PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (110)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  Genetic Susceptibility to Obesity and Related Traits in Childhood and Adolescence 
Diabetes  2010;59(11):2980-2988.
OBJECTIVE
Large-scale genome-wide association (GWA) studies have thus far identified 16 loci incontrovertibly associated with obesity-related traits in adults. We examined associations of variants in these loci with anthropometric traits in children and adolescents.
RESEARCH DESIGN AND METHODS
Seventeen variants representing 16 obesity susceptibility loci were genotyped in 1,252 children (mean ± SD age 9.7 ± 0.4 years) and 790 adolescents (15.5 ± 0.5 years) from the European Youth Heart Study (EYHS). We tested for association of individual variants and a genetic predisposition score (GPS-17), calculated by summing the number of effect alleles, with anthropometric traits. For 13 variants, summary statistics for associations with BMI were meta-analyzed with previously reported data (Ntotal = 13,071 children and adolescents).
RESULTS
In EYHS, 15 variants showed associations or trends with anthropometric traits that were directionally consistent with earlier reports in adults. The meta-analysis showed directionally consistent associations with BMI for all 13 variants, of which 9 were significant (0.033–0.098 SD/allele; P < 0.05). The near-TMEM18 variant had the strongest effect (0.098 SD/allele P = 8.5 × 10−11). Effect sizes for BMI tended to be more pronounced in children and adolescents than reported earlier in adults for variants in or near SEC16B, TMEM18, and KCTD15, (0.028–0.035 SD/allele higher) and less pronounced for rs925946 in BDNF (0.028 SD/allele lower). Each additional effect allele in the GPS-17 was associated with an increase of 0.034 SD in BMI (P = 3.6 × 10−5), 0.039 SD, in sum of skinfolds (P = 1.7 × 10−7), and 0.022 SD in waist circumference (P = 1.7 × 10−4), which is comparable with reported results in adults (0.039 SD/allele for BMI and 0.033 SD/allele for waist circumference).
CONCLUSIONS
Most obesity susceptibility loci identified by GWA studies in adults are already associated with anthropometric traits in children/adolescents. Whereas the association of some variants may differ with age, the cumulative effect size is similar.
doi:10.2337/db10-0370
PMCID: PMC2963559  PMID: 20724581
2.  Recent progress in the genetics of common obesity 
The genetic contribution to interindividual variation in common obesity has been estimated at 40–70%. Yet, despite a relatively high heritability, the search for obesity susceptibility genes has been an arduous task. This paper reviews recent progress made in the obesity genetics field with an emphasis on established obesity susceptibility loci identified through candidate gene as well as genome-wide studies. For the last 15 years, candidate gene and genome-wide linkage studies have been the two main genetic epidemiological approaches to identify genetic loci for common traits, yet progress has been slow and success limited. Only recently have candidate gene studies started to succeed; by means of large-scale studies and meta-analyses at least five variants in four candidate genes have been found to be robustly associated with obesity-related traits. Genome-wide linkage studies, however, have so far not been able to pinpoint genetic loci for common obesity. The genome-wide association approach, which has become available in recent years, has dramatically changed the pace of gene discoveries for common disease, including obesity. Three waves of large-scale high-density genome-wide association studies have already discovered at least 15 previously unanticipated genetic loci incontrovertibly associated with body mass index and extreme obesity risk. Although the combined contribution of these loci to the variation in obesity risk at the population level is small and their predictive value is typically low, these recently discovered loci are set to improve fundamentally our insights into the pathophysiology of obesity.
doi:10.1111/j.1365-2125.2009.03523.x
PMCID: PMC2810793  PMID: 20002076
body mass index; common obesity; genetic epidemiology; genome-wide association studies
3.  Genome-wide association analysis identifies 20 loci that influence adult height 
Nature genetics  2008;40(5):575-583.
Adult height is a model polygenic trait, but there has been limited success in identifying the genes underlying its normal variation. To identify genetic variants influencing adult human height, we used genome-wide association data from 13,665 individuals and genotyped 39 variants in an additional 16,482 samples. We identified 20 variants associated with adult height (P < 5 × 10−7, with 10 reaching P < 1 × 10−10). Combined, the 20 SNPs explain ~3% of height variation, with a ~5 cm difference between the 6.2% of people with 17 or fewer ‘tall’ alleles compared to the 5.5% with 27 or more ‘tall’ alleles. The loci we identified implicate genes in Hedgehog signaling (IHH, HHIP, PTCH1), extracellular matrix (EFEMP1, ADAMTSL3, ACAN) and cancer (CDK6, HMGA2, DLEU7) pathways, and provide new insights into human growth and developmental processes. Finally, our results provide insights into the genetic architecture of a classic quantitative trait.
doi:10.1038/ng.121
PMCID: PMC2681221  PMID: 18391952
4.  Pleiotropic genes for metabolic syndrome and inflammation 
Molecular genetics and metabolism  2014;112(4):317-338.
Metabolic syndrome (MetS) has become a health and financial burden worldwide. The MetS definition captures clustering of risk factors that predict higher risk for diabetes mellitus and cardiovascular disease. Our study hypothesis is that additional to genes influencing individual MetS risk factors, genetic variants exist that influence MetS and inflammatory markers forming a predisposing MetS genetic network. To test this hypothesis a staged approach was undertaken. (a) We analyzed 17 metabolic and inflammatory traits in more than 85,500 participants from 14 large epidemiological studies within the Cross Consortia Pleiotropy Group. Individuals classified with MetS (NCEP definition), versus those without, showed on average significantly different levels for most inflammatory markers studied. (b) Paired average correlations between 8 metabolic traits and 9 inflammatory markers from the same studies as above, estimated with two methods, and factor analyses on large simulated data, helped in identifying 8 combinations of traits for follow-up in meta-analyses, out of 130,305 possible combinations between metabolic traits and inflammatory markers studied. (c) We performed correlated meta-analyses for 8 metabolic traits and 6 inflammatory markers by using existing GWAS published genetic summary results, with about 2.5 million SNPs from twelve predominantly largest GWAS consortia. These analyses yielded 130 unique SNPs/genes with pleiotropic associations (a SNP/gene associating at least one metabolic trait and one inflammatory marker). Of them twenty-five variants (seven loci newly reported) are proposed as MetS candidates. They map to genes MACF1, KIAA0754, GCKR, GRB14, COBLL1, LOC646736-IRS1, SLC39A8, NELFE, SKIV2L, STK19, TFAP2B, BAZ1B, BCL7B, TBL2, MLXIPL, LPL, TRIB1, ATXN2, HECTD4, PTPN11, ZNF664, PDXDC1, FTO, MC4R and TOMM40. Based on large data evidence, we conclude that inflammation is a feature of MetS and several gene variants show pleiotropic genetic associations across phenotypes and might explain a part of MetS correlated genetic architecture. These findings warrant further functional investigation.
