Search tips
Search criteria

Results 1-25 (27)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  A Draft Sequence of the Neandertal Genome 
Science (New York, N.Y.)  2010;328(5979):710-722.
Neandertals, the closest evolutionary relatives of present-day humans, lived in large parts of Europe and western Asia before disappearing 30,000 years ago. We present a draft sequence of the Neandertal genome composed of more than 4 billion nucleotides from three individuals. Comparisons of the Neandertal genome to the genomes of five present-day humans from different parts of the world identify a number of genomic regions that may have been affected by positive selection in ancestral modern humans, including genes involved in metabolism and in cognitive and skeletal development. We show that Neandertals shared more genetic variants with present-day humans in Eurasia than with present-day humans in sub-Saharan Africa, suggesting that gene flow from Neandertals into the ancestors of non-Africans occurred before the divergence of Eurasian groups from each other.
PMCID: PMC5100745  PMID: 20448178
2.  Ancient gene flow from early modern humans into Eastern Neanderthals 
Nature  2016;530(7591):429-433.
It has been shown that Neanderthals contributed genetically to modern humans outside Africa 47,000–65,000 years ago. Here, we analyze the genomes of a Neanderthal and a Denisovan from the Altai Mountains in Siberia together with the sequences of chromosome 21 of two Neanderthals from Spain and Croatia. We find that a population that diverged early from other modern humans in Africa contributed genetically to the ancestors of Neanderthals from the Altai Mountains roughly 100,000 years ago. By contrast, we do not detect such a genetic contribution in the Denisovan or the two European Neanderthals. We conclude that in addition to later interbreeding events, the ancestors of Neanderthals from the Altai Mountains and of modern humans met and interbred, possibly in the Near East, many thousands of years earlier than previously reported.
PMCID: PMC4933530  PMID: 26886800
3.  Genome-wide patterns of selection in 230 ancient Eurasians 
Nature  2015;528(7583):499-503.
Ancient DNA makes it possible to directly witness natural selection by analyzing samples from populations before, during and after adaptation events. Here we report the first scan for selection using ancient DNA, capitalizing on the largest genome-wide dataset yet assembled: 230 West Eurasians dating to between 6500 and 1000 BCE, including 163 with newly reported data. The new samples include the first genome-wide data from the Anatolian Neolithic culture whose genetic material we extracted from the DNA-rich petrous bone and who we show were members of the population that was the source of Europe’s first farmers. We also report a complete transect of the steppe region in Samara between 5500 and 1200 BCE that allows us to recognize admixture from at least two external sources into steppe populations during this period. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.
PMCID: PMC4918750  PMID: 26595274
4.  Almost 20 years of Neanderthal palaeogenetics: adaptation, admixture, diversity, demography and extinction 
Nearly two decades since the first retrieval of Neanderthal DNA, recent advances in next-generation sequencing technologies have allowed the generation of high-coverage genomes from two archaic hominins, a Neanderthal and a Denisovan, as well as a complete mitochondrial genome from remains which probably represent early members of the Neanderthal lineage. This genomic information, coupled with diversity exome data from several Neanderthal specimens is shedding new light on evolutionary processes such as the genetic basis of Neanderthal and modern human-specific adaptations—including morphological and behavioural traits—as well as the extent and nature of the admixture events between them. An emerging picture is that Neanderthals had a long-term small population size, lived in small and isolated groups and probably practised inbreeding at times. Deleterious genetic effects associated with these demographic factors could have played a role in their extinction. The analysis of DNA from further remains making use of new large-scale hybridization-capture-based methods as well as of new approaches to discriminate contaminant DNA sequences will provide genetic information in spatial and temporal scales that could help clarify the Neanderthal's—and our very own—evolutionary history.
PMCID: PMC4275882  PMID: 25487326
Neanderthal; demography; evolutionary history; extinction
5.  A Common Genetic Origin for Early Farmers from Mediterranean Cardial and Central European LBK Cultures 
Molecular Biology and Evolution  2015;32(12):3132-3142.
