemical inhibitor significantly inhibited cytotoxicity; we also observed that p38 was activated in the cells by immunoblot analysis. We confirmed the role of p38 MAPK in cotransfected cells with GS28 siRNA and p38 siRNA in the cell viability assay, flow cytometry, and immunoblot. Involvement of apoptotic or autophagic processes in the cells was not shown in the cell viability, flow cytometry, and immunoblot analyses. However, pretreatment of the cells with necrostatin-1 completely inhibited H2O2-induced cytotoxicity, ROS generation, and p38 activation, indicating that the cell death is necroptotic. Collectively these data imply that H2O2 induces necroptotic cell death in the GS28 siRNA-transfected cells and that the necroptotic signals are mediated by sequential activations in RIP1/p38/ROS. Taken together, these results indicate that GS28 has a protective role in H2O2-induced necroptosis via inhibition of p38 MAPK in GSH-depleted neuronal cells.
PMCID: PMC3154379  PMID: 21860593
GS28; Hydrogen peroxide; Glutathione; MAPK; Necroptosis
7.  Knockdown of RCAN1.4 Increases Susceptibility to FAS-mediated and DNA-damage-induced Apoptosis by Upregulation of p53 Expression 
Despite the potential importance of the human regulator of calcineurin 1 (RCAN-1) gene in the modulation of cell survival under stress, little is known about its role in death-inducing signal pathways. In this study, we addressed the effects of RCAN1.4 knockdown on cellular susceptibility to apoptosis and the activation of death pathway proteins. Transfection of siRNAs against RCAN1.4 resulted in enhanced Fas- and etoposide-induced apoptosis, which was associated with increased expression and translocation of Bax to mitochondria. Our results suggest that enhanced expression and activation of p53 was responsible for the upregulation of Bax and the increased sensitivity to apoptosis, which could be reversed by p53 knockdown. To explain the observed upregulation of p53, we propose a downregulation of the ubiquitin ligase HDM2, probably translationally. These findings show the importance of appropriate RCAN1.4 expression in the modulation of cell survival and reveal a link between RCAN1.4 and p53.
PMCID: PMC2802310  PMID: 20054496
RCAN1; Apoptosis; p53; Bax; HDM2
8.  Induction of unfolded protein response during neuronal induction of rat bone marrow stromal cells and mouse embryonic stem cells 
Experimental & Molecular Medicine  2009;41(6):440-452.
When we treated rat bone marrow stromal cells (rBMSCs) with neuronal differentiation induction media, typical unfolded protein response (UPR) was observed. BIP/GRP78 protein expression was time-dependently increased, and three branches of UPR were all activated. ATF6 increased the transcription of XBP1 which was successfully spliced by IRE1. PERK was phosphorylated and it was followed by eIF2α phosphorylation. Transcription of two downstream targets of eIF2α, ATF4 and CHOP/GADD153, were transiently up-regulated with the peak level at 24 h. Immunocytochemical study showed clear coexpression of BIP and ATF4 with NeuN and Map2, respectively. UPR was also observed during the neuronal differentiation of mouse embryonic stem (mES) cells. Finally, chemical endoplasmic reticulum (ER) stress inducers, thapsigargin, tunicamycin, and brefeldin A, dose-dependently increased both mRNA and protein expressions of NF-L, and, its expression was specific to BIP-positive rBMSCs. Our results showing the induction of UPR during neuronal differentiations of rBMSCs and mES cells as well as NF-L expression by ER stress inducers strongly suggest the potential role of UPR in neuronal differentiation.
PMCID: PMC2705864  PMID: 19322020
bone marrow; cell differentiation; embryonic stem cells; endoplasmic reticulum; neuron; stem cells; stress, physiological; stromal cells
9.  Implication of leucyl-tRNA synthetase 1 (LARS1) over-expression in growth and migration of lung cancer cells detected by siRNA targeted knock-down analysis 
Experimental & Molecular Medicine  2008;40(2):229-236.
Molecular mechanism of lung carcinogenesis and its aggressive nature is still largely elusive. To uncover the biomarkers related with tumorigenesis and behavior of lung cancer, we screened novel differentially expressed genes (DEG) in A549 lung cancer cell line by comparison with CCD-25Lu, normal pulmonary epithelial cell line, using annealing control primer(ACP)-based GeneFishing system. Of the DEGs, over-expression of leucyl-tRNA synthetase 1 (LARS1) was prominent and this up-regulation was confirmed by immunoblotting and real-time quantitative RT-PCR analysis. In addition to A549 cell line, primary lung cancer tissues also expressed higher level of LARS1 mRNA than their normal counter tissues. To explore the oncogenic potential of LARS1 over-expression in lung cancer, we knocked-down LARS1 by treating siRNA and observed the tumor behavior. LARS1 knock-down cells showed reduced ability to migrate through transwell membrane and to form colonies in both soft agar and culture plate. Taken together, these findings suggest that LARS1 may play roles in migration and growth of lung cancer cells, which suggest its potential implication in lung tumorigenesis.
PMCID: PMC2679304  PMID: 18446061
amino acyl-tRNA synthetases; cell movement; cell proliferation; leucine-tRNA ligase; lung neoplasms; oncogenes; RNA, small interfering

Results 1-9 (9)