doi:10.1016/j.ymgme.2014.04.007
PMCID: PMC4122618  PMID: 24981077
5.  Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility 
Wessel, Jennifer | Chu, Audrey Y. | Willems, Sara M. | Wang, Shuai | Yaghootkar, Hanieh | Brody, Jennifer A. | Dauriz, Marco | Hivert, Marie-France | Raghavan, Sridharan | Lipovich, Leonard | Hidalgo, Bertha | Fox, Keolu | Huffman, Jennifer E. | An, Ping | Lu, Yingchang | Rasmussen-Torvik, Laura J. | Grarup, Niels | Ehm, Margaret G. | Li, Li | Baldridge, Abigail S. | Stančáková, Alena | Abrol, Ravinder | Besse, Céline | Boland, Anne | Bork-Jensen, Jette | Fornage, Myriam | Freitag, Daniel F. | Garcia, Melissa E. | Guo, Xiuqing | Hara, Kazuo | Isaacs, Aaron | Jakobsdottir, Johanna | Lange, Leslie A. | Layton, Jill C. | Li, Man | Zhao, Jing Hua | Meidtner, Karina | Morrison, Alanna C. | Nalls, Mike A. | Peters, Marjolein J. | Sabater-Lleal, Maria | Schurmann, Claudia | Silveira, Angela | Smith, Albert V. | Southam, Lorraine | Stoiber, Marcus H. | Strawbridge, Rona J. | Taylor, Kent D. | Varga, Tibor V. | Allin, Kristine H. | Amin, Najaf | Aponte, Jennifer L. | Aung, Tin | Barbieri, Caterina | Bihlmeyer, Nathan A. | Boehnke, Michael | Bombieri, Cristina | Bowden, Donald W. | Burns, Sean M. | Chen, Yuning | Chen, Yii-Der I. | Cheng, Ching-Yu | Correa, Adolfo | Czajkowski, Jacek | Dehghan, Abbas | Ehret, Georg B. | Eiriksdottir, Gudny | Escher, Stefan A. | Farmaki, Aliki-Eleni | Frånberg, Mattias | Gambaro, Giovanni | Giulianini, Franco | III, William A. Goddard | Goel, Anuj | Gottesman, Omri | Grove, Megan L. | Gustafsson, Stefan | Hai, Yang | Hallmans, Göran | Heo, Jiyoung | Hoffmann, Per | Ikram, Mohammad K. | Jensen, Richard A. | Jørgensen, Marit E. | Jørgensen, Torben | Karaleftheri, Maria | Khor, Chiea C. | Kirkpatrick, Andrea | Kraja, Aldi T. | Kuusisto, Johanna | Lange, Ethan M. | Lee, I.T. | Lee, Wen-Jane | Leong, Aaron | Liao, Jiemin | Liu, Chunyu | Liu, Yongmei | Lindgren, Cecilia M. | Linneberg, Allan | Malerba, Giovanni | Mamakou, Vasiliki | Marouli, Eirini | Maruthur, Nisa M. | Matchan, Angela | McKean, Roberta | McLeod, Olga | Metcalf, Ginger A. | Mohlke, Karen L. | Muzny, Donna M. | Ntalla, Ioanna | Palmer, Nicholette D. | Pasko, Dorota | Peter, Andreas | Rayner, Nigel W. | Renström, Frida | Rice, Ken | Sala, Cinzia F. | Sennblad, Bengt | Serafetinidis, Ioannis | Smith, Jennifer A. | Soranzo, Nicole | Speliotes, Elizabeth K. | Stahl, Eli A. | Stirrups, Kathleen | Tentolouris, Nikos | Thanopoulou, Anastasia | Torres, Mina | Traglia, Michela | Tsafantakis, Emmanouil | Javad, Sundas | Yanek, Lisa R. | Zengini, Eleni | Becker, Diane M. | Bis, Joshua C. | Brown, James B. | Cupples, L. Adrienne | Hansen, Torben | Ingelsson, Erik | Karter, Andrew J. | Lorenzo, Carlos | Mathias, Rasika A. | Norris, Jill M. | Peloso, Gina M. | Sheu, Wayne H.-H. | Toniolo, Daniela | Vaidya, Dhananjay | Varma, Rohit | Wagenknecht, Lynne E. | Boeing, Heiner | Bottinger, Erwin P. | Dedoussis, George | Deloukas, Panos | Ferrannini, Ele | Franco, Oscar H. | Franks, Paul W. | Gibbs, Richard A. | Gudnason, Vilmundur | Hamsten, Anders | Harris, Tamara B. | Hattersley, Andrew T. | Hayward, Caroline | Hofman, Albert | Jansson, Jan-Håkan | Langenberg, Claudia | Launer, Lenore J. | Levy, Daniel | Oostra, Ben A. | O'Donnell, Christopher J. | O'Rahilly, Stephen | Padmanabhan, Sandosh | Pankow, James S. | Polasek, Ozren | Province, Michael A. | Rich, Stephen S. | Ridker, Paul M | Rudan, Igor | Schulze, Matthias B. | Smith, Blair H. | Uitterlinden, André G. | Walker, Mark | Watkins, Hugh | Wong, Tien Y. | Zeggini, Eleftheria | Scotland, Generation | Laakso, Markku | Borecki, Ingrid B. | Chasman, Daniel I. | Pedersen, Oluf | Psaty, Bruce M. | Tai, E. Shyong | van Duijn, Cornelia M. | Wareham, Nicholas J. | Waterworth, Dawn M. | Boerwinkle, Eric | Kao, WH Linda | Florez, Jose C. | Loos, Ruth J.F. | Wilson, James G. | Frayling, Timothy M. | Siscovick, David S. | Dupuis, Josée | Rotter, Jerome I. | Meigs, James B. | Scott, Robert A. | Goodarzi, Mark O.