The spread of farming out of the Balkans and into the rest of Europe followed two distinct routes: An initial expansion represented by the Impressa and Cardial traditions, which followed the Northern Mediterranean coastline; and another expansion represented by the LBK (Linearbandkeramik) tradition, which followed the Danube River into Central Europe. Although genomic data now exist from samples representing the second migration, such data have yet to be successfully generated from the initial Mediterranean migration. To address this, we generated the complete genome of a 7,400-year-old Cardial individual (CB13) from Cova Bonica in Vallirana (Barcelona), as well as partial nuclear data from five others excavated from different sites in Spain and Portugal. CB13 clusters with all previously sequenced early European farmers and modern-day Sardinians. Furthermore, our analyses suggest that both Cardial and LBK peoples derived from a common ancient population located in or around the Balkan Peninsula. The Iberian Cardial genome also carries a discernible hunter–gatherer genetic signature that likely was not acquired by admixture with local Iberian foragers. Our results indicate that retrieving ancient genomes from similarly warm Mediterranean environments such as the Near East is technically feasible.
PMCID: PMC4652622  PMID: 26337550
Neolithic; paleogenomics; Cardial ware; migration
6.  Ancient DNA sheds light on the ancestry of pre-hispanic Canarian pigs 
Canarian Black (CB) pigs belong to an autochthonous and endangered breed, which is spread throughout the Canarian archipelago. It is commonly accepted that they represent a relic of the pig populations that were bred by the Berbers in North Africa over millennia. It is important to note that the geographic isolation of the Canary Islands has preserved this genetic legacy intact from foreign introgressions until the Spanish conquest of the archipelago in the 15th century. Ten years ago, it was demonstrated that, in CB pigs, the frequency of the Asian A2 cytochrome-b haplogroup reached 73%. The current work aimed at investigating whether this observation is explained by either a recent or an ancient introgression of CB pigs with Far Eastern pigs.
Genetic analyses of 23 ancient samples from pre-hispanic Canarian pigs (420 to 2500 years before present) showed that Near Eastern and Far Eastern genetic signatures were totally absent in the primitive Canarian pre-hispanic pigs. Indeed, the haplotypes detected in these pigs were closely related to those of North African and European wild boars.
Our results demonstrate that the high frequency of the Far Eastern mitochondrial cytochrome B A2 haplotype in modern Canarian Black pigs probably corresponds to a relatively recent introgression with British breeds.
Electronic supplementary material
The online version of this article (doi:10.1186/s12711-015-0115-7) contains supplementary material, which is available to authorized users.
PMCID: PMC4421913  PMID: 25944642
7.  Re-inventing ancient human DNA 
For a long time, the analysis of ancient human DNA represented one of the most controversial disciplines in an already controversial field of research. Scepticism in this field was only matched by the long-lasting controversy over the authenticity of ancient pathogen DNA. This ambiguous view on ancient human DNA had a dichotomous root. On the one hand, the interest in ancient human DNA is great because such studies touch on the history and evolution of our own species. On the other hand, because these studies are dealing with samples from our own species, results are easily compromised by contamination of the experiments with modern human DNA, which is ubiquitous in the environment. Consequently, some of the most disputed studies published - apart maybe from early reports on million year old dinosaur or amber DNA - reported DNA analyses from human subfossil remains. However, the development of so-called next- or second-generation sequencing (SGS) in 2005 and the technological advances associated with it have generated new confidence in the genetic study of ancient human remains. The ability to sequence shorter DNA fragments than with PCR amplification coupled to traditional Sanger sequencing, along with very high sequencing throughput have both reduced the risk of sequencing modern contamination and provided tools to evaluate the authenticity of DNA sequence data. The field is now rapidly developing, providing unprecedented insights into the evolution of our own species and past human population dynamics as well as the evolution and history of human pathogens and epidemics. Here, we review how recent technological improvements have rapidly transformed ancient human DNA research from a highly controversial subject to a central component of modern anthropological research. We also discuss potential future directions of ancient human DNA research.
PMCID: PMC4416249  PMID: 25937886
Archaic humans; Human evolution; Human population genomics; Next/second-generation sequencing
8.  Genealogical Relationships between Early Medieval and Modern Inhabitants of Piedmont 
PLoS ONE  2015;10(1):e0116801.