Nature communications  2015;6:5897.
Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF=1.4%) with lower FG (β=-0.09±0.01 mmol L−1, p=3.4×10−12), T2D risk (OR[95%CI]=0.86[0.76-0.96], p=0.010), early insulin secretion (β=-0.07±0.035 pmolinsulin mmolglucose−1, p=0.048), but higher 2-h glucose (β=0.16±0.05 mmol L−1, p=4.3×10−4). We identify a gene-based association with FG at G6PC2 (pSKAT=6.8×10−6) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF=20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (β=0.02±0.004 mmol L−1, p=1.3×10−8). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.
doi:10.1038/ncomms6897
PMCID: PMC4311266  PMID: 25631608
6.  Modelling the Interplay between Lifestyle Factors and Genetic Predisposition on Markers of Type 2 Diabetes Mellitus Risk 
PLoS ONE  2015;10(7):e0131681.
The risk of developing type 2 diabetes mellitus (T2DM) is determined by a complex interplay involving lifestyle factors and genetic predisposition. Despite this, many studies do not consider the relative contributions of this complex array of factors to identify relationships which are important in progression or prevention of complex diseases. We aimed to describe the integrated effect of a number of lifestyle changes (weight, diet and physical activity) in the context of genetic susceptibility, on changes in glycaemic traits in overweight or obese participants following 12-months of a weight management programme. A sample of 353 participants from a behavioural weight management intervention were included in this study. A graphical Markov model was used to describe the impact of the intervention, by dividing the effects into various pathways comprising changes in proportion of dietary saturated fat, physical activity and weight loss, and a genetic predisposition score (T2DM-GPS), on changes in insulin sensitivity (HOMA-IR), insulin secretion (HOMA-B) and short and long term glycaemia (glucose and HbA1c). We demonstrated the use of graphical Markov modelling to identify the importance and interrelationships of a number of possible variables changed as a result of a lifestyle intervention, whilst considering fixed factors such as genetic predisposition, on changes in traits. Paths which led to weight loss and change in dietary saturated fat were important factors in the change of all glycaemic traits, whereas the T2DM-GPS only made a significant direct contribution to changes in HOMA-IR and plasma glucose after considering the effects of lifestyle factors. This analysis shows that modifiable factors relating to body weight, diet, and physical activity are more likely to impact on glycaemic traits than genetic predisposition during a behavioural intervention.
doi:10.1371/journal.pone.0131681
PMCID: PMC4496090  PMID: 26154605
7.  Gene × dietary pattern interactions in obesity: analysis of up to 68 317 adults of European ancestry 
Human Molecular Genetics  2015;24(16):4728-4738.
Obesity is highly heritable. Genetic variants showing robust associations with obesity traits have been identified through genome-wide association studies. We investigated whether a composite score representing healthy diet modifies associations of these variants with obesity traits. Totally, 32 body mass index (BMI)- and 14 waist–hip ratio (WHR)-associated single nucleotide polymorphisms were genotyped, and genetic risk scores (GRS) were calculated in 18 cohorts of European ancestry (n = 68 317). Diet score was calculated based on self-reported intakes of whole grains, fish, fruits, vegetables, nuts/seeds (favorable) and red/processed meats, sweets, sugar-sweetened beverages and fried potatoes (unfavorable). Multivariable adjusted, linear regression within each cohort followed by inverse variance-weighted, fixed-effects meta-analysis was used to characterize: (a) associations of each GRS with BMI and BMI-adjusted WHR and (b) diet score modification of genetic associations with BMI and BMI-adjusted WHR. Nominally significant interactions (P = 0.006–0.04) were observed between the diet score and WHR-GRS (but not BMI-GRS), two WHR loci (GRB14 rs10195252; LYPLAL1 rs4846567) and two BMI loci (LRRN6C rs10968576; MTIF3 rs4771122), for the respective BMI-adjusted WHR or BMI outcomes. Although the magnitudes of these select interactions were small, our data indicated that associations between genetic predisposition and obesity traits were stronger with a healthier diet. Our findings generate interesting hypotheses; however, experimental and functional studies are needed to determine their clinical relevance.
doi:10.1093/hmg/ddv186
PMCID: PMC4512626  PMID: 25994509
8.  Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk 
Nature communications  2014;5:5303.
Mammographic density reflects the amount of stromal and epithelial tissues in relation to adipose tissue in the breast and is a strong risk factor for breast cancer. Here we report the results from meta-analysis of genome-wide association studies (GWAS) of three mammographic density phenotypes: dense area, non-dense area and percent density in up to 7,916 women in stage 1 and an additional 10,379 women in stage 2. We identify genome-wide significant (P<5×10−8) loci for dense area (AREG, ESR1, ZNF365, LSP1/TNNT3, IGF1, TMEM184B, SGSM3/MKL1), non-dense area (8p11.23) and percent density (PRDM6, 8p11.23, TMEM184B). Four of these regions are known breast cancer susceptibility loci, and four additional regions were found to be associated with breast cancer (P<0.05) in a large meta-analysis. These results provide further evidence of a shared genetic basis between mammographic density and breast cancer and illustrate the power of studying intermediate quantitative phenotypes to identify putative disease susceptibility loci.
doi:10.1038/ncomms6303
PMCID: PMC4320806  PMID: 25342443
9.  Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility 
Wessel, Jennifer | Chu, Audrey Y | Willems, Sara M | Wang, Shuai | Yaghootkar, Hanieh | Brody, Jennifer A | Dauriz, Marco | Hivert, Marie-France | Raghavan, Sridharan | Lipovich, Leonard | Hidalgo, Bertha | Fox, Keolu | Huffman, Jennifer E | An, Ping | Lu, Yingchang | Rasmussen-Torvik, Laura J | Grarup, Niels | Ehm, Margaret G | Li, Li | Baldridge, Abigail S | Stančáková, Alena | Abrol, Ravinder | Besse, Céline | Boland, Anne | Bork-Jensen, Jette | Fornage, Myriam | Freitag, Daniel F | Garcia, Melissa E | Guo, Xiuqing | Hara, Kazuo | Isaacs, Aaron | Jakobsdottir, Johanna | Lange, Leslie A | Layton, Jill C | Li, Man | Hua Zhao, Jing | Meidtner, Karina | Morrison, Alanna C | Nalls, Mike A | Peters, Marjolein J | Sabater-Lleal, Maria | Schurmann, Claudia | Silveira, Angela | Smith, Albert V | Southam, Lorraine | Stoiber, Marcus H | Strawbridge, Rona J | Taylor, Kent D | Varga, Tibor V | Allin, Kristine H | Amin, Najaf | Aponte, Jennifer L | Aung, Tin | Barbieri, Caterina | Bihlmeyer, Nathan A | Boehnke, Michael | Bombieri, Cristina | Bowden, Donald W | Burns, Sean M | Chen, Yuning | Chen, Yii-DerI | Cheng, Ching-Yu | Correa, Adolfo | Czajkowski, Jacek | Dehghan, Abbas | Ehret, Georg B | Eiriksdottir, Gudny | Escher, Stefan A | Farmaki, Aliki-Eleni | Frånberg, Mattias | Gambaro, Giovanni | Giulianini, Franco | Goddard, William A | Goel, Anuj | Gottesman, Omri | Grove, Megan L | Gustafsson, Stefan | Hai, Yang | Hallmans, Göran | Heo, Jiyoung | Hoffmann, Per | Ikram, Mohammad K | Jensen, Richard A | Jørgensen, Marit E | Jørgensen, Torben | Karaleftheri, Maria | Khor, Chiea C | Kirkpatrick, Andrea | Kraja, Aldi T | Kuusisto, Johanna | Lange, Ethan M | Lee, I T | Lee, Wen-Jane | Leong, Aaron | Liao, Jiemin | Liu, Chunyu | Liu, Yongmei | Lindgren, Cecilia M | Linneberg, Allan | Malerba, Giovanni | Mamakou, Vasiliki | Marouli, Eirini | Maruthur, Nisa M | Matchan, Angela | McKean-Cowdin, Roberta | McLeod, Olga | Metcalf, Ginger A | Mohlke, Karen L | Muzny, Donna M | Ntalla, Ioanna | Palmer, Nicholette D | Pasko, Dorota | Peter, Andreas | Rayner, Nigel W | Renström, Frida | Rice, Ken | Sala, Cinzia F | Sennblad, Bengt | Serafetinidis, Ioannis | Smith, Jennifer A | Soranzo, Nicole | Speliotes, Elizabeth K | Stahl, Eli A | Stirrups, Kathleen | Tentolouris, Nikos | Thanopoulou, Anastasia | Torres, Mina | Traglia, Michela | Tsafantakis, Emmanouil | Javad, Sundas | Yanek, Lisa R | Zengini, Eleni | Becker, Diane M | Bis, Joshua C | Brown, James B | Adrienne Cupples, L | Hansen, Torben | Ingelsson, Erik | Karter, Andrew J | Lorenzo, Carlos | Mathias, Rasika A | Norris, Jill M | Peloso, Gina M | Sheu, Wayne H.-H. | Toniolo, Daniela | Vaidya, Dhananjay | Varma, Rohit | Wagenknecht, Lynne E | Boeing, Heiner | Bottinger, Erwin P | Dedoussis, George | Deloukas, Panos | Ferrannini, Ele | Franco, Oscar H | Franks, Paul W | Gibbs, Richard A | Gudnason, Vilmundur | Hamsten, Anders | Harris, Tamara B | Hattersley, Andrew T | Hayward, Caroline | Hofman, Albert | Jansson, Jan-Håkan | Langenberg, Claudia | Launer, Lenore J | Levy, Daniel | Oostra, Ben A | O'Donnell, Christopher J | O'Rahilly, Stephen | Padmanabhan, Sandosh | Pankow, James S | Polasek, Ozren | Province, Michael A | Rich, Stephen S | Ridker, Paul M | Rudan, Igor | Schulze, Matthias B | Smith, Blair H | Uitterlinden, André G | Walker, Mark | Watkins, Hugh | Wong, Tien Y | Zeggini, Eleftheria | Laakso, Markku | Borecki, Ingrid B | Chasman, Daniel I | Pedersen, Oluf | Psaty, Bruce M | Shyong Tai, E | van Duijn, Cornelia M | Wareham, Nicholas J | Waterworth, Dawn M | Boerwinkle, Eric | Linda Kao, W H | Florez, Jose C | Loos, Ruth J.F. | Wilson, James G | Frayling, Timothy M | Siscovick, David S | Dupuis, Josée | Rotter, Jerome I | Meigs, James B | Scott, Robert A | Goodarzi, Mark O
Nature Communications  2015;6:5897.
Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF=1.4%) with lower FG (β=−0.09±0.01 mmol l−1, P=3.4 × 10−12), T2D risk (OR[95%CI]=0.86[0.76–0.96], P=0.010), early insulin secretion (β=−0.07±0.035 pmolinsulin mmolglucose−1, P=0.048), but higher 2-h glucose (β=0.16±0.05 mmol l−1, P=4.3 × 10−4). We identify a gene-based association with FG at G6PC2 (pSKAT=6.8 × 10−6) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF=20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (β=0.02±0.004 mmol l−1, P=1.3 × 10−8). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.