In the period between 400 to 800 AD, also known as the period of the Barbarian invasions, intense migration is documented in the historical record of Europe. However, little is known about the demographic impact of these historical movements, potentially ranging from negligible to substantial. As a pilot study in a broader project on Medieval Europe, we sampled 102 specimens from 5 burial sites in Northwestern Italy, archaeologically classified as belonging to Lombards or Longobards, a Germanic people ruling over a vast section of the Italian peninsula from 568 to 774. We successfully amplified and typed the mitochondrial hypervariable region I (HVR-I) of 28 individuals. Comparisons of genetic diversity with other ancient populations and haplotype networks did not suggest that these samples are heterogeneous, and hence allowed us to jointly compare them with three isolated contemporary populations, and with a modern sample of a large city, representing a control for the effects of recent immigration. We then generated by serial coalescent simulations 16 millions of genealogies, contrasting a model of genealogical continuity with one in which the contemporary samples are genealogically independent from the medieval sample. Analyses by Approximate Bayesian Computation showed that the latter model fits the data in most cases, with one exception, Trino Vercellese, in which the evidence was compatible with persistence up to the present time of genetic features observed among this early medieval population. We conclude that it is possible, in general, to detect evidence of genealogical ties between medieval and specific modern populations. However, only seldom did mitochondrial DNA data allow us to reject with confidence either model tested, which indicates that broader analyses, based on larger assemblages of samples and genetic markers, are needed to understand in detail the effects of medieval migration.
PMCID: PMC4312042  PMID: 25635682
9.  Derived Immune and Ancestral Pigmentation Alleles in a 7,000-Year-old Mesolithic European 
Nature  2014;507(7491):225-228.
Ancient genomic sequences have started revealing the origin and the demographic impact of Neolithic farmers spreading into Europe1–3. The adoption of farming, stock breeding and sedentary societies during the Neolithic may have resulted in adaptive changes in genes associated with immunity and diet4. However, the limited data available from earlier hunter-gatherers precludes an understanding of the selective processes associated with this crucial transition to agriculture in recent human evolution. By sequencing a ~7,000-year-old Mesolithic skeleton discovered at the La Braña-Arintero site in León (Spain), we retrieved the first complete pre-agricultural European human genome. Analysis of this genome in the context of other ancient samples suggests the existence of a common ancient genomic signature across Western and Central Eurasia from the Upper Paleolithic to the Mesolithic. The La Braña individual carries ancestral alleles in several skin pigmentation genes, suggesting that the light skin of modern Europeans was not yet ubiquitous in Mesolithic times. Moreover, we provide evidence that a significant number of derived, putatively adaptive variants associated with pathogen resistance in modern Europeans were already present in this hunter-gatherer. Hence, these genomic variants cannot represent novel mutations that occurred during the adaptation to the farming lifestyle.
PMCID: PMC4269527  PMID: 24463515
10.  Mitochondrial DNA from El Mirador Cave (Atapuerca, Spain) Reveals the Heterogeneity of Chalcolithic Populations 
PLoS ONE  2014;9(8):e105105.
Previous mitochondrial DNA analyses on ancient European remains have suggested that the current distribution of haplogroup H was modeled by the expansion of the Bell Beaker culture (ca 4,500–4,050 years BP) out of Iberia during the Chalcolithic period. However, little is known on the genetic composition of contemporaneous Iberian populations that do not carry the archaeological tool kit defining this culture. Here we have retrieved mitochondrial DNA (mtDNA) sequences from 19 individuals from a Chalcolithic sample from El Mirador cave in Spain, dated to 4,760–4,200 years BP and we have analyzed the haplogroup composition in the context of modern and ancient populations. Regarding extant African, Asian and European populations, El Mirador shows affinities with Near Eastern groups. In different analyses with other ancient samples, El Mirador clusters with Middle and Late Neolithic populations from Germany, belonging to the Rössen, the Salzmünde and the Baalberge archaeological cultures but not with contemporaneous Bell Beakers. Our analyses support the existence of a common genetic signal between Western and Central Europe during the Middle and Late Neolithic and points to a heterogeneous genetic landscape among Chalcolithic groups.
PMCID: PMC4130614  PMID: 25116044
11.  Analysis of structural diversity in wolf-like canids reveals post-domestication variants 
BMC Genomics  2014;15(1):465.
Although a variety of genetic changes have been implicated in causing phenotypic differences among dogs, the role of copy number variants (CNVs) and their impact on phenotypic variation is still poorly understood. Further, very limited knowledge exists on structural variation in the gray wolf, the ancestor of the dog, or other closely related wild canids. Documenting CNVs variation in wild canids is essential to identify ancestral states and variation that may have appeared after domestication.
In this work, we genotyped 1,611 dog CNVs in 23 wolf-like canids (4 purebred dogs, one dingo, 15 gray wolves, one red wolf, one coyote and one golden jackal) to identify CNVs that may have arisen after domestication. We have found an increase in GC-rich regions close to the breakpoints and around 1 kb away from them suggesting that some common motifs might be associated with the formation of CNVs. Among the CNV regions that showed the largest differentiation between dogs and wild canids we found 12 genes, nine of which are related to two known functions associated with dog domestication; growth (PDE4D, CRTC3 and NEB) and neurological function (PDE4D, EML5, ZNF500, SLC6A11, ELAVL2, RGS7 and CTSB).