Both rare and common variants contribute to the aetiology of complex traits such as type 2 diabetes (T2D). Here, the authors examine the effect of coding variation on glycaemic traits and T2D, and identify low-frequency variation in GLP1R significantly associated with these traits.
doi:10.1038/ncomms6897
PMCID: PMC4311266  PMID: 25631608
10.  Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization 
Arking, Dan E. | Pulit, Sara L. | Crotti, Lia | van der Harst, Pim | Munroe, Patricia B. | Koopmann, Tamara T. | Sotoodehnia, Nona | Rossin, Elizabeth J. | Morley, Michael | Wang, Xinchen | Johnson, Andrew D. | Lundby, Alicia | Gudbjartsson, Daníel F. | Noseworthy, Peter A. | Eijgelsheim, Mark | Bradford, Yuki | Tarasov, Kirill V. | Dörr, Marcus | Müller-Nurasyid, Martina | Lahtinen, Annukka M. | Nolte, Ilja M. | Smith, Albert Vernon | Bis, Joshua C. | Isaacs, Aaron | Newhouse, Stephen J. | Evans, Daniel S. | Post, Wendy S. | Waggott, Daryl | Lyytikäinen, Leo-Pekka | Hicks, Andrew A. | Eisele, Lewin | Ellinghaus, David | Hayward, Caroline | Navarro, Pau | Ulivi, Sheila | Tanaka, Toshiko | Tester, David J. | Chatel, Stéphanie | Gustafsson, Stefan | Kumari, Meena | Morris, Richard W. | Naluai, Åsa T. | Padmanabhan, Sandosh | Kluttig, Alexander | Strohmer, Bernhard | Panayiotou, Andrie G. | Torres, Maria | Knoflach, Michael | Hubacek, Jaroslav A. | Slowikowski, Kamil | Raychaudhuri, Soumya | Kumar, Runjun D. | Harris, Tamara B. | Launer, Lenore J. | Shuldiner, Alan R. | Alonso, Alvaro | Bader, Joel S. | Ehret, Georg | Huang, Hailiang | Kao, W.H. Linda | Strait, James B. | Macfarlane, Peter W. | Brown, Morris | Caulfield, Mark J. | Samani, Nilesh J. | Kronenberg, Florian | Willeit, Johann | Smith, J. Gustav | Greiser, Karin H. | zu Schwabedissen, Henriette Meyer | Werdan, Karl | Carella, Massimo | Zelante, Leopoldo | Heckbert, Susan R. | Psaty, Bruce M. | Rotter, Jerome I. | Kolcic, Ivana | Polašek, Ozren | Wright, Alan F. | Griffin, Maura | Daly, Mark J. | Arnar, David O. | Hólm, Hilma | Thorsteinsdottir, Unnur | Denny, Joshua C. | Roden, Dan M. | Zuvich, Rebecca L. | Emilsson, Valur | Plump, Andrew S. | Larson, Martin G. | O'Donnell, Christopher J. | Yin, Xiaoyan | Bobbo, Marco | D'Adamo, Adamo P. | Iorio, Annamaria | Sinagra, Gianfranco | Carracedo, Angel | Cummings, Steven R. | Nalls, Michael A. | Jula, Antti | Kontula, Kimmo K. | Marjamaa, Annukka | Oikarinen, Lasse | Perola, Markus | Porthan, Kimmo | Erbel, Raimund | Hoffmann, Per | Jöckel, Karl-Heinz | Kälsch, Hagen | Nöthen, Markus M. | consortium, HRGEN | den Hoed, Marcel | Loos, Ruth J.F. | Thelle, Dag S. | Gieger, Christian | Meitinger, Thomas | Perz, Siegfried | Peters, Annette | Prucha, Hanna | Sinner, Moritz F. | Waldenberger, Melanie | de Boer, Rudolf A. | Franke, Lude | van der Vleuten, Pieter A. | Beckmann, Britt Maria | Martens, Eimo | Bardai, Abdennasser | Hofman, Nynke | Wilde, Arthur A.M. | Behr, Elijah R. | Dalageorgou, Chrysoula | Giudicessi, John R. | Medeiros-Domingo, Argelia | Barc, Julien | Kyndt, Florence | Probst, Vincent | Ghidoni, Alice | Insolia, Roberto | Hamilton, Robert M. | Scherer, Stephen W. | Brandimarto, Jeffrey | Margulies, Kenneth | Moravec, Christine E. | Fabiola Del, Greco M. | Fuchsberger, Christian | O'Connell, Jeffrey R. | Lee, Wai K. | Watt, Graham C.M. | Campbell, Harry | Wild, Sarah H. | El Mokhtari, Nour E. | Frey, Norbert | Asselbergs, Folkert W. | Leach, Irene Mateo | Navis, Gerjan | van den Berg, Maarten P. | van Veldhuisen, Dirk J. | Kellis, Manolis | Krijthe, Bouwe P. | Franco, Oscar H. | Hofman, Albert | Kors, Jan A. | Uitterlinden, André G. | Witteman, Jacqueline C.M. | Kedenko, Lyudmyla | Lamina, Claudia | Oostra, Ben A. | Abecasis, Gonçalo R. | Lakatta, Edward G. | Mulas, Antonella | Orrú, Marco | Schlessinger, David | Uda, Manuela | Markus, Marcello R.P. | Völker, Uwe | Snieder, Harold | Spector, Timothy D. | Ärnlöv, Johan | Lind, Lars | Sundström, Johan | Syvänen, Ann-Christine | Kivimaki, Mika | Kähönen, Mika | Mononen, Nina | Raitakari, Olli T. | Viikari, Jorma S. | Adamkova, Vera | Kiechl, Stefan | Brion, Maria | Nicolaides, Andrew N. | Paulweber, Bernhard | Haerting, Johannes | Dominiczak, Anna F. | Nyberg, Fredrik | Whincup, Peter H. | Hingorani, Aroon | Schott, Jean-Jacques | Bezzina, Connie R. | Ingelsson, Erik | Ferrucci, Luigi | Gasparini, Paolo | Wilson, James F. | Rudan, Igor | Franke, Andre | Mühleisen, Thomas W. | Pramstaller, Peter P. | Lehtimäki, Terho J. | Paterson, Andrew D. | Parsa, Afshin | Liu, Yongmei | van Duijn, Cornelia | Siscovick, David S. | Gudnason, Vilmundur | Jamshidi, Yalda | Salomaa, Veikko | Felix, Stephan B. | Sanna, Serena | Ritchie, Marylyn D. | Stricker, Bruno H. | Stefansson, Kari | Boyer, Laurie A. | Cappola, Thomas P. | Olsen, Jesper V. | Lage, Kasper | Schwartz, Peter J. | Kääb, Stefan | Chakravarti, Aravinda | Ackerman, Michael J. | Pfeufer, Arne | de Bakker, Paul I.W. | Newton-Cheh, Christopher
Nature genetics  2014;46(8):826-836.