Our results provide insight into the evolution of structural variation in canines, where recombination is not regulated by PRDM9 due to the inactivation of this gene. We also identified genes within the most differentiated CNV regions between dogs and wolves, which could reflect selection during the domestication process.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-465) contains supplementary material, which is available to authorized users.
PMCID: PMC4070573  PMID: 24923435
Domestication; CNV; Candidate genes; Dog and wolf
12.  Genomic analysis of the blood attributed to Louis XVI (1754–1793), king of France 
Scientific Reports  2014;4:4666.
A pyrographically decorated gourd, dated to the French Revolution period, has been alleged to contain a handkerchief dipped into the blood of the French king Louis XVI (1754–1793) after his beheading but recent analyses of living males from two Bourbon branches cast doubts on its authenticity. We sequenced the complete genome of the DNA contained in the gourd at low coverage (~2.5×) with coding sequences enriched at a higher ~7.3× coverage. We found that the ancestry of the gourd's genome does not seem compatible with Louis XVI's known ancestry. From a functional perspective, we did not find an excess of alleles contributing to height despite being described as the tallest person in Court. In addition, the eye colour prediction supported brown eyes, while Louis XVI had blue eyes. This is the first draft genome generated from a person who lived in a recent historical period; however, our results suggest that this sample may not correspond to the alleged king.
PMCID: PMC3998215  PMID: 24763138
13.  Extreme Population Differences in the Human Zinc Transporter ZIP4 (SLC39A4) Are Explained by Positive Selection in Sub-Saharan Africa 
PLoS Genetics  2014;10(2):e1004128.
Extreme differences in allele frequency between West Africans and Eurasians were observed for a leucine-to-valine substitution (Leu372Val) in the human intestinal zinc uptake transporter, ZIP4, yet no further evidence was found for a selective sweep around the ZIP4 gene (SLC39A4). By interrogating allele frequencies in more than 100 diverse human populations and resequencing Neanderthal DNA, we confirmed the ancestral state of this locus and found a strong geographical gradient for the derived allele (Val372), with near fixation in West Africa. In extensive coalescent simulations, we show that the extreme differences in allele frequency, yet absence of a classical sweep signature, can be explained by the effect of a local recombination hotspot, together with directional selection favoring the Val372 allele in Sub-Saharan Africans. The possible functional effect of the Leu372Val substitution, together with two pathological mutations at the same codon (Leu372Pro and Leu372Arg) that cause acrodermatitis enteropathica (a disease phenotype characterized by extreme zinc deficiency), was investigated by transient overexpression of human ZIP4 protein in HeLa cells. Both acrodermatitis mutations cause absence of the ZIP4 transporter cell surface expression and nearly absent zinc uptake, while the Val372 variant displayed significantly reduced surface protein expression, reduced basal levels of intracellular zinc, and reduced zinc uptake in comparison with the Leu372 variant. We speculate that reduced zinc uptake by the ZIP4-derived Val372 isoform may act by starving certain pathogens of zinc, and hence may have been advantageous in Sub-Saharan Africa. Moreover, these functional results may indicate differences in zinc homeostasis among modern human populations with possible relevance for disease risk.
Author Summary
Zinc is an essential trace element with many biological functions in the body, whose concentrations are tightly regulated by different membrane transporters. Here we report an unusual case of positive natural selection for an amino acid replacement in the human intestinal zinc uptake transporter ZIP4. This substitution is recognized as one of the most strongly differentiated genome-wide polymorphisms among human populations. However, since the extreme population differentiation of this non-synonymous site was not accompanied by additional signatures of natural selection, it was unclear whether it was the result of genetic adaptation. Using computer simulations we demonstrate that such an unusual pattern can be explained by the effect of local recombination, together with positive selection in Sub-Saharan Africa. Moreover, we provide evidence to suggest functional differences between the two ZIP4 isoforms in terms of the transporter cell surface expression and zinc uptake. This result is the first genetic indication that zinc regulation may differ among modern human populations, a finding that may have implications for health research. Further, we speculate that reduced zinc uptake mediated by the derived variant may have been advantageous in Sub-Saharan Africa, possibly by reducing access of a geographically restricted pathogen to this micronutrient.