The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal Mendelian Long QT Syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals we identified 35 common variant QT interval loci, that collectively explain ∼8-10% of QT variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 novel QT loci in 298 unrelated LQTS probands identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode for proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies novel candidate genes for ventricular arrhythmias, LQTS,and SCD.
doi:10.1038/ng.3014
PMCID: PMC4124521  PMID: 24952745
genome-wide association study; QT interval; Long QT Syndrome; sudden cardiac death; myocardial repolarization; arrhythmias
11.  The bigger picture of FTO – the first GWAS-identified obesity gene 
Nature reviews. Endocrinology  2013;10(1):51-61.
In 2007, SNPs that cluster in the first intron of FTO showed highly significant association in the first two genome-wide association studies for obesity traits of which the minor allele increases body mass index (BMI) by 0.39 kg/m2 (or 1,130 g in body weight) and risk of obesity by 1.20 fold. Subsequent studies convincingly confirmed this association across populations of diverse ancestry and throughout the life course, with the largest effect seen in young adulthood. The effect of FTO SNPs on obesity traits in African and Asian ancestry populations is similar or somewhat smaller than in European ancestry populations, but the BMI-increasing allele is substantially less prevalent in non-European ancestry populations. FTO SNPs do not influence physical activity levels, yet, in physically active individuals, FTO’s effect on obesity susceptibility is attenuated by ~30%. Growing evidence from epidemiological and functional studies suggests that FTO confers an increased risk of obesity through subtle changes in food intake and preference. In addition, recent emerging data now points to a role for FTO in the sensing of nutrients and the regulation of translation and growth. In this review, we explore the genetic epidemiology of FTO and discuss how its complex biology might link to the regulation of body weight.
doi:10.1038/nrendo.2013.227
PMCID: PMC4188449  PMID: 24247219
12.  Mendelian Randomization Studies Do Not Support a Causal Role for Reduced Circulating Adiponectin Levels in Insulin Resistance and Type 2 Diabetes 
Yaghootkar, Hanieh | Lamina, Claudia | Scott, Robert A. | Dastani, Zari | Hivert, Marie-France | Warren, Liling L. | Stancáková, Alena | Buxbaum, Sarah G. | Lyytikäinen, Leo-Pekka | Henneman, Peter | Wu, Ying | Cheung, Chloe Y.Y. | Pankow, James S. | Jackson, Anne U. | Gustafsson, Stefan | Zhao, Jing Hua | Ballantyne, Christie M. | Xie, Weijia | Bergman, Richard N. | Boehnke, Michael | el Bouazzaoui, Fatiha | Collins, Francis S. | Dunn, Sandra H. | Dupuis, Josee | Forouhi, Nita G. | Gillson, Christopher | Hattersley, Andrew T. | Hong, Jaeyoung | Kähönen, Mika | Kuusisto, Johanna | Kedenko, Lyudmyla | Kronenberg, Florian | Doria, Alessandro | Assimes, Themistocles L. | Ferrannini, Ele | Hansen, Torben | Hao, Ke | Häring, Hans | Knowles, Joshua W. | Lindgren, Cecilia M. | Nolan, John J. | Paananen, Jussi | Pedersen, Oluf | Quertermous, Thomas | Smith, Ulf | Lehtimäki, Terho | Liu, Ching-Ti | Loos, Ruth J.F. | McCarthy, Mark I. | Morris, Andrew D. | Vasan, Ramachandran S. | Spector, Tim D. | Teslovich, Tanya M. | Tuomilehto, Jaakko | van Dijk, Ko Willems | Viikari, Jorma S. | Zhu, Na | Langenberg, Claudia | Ingelsson, Erik | Semple, Robert K. | Sinaiko, Alan R. | Palmer, Colin N.A. | Walker, Mark | Lam, Karen S.L. | Paulweber, Bernhard | Mohlke, Karen L. | van Duijn, Cornelia | Raitakari, Olli T. | Bidulescu, Aurelian | Wareham, Nick J. | Laakso, Markku | Waterworth, Dawn M. | Lawlor, Debbie A. | Meigs, James B. | Richards, J. Brent | Frayling, Timothy M.
Diabetes  2013;62(10):3589-3598.