PMCID: PMC3930504  PMID: 24586184
14.  The genome sequencing of an albino Western lowland gorilla reveals inbreeding in the wild 
BMC Genomics  2013;14:363.
The only known albino gorilla, named Snowflake, was a male wild born individual from Equatorial Guinea who lived at the Barcelona Zoo for almost 40 years. He was diagnosed with non-syndromic oculocutaneous albinism, i.e. white hair, light eyes, pink skin, photophobia and reduced visual acuity. Despite previous efforts to explain the genetic cause, this is still unknown. Here, we study the genetic cause of his albinism and making use of whole genome sequencing data we find a higher inbreeding coefficient compared to other gorillas.
We successfully identified the causal genetic variant for Snowflake’s albinism, a non-synonymous single nucleotide variant located in a transmembrane region of SLC45A2. This transporter is known to be involved in oculocutaneous albinism type 4 (OCA4) in humans. We provide experimental evidence that shows that this amino acid replacement alters the membrane spanning capability of this transmembrane region. Finally, we provide a comprehensive study of genome-wide patterns of autozygogosity revealing that Snowflake’s parents were related, being this the first report of inbreeding in a wild born Western lowland gorilla.
In this study we demonstrate how the use of whole genome sequencing can be extended to link genotype and phenotype in non-model organisms and it can be a powerful tool in conservation genetics (e.g., inbreeding and genetic diversity) with the expected decrease in sequencing cost.
PMCID: PMC3673836  PMID: 23721540
Gorilla; Albinism; Inbreeding; Genome; Conservation
15.  Population connectivity buffers genetic diversity loss in a seabird 
Frontiers in Zoology  2013;10:28.
Ancient DNA has revolutionized conservation genetic studies as it allows monitoring of the genetic variability of species through time and predicting the impact of ecosystems’ threats on future population dynamics and viability. Meanwhile, the consequences of anthropogenic activities and climate change to island faunas, particularly seabirds, remain largely unknown. In this study, we examined temporal changes in the genetic diversity of a threatened seabird, the Cory’s shearwater (Calonectris borealis).
We analysed the mitochondrial DNA control region of ancient bone samples from the late-Holocene retrieved from the Canary archipelago (NE Atlantic) together with modern DNA sequences representative of the entire breeding range of the species. Our results show high levels of ancient genetic diversity in the Canaries comparable to that of the extant population. The temporal haplotype network further revealed rare but recurrent long-distance dispersal between ocean basins. The Bayesian demographic analyses reveal both regional and local population size expansion events, and this is in spite of the demographic decline experienced by the species over the last millennia.
Our findings suggest that population connectivity of the species has acted as a buffer of genetic losses and illustrate the use of ancient DNA to uncover such cryptic genetic events.
PMCID: PMC3662614  PMID: 23688345
Ancient DNA; Population size; Calonectris
16.  Origin and Diet of the Prehistoric Hunter-Gatherers on the Mediterranean Island of Favignana (Ègadi Islands, Sicily) 
PLoS ONE  2012;7(11):e49802.
Hunter-gatherers living in Europe during the transition from the late Pleistocene to the Holocene intensified food acquisition by broadening the range of resources exploited to include marine taxa. However, little is known on the nature of this dietary change in the Mediterranean Basin. A key area to investigate this issue is the archipelago of the Ègadi Islands, most of which were connected to Sicily until the early Holocene. The site of Grotta d’Oriente, on the present-day island of Favignana, was occupied by hunter-gatherers when Postglacial environmental changes were taking place (14,000-7,500 cal BP). Here we present the results of AMS radiocarbon dating, palaeogenetic and isotopic analyses undertaken on skeletal remains of the humans buried at Grotta d’Oriente. Analyses of the mitochondrial hypervariable first region of individual Oriente B, which belongs to the HV-1 haplogroup, suggest for the first time on genetic grounds that humans living in Sicily during the early Holocene could have originated from groups that migrated from the Italian Peninsula around the Last Glacial Maximum. Carbon and nitrogen isotope analyses show that the Upper Palaeolithic and Mesolithic hunter-gatherers of Favignana consumed almost exclusively protein from terrestrial game and that there was only a slight increase in marine food consumption from the late Pleistocene to the early Holocene. This dietary change was similar in scale to that at sites on mainland Sicily and in the rest of the Mediterranean, suggesting that the hunter-gatherers of Grotta d’Oriente did not modify their subsistence strategies specifically to adapt to the progressive isolation of Favignana. The limited development of technologies for intensively exploiting marine resources was probably a consequence both of Mediterranean oligotrophy and of the small effective population size of these increasingly isolated human groups, which made innovation less likely and prevented transmission of fitness-enhancing adaptations.