Adiponectin is strongly inversely associated with insulin resistance and type 2 diabetes, but its causal role remains controversial. We used a Mendelian randomization approach to test the hypothesis that adiponectin causally influences insulin resistance and type 2 diabetes. We used genetic variants at the ADIPOQ gene as instruments to calculate a regression slope between adiponectin levels and metabolic traits (up to 31,000 individuals) and a combination of instrumental variables and summary statistics–based genetic risk scores to test the associations with gold-standard measures of insulin sensitivity (2,969 individuals) and type 2 diabetes (15,960 case subjects and 64,731 control subjects). In conventional regression analyses, a 1-SD decrease in adiponectin levels was correlated with a 0.31-SD (95% CI 0.26–0.35) increase in fasting insulin, a 0.34-SD (0.30–0.38) decrease in insulin sensitivity, and a type 2 diabetes odds ratio (OR) of 1.75 (1.47–2.13). The instrumental variable analysis revealed no evidence of a causal association between genetically lower circulating adiponectin and higher fasting insulin (0.02 SD; 95% CI −0.07 to 0.11; N = 29,771), nominal evidence of a causal relationship with lower insulin sensitivity (−0.20 SD; 95% CI −0.38 to −0.02; N = 1,860), and no evidence of a relationship with type 2 diabetes (OR 0.94; 95% CI 0.75–1.19; N = 2,777 case subjects and 13,011 control subjects). Using the ADIPOQ summary statistics genetic risk scores, we found no evidence of an association between adiponectin-lowering alleles and insulin sensitivity (effect per weighted adiponectin-lowering allele: −0.03 SD; 95% CI −0.07 to 0.01; N = 2,969) or type 2 diabetes (OR per weighted adiponectin-lowering allele: 0.99; 95% CI 0.95–1.04; 15,960 case subjects vs. 64,731 control subjects). These results do not provide any consistent evidence that interventions aimed at increasing adiponectin levels will improve insulin sensitivity or risk of type 2 diabetes.
doi:10.2337/db13-0128
PMCID: PMC3781444  PMID: 23835345
13.  Hyperphagia: Current Concepts and Future Directions Proceedings of the 2nd International Conference on Hyperphagia 
Obesity (Silver Spring, Md.)  2014;22(0 1):S1-S17.
Objective
Hyperphagia is a central feature of inherited disorders (e.g., Prader–Willi Syndrome) in which obesity is a primary phenotypic component. Hyperphagia may also contribute to obesity as observed in the general population, thus raising the potential importance of common underlying mechanisms and treatments. Substantial gaps in understanding the molecular basis of inherited hyperphagia syndromes are present as are a lack of mechanistic of mechanistic targets that can serve as a basis for pharmacologic and behavioral treatments.
Design and Methods
International conference with 28 experts, including scientists and caregivers, providing presentations, panel discussions, and debates.
Results
The reviewed collective research and clinical experience provides a critical body of new and novel information on hyperphagia at levels ranging from molecular to population. Gaps in understanding and tools needed for additional research were identified.
Conclusions
This report documents the full scope of important topics reviewed at a comprehensive international meeting devoted to the topic of hyperphagia and identifies key areas for future funding and research.
doi:10.1002/oby.20646
PMCID: PMC4159941  PMID: 24574081
14.  Meta-Analysis of Genome-Wide Association Studies in African Americans Provides Insights into the Genetic Architecture of Type 2 Diabetes 
Ng, Maggie C. Y. | Shriner, Daniel | Chen, Brian H. | Li, Jiang | Chen, Wei-Min | Guo, Xiuqing | Liu, Jiankang | Bielinski, Suzette J. | Yanek, Lisa R. | Nalls, Michael A. | Comeau, Mary E. | Rasmussen-Torvik, Laura J. | Jensen, Richard A. | Evans, Daniel S. | Sun, Yan V. | An, Ping | Patel, Sanjay R. | Lu, Yingchang | Long, Jirong | Armstrong, Loren L. | Wagenknecht, Lynne | Yang, Lingyao | Snively, Beverly M. | Palmer, Nicholette D. | Mudgal, Poorva | Langefeld, Carl D. | Keene, Keith L. | Freedman, Barry I. | Mychaleckyj, Josyf C. | Nayak, Uma | Raffel, Leslie J. | Goodarzi, Mark O. | Chen, Y-D Ida | Taylor, Herman A. | Correa, Adolfo | Sims, Mario | Couper, David | Pankow, James S. | Boerwinkle, Eric | Adeyemo, Adebowale | Doumatey, Ayo | Chen, Guanjie | Mathias, Rasika A. | Vaidya, Dhananjay | Singleton, Andrew B. | Zonderman, Alan B. | Igo, Robert P. | Sedor, John R. | Kabagambe, Edmond K. | Siscovick, David S. | McKnight, Barbara | Rice, Kenneth | Liu, Yongmei | Hsueh, Wen-Chi | Zhao, Wei | Bielak, Lawrence F. | Kraja, Aldi | Province, Michael A. | Bottinger, Erwin P. | Gottesman, Omri | Cai, Qiuyin | Zheng, Wei | Blot, William J. | Lowe, William L. | Pacheco, Jennifer A. | Crawford, Dana C. | Grundberg, Elin | Rich, Stephen S. | Hayes, M. Geoffrey | Shu, Xiao-Ou | Loos, Ruth J. F. | Borecki, Ingrid B. | Peyser, Patricia A. | Cummings, Steven R. | Psaty, Bruce M. | Fornage, Myriam | Iyengar, Sudha K. | Evans, Michele K. | Becker, Diane M. | Kao, W. H. Linda | Wilson, James G. | Rotter, Jerome I. | Sale, Michèle M. | Liu, Simin | Rotimi, Charles N. | Bowden, Donald W.
PLoS Genetics  2014;10(8):e1004517.
Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15×10−94
Author Summary
Despite the higher prevalence of type 2 diabetes (T2D) in African Americans than in Europeans, recent genome-wide association studies (GWAS) were examined primarily in individuals of European ancestry. In this study, we performed meta-analysis of 17 GWAS in 8,284 cases and 15,543 controls to explore the genetic architecture of T2D in African Americans. Following replication in additional 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry, we identified two novel and three previous reported T2D loci reaching genome-wide significance. We also examined 158 loci previously reported to be associated with T2D or regulating glucose homeostasis. While 56% of these loci were shared between African Americans and the other populations, the strongest associations in African Americans are often found in nearby single nucleotide polymorphisms (SNPs) instead of the original SNPs reported in other populations due to differential genetic architecture across populations. Our results highlight the importance of performing genetic studies in non-European populations to fine map the causal genetic variants.