PMCID: PMC3509116  PMID: 23209602
17.  Tracing the Origin of the East-West Population Admixture in the Altai Region (Central Asia) 
PLoS ONE  2012;7(11):e48904.
A recent discovery of Iron Age burials (Pazyryk culture) in the Altai Mountains of Mongolia may shed light on the mode and tempo of the generation of the current genetic east-west population admixture in Central Asia. Studies on ancient mitochondrial DNA of this region suggest that the Altai Mountains played the role of a geographical barrier between West and East Eurasian lineages until the beginning of the Iron Age. After the 7th century BC, coinciding with Scythian expansion across the Eurasian steppes, a gradual influx of East Eurasian sequences in Western steppes is detected. However, the underlying events behind the genetic admixture in Altai during the Iron Age are still unresolved: 1) whether it was a result of migratory events (eastward firstly, westward secondly), or 2) whether it was a result of a local demographic expansion in a ‘contact zone’ between European and East Asian people. In the present work, we analyzed the mitochondrial DNA lineages in human remains from Bronze and Iron Age burials of Mongolian Altai. Here we present support to the hypothesis that the gene pool of Iron Age inhabitants of Mongolian Altai was similar to that of western Iron Age Altaians (Russia and Kazakhstan). Thus, this people not only shared the same culture (Pazyryk), but also shared the same genetic east-west population admixture. In turn, Pazyryks appear to have a similar gene pool that current Altaians. Our results further show that Iron Age Altaians displayed mitochondrial lineages already present around Altai region before the Iron Age. This would provide support for a demographic expansion of local people of Altai instead of westward or eastward migratory events, as the demographic event behind the high population genetic admixture and diversity in Central Asia.
PMCID: PMC3494716  PMID: 23152818
18.  North African Populations Carry the Signature of Admixture with Neandertals 
PLoS ONE  2012;7(10):e47765.
One of the main findings derived from the analysis of the Neandertal genome was the evidence for admixture between Neandertals and non-African modern humans. An alternative scenario is that the ancestral population of non-Africans was closer to Neandertals than to Africans because of ancient population substructure. Thus, the study of North African populations is crucial for testing both hypotheses. We analyzed a total of 780,000 SNPs in 125 individuals representing seven different North African locations and searched for their ancestral/derived state in comparison to different human populations and Neandertals. We found that North African populations have a significant excess of derived alleles shared with Neandertals, when compared to sub-Saharan Africans. This excess is similar to that found in non-African humans, a fact that can be interpreted as a sign of Neandertal admixture. Furthermore, the Neandertal's genetic signal is higher in populations with a local, pre-Neolithic North African ancestry. Therefore, the detected ancient admixture is not due to recent Near Eastern or European migrations. Sub-Saharan populations are the only ones not affected by the admixture event with Neandertals.
PMCID: PMC3474783  PMID: 23082212
19.  Analysis of Human Accelerated DNA Regions Using Archaic Hominin Genomes 
PLoS ONE  2012;7(3):e32877.
Several previous comparisons of the human genome with other primate and vertebrate genomes identified genomic regions that are highly conserved in vertebrate evolution but fast-evolving on the human lineage. These human accelerated regions (HARs) may be regions of past adaptive evolution in humans. Alternatively, they may be the result of non-adaptive processes, such as biased gene conversion. We captured and sequenced DNA from a collection of previously published HARs using DNA from an Iberian Neandertal. Combining these new data with shotgun sequence from the Neandertal and Denisova draft genomes, we determine at least one archaic hominin allele for 84% of all positions within HARs. We find that 8% of HAR substitutions are not observed in the archaic hominins and are thus recent in the sense that the derived allele had not come to fixation in the common ancestor of modern humans and archaic hominins. Further, we find that recent substitutions in HARs tend to have come to fixation faster than substitutions elsewhere in the genome and that substitutions in HARs tend to cluster in time, consistent with an episodic rather than a clock-like process underlying HAR evolution. Our catalog of sequence changes in HARs will help prioritize them for functional studies of genomic elements potentially responsible for modern human adaptations.
PMCID: PMC3296746  PMID: 22412940
20.  Fragmentation of Contaminant and Endogenous DNA in Ancient Samples Determined by Shotgun Sequencing; Prospects for Human Palaeogenomics 
PLoS ONE  2011;6(8):e24161.
Despite the successful retrieval of genomes from past remains, the prospects for human palaeogenomics remain unclear because of the difficulty of distinguishing contaminant from endogenous DNA sequences. Previous sequence data generated on high-throughput sequencing platforms indicate that fragmentation of ancient DNA sequences is a characteristic trait primarily arising due to depurination processes that create abasic sites leading to DNA breaks.
Methodology/Principals Findings
To investigate whether this pattern is present in ancient remains from a temperate environment, we have 454-FLX pyrosequenced different samples dated between 5,500 and 49,000 years ago: a bone from an extinct goat (Myotragus balearicus) that was treated with a depurinating agent (bleach), an Iberian lynx bone not subjected to any treatment, a human Neolithic sample from Barcelona (Spain), and a Neandertal sample from the El Sidrón site (Asturias, Spain). The efficiency of retrieval of endogenous sequences is below 1% in all cases. We have used the non-human samples to identify human sequences (0.35 and 1.4%, respectively), that we positively know are contaminants.
We observed that bleach treatment appears to create a depurination-associated fragmentation pattern in resulting contaminant sequences that is indistinguishable from previously described endogenous sequences. Furthermore, the nucleotide composition pattern observed in 5′ and 3′ ends of contaminant sequences is much more complex than the flat pattern previously described in some Neandertal contaminants. Although much research on samples with known contaminant histories is needed, our results suggest that endogenous and contaminant sequences cannot be distinguished by the fragmentation pattern alone.
PMCID: PMC3164143  PMID: 21904610
21.  Ancient DNA of the Extinct Lava Shearwater (Puffinus olsoni) from the Canary Islands Reveals Incipient Differentiation within the P. puffinus Complex 
PLoS ONE  2010;5(12):e16072.
The loss of species during the Holocene was, dramatically more important on islands than on continents. Seabirds from islands are very vulnerable to human-induced alterations such as habitat destruction, hunting and exotic predators. For example, in the genus Puffinus (family Procellariidae) the extinction of at least five species has been recorded during the Holocene, two of them coming from the Canary Islands.
Methodology/Principal Findings
We used bones of the two extinct Canary shearwaters (P. olsoni and P. holeae) to obtain genetic data, for use in providing insights into the differentiation process within the genus Puffinus. Although mitochondrial DNA (mtDNA) cytochrome b sequences were successfully retrieved from four Holocene specimens of the extinct Lava shearwater (P. olsoni) from Fuerteventura (Canary Islands), the P. holeae specimens yielded no DNA. Only one haplotype was detected in P. olsoni, suggesting a low genetic diversity within this species.
The phylogenetic analyses based on the DNA data reveal that: (i) the “Puffinus puffinus complex”, an assemblage of species defined using osteological characteristics (P. puffinus, P. olsoni, P. mauretanicus, P. yelkouan and probably P. holeae), shows unresolved phylogenetic relationships; (ii) despite the differences in body size and proportions, P. olsoni and the extant P. puffinus are sister species. Several hypotheses can be considered to explain the incipient differentiation between P. olsoni and P. puffinus.
PMCID: PMC3013140  PMID: 21209838
22.  Bitter taste perception in Neanderthals through the analysis of the TAS2R38 gene 
Biology Letters  2009;5(6):809-811.
The bitter taste perception (associated with the ability or inability to taste phenylthiocarbamide) is mediated by the TAS2R38 gene. Most of the variation in this gene is explained by three common amino-acid polymorphisms at positions 49 (encoding proline or alanine), 262 (alanine or valine) and 296 (valine or isoleucine) that determine two common isoforms: proline–alanine–valine (PAV) and alanine–valine–isoleucine (AVI). PAV is the major taster haplotype (heterozygote and homozygote) and AVI is the major non-taster haplotype (homozygote). Amino acid 49 has the major effect on the distinction between tasters and non-tasters of all three variants. The sense of bitter taste protects us from ingesting toxic substances, present in some vegetables, that can affect the thyroid when ingested in large quantities. Balancing selection has been used to explain the current high non-taster frequency, by maintaining divergent TAS2R38 alleles in humans. We have amplified and sequenced the TAS2R38 amino acid 49 in the virtually uncontaminated Neanderthal sample of El Sidrón 1253 and have determined that it was heterozygous. Thus, this Neanderthal was a taster individual, although probably slightly less than a PAV homozygote. This indicates that variation in bitter taste perception pre-dates the divergence of the lineages leading to Neanderthals and modern humans.
PMCID: PMC2828008  PMID: 19675003
bitter taste; PTC; TAS2R38; Neanderthals
23.  Paleogenomics in a Temperate Environment: Shotgun Sequencing from an Extinct Mediterranean Caprine 
PLoS ONE  2009;4(5):e5670.
Numerous endemic mammals, including dwarf elephants, goats, hippos and deers, evolved in isolation in the Mediterranean islands during the Pliocene and Pleistocene. Most of them subsequently became extinct during the Holocene. Recently developed high-throughput sequencing technologies could provide a unique tool for retrieving genomic data from these extinct species, making it possible to study their evolutionary history and the genetic bases underlying their particular, sometimes unique, adaptations.
Methodology/Principals Findings
A DNA extraction of a ∼6,000 year-old bone sample from an extinct caprine (Myotragus balearicus) from the Balearic Islands in the Western Mediterranean, has been subjected to shotgun sequencing with the GS FLX 454 platform. Only 0.27% of the resulting sequences, identified from alignments with the cow genome and comprising 15,832 nucleotides, with an average length of 60 nucleotides, proved to be endogenous.
A phylogenetic tree generated with Myotragus sequences and those from other artiodactyls displays an identical topology to that generated from mitochondrial DNA data. Despite being in an unfavourable thermal environment, which explains the low yield of endogenous sequences, our study demonstrates that it is possible to obtain genomic data from extinct species from temperate regions.
PMCID: PMC2680946  PMID: 19461892
24.  Sequences From First Settlers Reveal Rapid Evolution in Icelandic mtDNA Pool 
PLoS Genetics  2009;5(1):e1000343.
A major task in human genetics is to understand the nature of the evolutionary processes that have shaped the gene pools of contemporary populations. Ancient DNA studies have great potential to shed light on the evolution of populations because they provide the opportunity to sample from the same population at different points in time. Here, we show that a sample of mitochondrial DNA (mtDNA) control region sequences from 68 early medieval Icelandic skeletal remains is more closely related to sequences from contemporary inhabitants of Scotland, Ireland, and Scandinavia than to those from the modern Icelandic population. Due to a faster rate of genetic drift in the Icelandic mtDNA pool during the last 1,100 years, the sequences carried by the first settlers were better preserved in their ancestral gene pools than among their descendants in Iceland. These results demonstrate the inferential power gained in ancient DNA studies through the application of population genetics analyses to relatively large samples.
Author Summary
Ancient DNA studies have great potential to shed light on the evolution of populations because they provide the opportunity to sample from the same population at different points in time. However, ancient DNA studies are often based on DNA extracted from only one or a few individuals and, therefore, do not lend themselves to statistical inference. Here, we describe the analysis of a sample of mitochondrial DNA (mtDNA) control region sequences from 68 Icelandic skeletal remains that are about 1,000 years old, from the time that Iceland was first settled. We show that the ancient Icelandic mtDNA sequences are more closely related to sequences from contemporary inhabitants of Scotland, Ireland, and Scandinavia (and several other European populations) than to those from the modern Icelandic population. It appears that the array of sequences carried by the first generations of Icelanders was better preserved in the gene pools of their ancestors than among their modern descendants because of a faster rate of evolution due to genetic drift in the Icelandic mtDNA pool during the last 1,100 years. These results demonstrate the inferential power that can be gained from studies by applying the methods of population genetics to samples of ancient DNA sequences.
PMCID: PMC2613751  PMID: 19148284
25.  Genetic characterization of the ABO blood group in Neandertals 
The high polymorphism rate in the human ABO blood group gene seems to be related to susceptibility to different pathogens. It has been estimated that all genetic variation underlying the human ABO alleles appeared along the human lineage, after the divergence from the chimpanzee lineage. A paleogenetic analysis of the ABO blood group gene in Neandertals allows us to directly test for the presence of the ABO alleles in these extinct humans.
We have analysed two male Neandertals that were retrieved under controlled conditions at the El Sidron site in Asturias (Spain) and that appeared to be almost free of modern human DNA contamination. We find a human specific diagnostic deletion for blood group O (O01 haplotype) in both Neandertal individuals.
These results suggest that the genetic change responsible for the O blood group in humans predates the human and Neandertal divergence. A potential selective event associated with the emergence of the O allele may have therefore occurred after humans separated from their common ancestor with chimpanzees and before the human-Neandertal population divergence.
PMCID: PMC2629777  PMID: 19108732

Results 1-25 (27)