doi:10.1371/journal.pgen.1004517
PMCID: PMC4125087  PMID: 25102180
Hoggart, Clive J. | Venturini, Giulia | Mangino, Massimo | Gomez, Felicia | Ascari, Giulia | Zhao, Jing Hua | Teumer, Alexander | Winkler, Thomas W. | Tšernikova, Natalia | Luan, Jian'an | Mihailov, Evelin | Ehret, Georg B. | Zhang, Weihua | Lamparter, David | Esko, Tõnu | Macé, Aurelien | Rüeger, Sina | Bochud, Pierre-Yves | Barcella, Matteo | Dauvilliers, Yves | Benyamin, Beben | Evans, David M. | Hayward, Caroline | Lopez, Mary F. | Franke, Lude | Russo, Alessia | Heid, Iris M. | Salvi, Erika | Vendantam, Sailaja | Arking, Dan E. | Boerwinkle, Eric | Chambers, John C. | Fiorito, Giovanni | Grallert, Harald | Guarrera, Simonetta | Homuth, Georg | Huffman, Jennifer E. | Porteous, David | Moradpour, Darius | Iranzo, Alex | Hebebrand, Johannes | Kemp, John P. | Lammers, Gert J. | Aubert, Vincent | Heim, Markus H. | Martin, Nicholas G. | Montgomery, Grant W. | Peraita-Adrados, Rosa | Santamaria, Joan | Negro, Francesco | Schmidt, Carsten O. | Scott, Robert A. | Spector, Tim D. | Strauch, Konstantin | Völzke, Henry | Wareham, Nicholas J. | Yuan, Wei | Bell, Jordana T. | Chakravarti, Aravinda | Kooner, Jaspal S. | Peters, Annette | Matullo, Giuseppe | Wallaschofski, Henri | Whitfield, John B. | Paccaud, Fred | Vollenweider, Peter | Bergmann, Sven | Beckmann, Jacques S. | Tafti, Mehdi | Hastie, Nicholas D. | Cusi, Daniele | Bochud, Murielle | Frayling, Timothy M. | Metspalu, Andres | Jarvelin, Marjo-Riitta | Scherag, André | Smith, George Davey | Borecki, Ingrid B. | Rousson, Valentin | Hirschhorn, Joel N. | Rivolta, Carlo | Loos, Ruth J. F. | Kutalik, Zoltán
PLoS Genetics  2014;10(7):e1004508.
The phenotypic effect of some single nucleotide polymorphisms (SNPs) depends on their parental origin. We present a novel approach to detect parent-of-origin effects (POEs) in genome-wide genotype data of unrelated individuals. The method exploits increased phenotypic variance in the heterozygous genotype group relative to the homozygous groups. We applied the method to >56,000 unrelated individuals to search for POEs influencing body mass index (BMI). Six lead SNPs were carried forward for replication in five family-based studies (of ∼4,000 trios). Two SNPs replicated: the paternal rs2471083-C allele (located near the imprinted KCNK9 gene) and the paternal rs3091869-T allele (located near the SLC2A10 gene) increased BMI equally (beta = 0.11 (SD), P<0.0027) compared to the respective maternal alleles. Real-time PCR experiments of lymphoblastoid cell lines from the CEPH families showed that expression of both genes was dependent on parental origin of the SNPs alleles (P<0.01). Our scheme opens new opportunities to exploit GWAS data of unrelated individuals to identify POEs and demonstrates that they play an important role in adult obesity.
Author Summary
Large genetic association studies have revealed many genetic factors influencing common traits, such as body mass index (BMI). These studies assume that the effect of genetic variants is the same regardless of whether they are inherited from the mother or the father. In our study, we have developed a new approach that allows us to investigate variants whose impact depends on their parental origin (parent-of-origin effects), in unrelated samples when the parental origin cannot be inferred. This is feasible because at genetic markers at which such effects occur there is increased variability of the trait among individuals who inherited different genetic codes from their mother and their father compared to individuals who inherited the same genetic code from both parents. We applied this methodology to discover genetic markers with parent-of-origin effects (POEs) on BMI. This resulted in six candidate markers showing strong POE association. We then attempted to replicate the POE effects of these markers in family studies (where one can infer the parental origin of the inherited variants). Two of our candidates showed significant association in the family studies, the paternal and maternal effects of these markers were in the opposite direction.
doi:10.1371/journal.pgen.1004508
PMCID: PMC4117451  PMID: 25078964
Human Molecular Genetics  2013;22(12):2529-2538.
Laboratory red blood cell (RBC) measurements are clinically important, heritable and differ among ethnic groups. To identify genetic variants that contribute to RBC phenotypes in African Americans (AAs), we conducted a genome-wide association study in up to ∼16 500 AAs. The alpha-globin locus on chromosome 16pter [lead SNP rs13335629 in ITFG3 gene; P < 1E−13 for hemoglobin (Hgb), RBC count, mean corpuscular volume (MCV), MCH and MCHC] and the G6PD locus on Xq28 [lead SNP rs1050828; P < 1E − 13 for Hgb, hematocrit (Hct), MCV, RBC count and red cell distribution width (RDW)] were each associated with multiple RBC traits. At the alpha-globin region, both the common African 3.7 kb deletion and common single nucleotide polymorphisms (SNPs) appear to contribute independently to RBC phenotypes among AAs. In the 2p21 region, we identified a novel variant of PRKCE distinctly associated with Hct in AAs. In a genome-wide admixture mapping scan, local European ancestry at the 6p22 region containing HFE and LRRC16A was associated with higher Hgb. LRRC16A has been previously associated with the platelet count and mean platelet volume in AAs, but not with Hgb. Finally, we extended to AAs the findings of association of erythrocyte traits with several loci previously reported in Europeans and/or Asians, including CD164 and HBS1L-MYB. In summary, this large-scale genome-wide analysis in AAs has extended the importance of several RBC-associated genetic loci to AAs and identified allelic heterogeneity and pleiotropy at several previously known genetic loci associated with blood cell traits in AAs.
doi:10.1093/hmg/ddt087
PMCID: PMC3658166  PMID: 23446634
A small number of excellent papers on exercise genomics issues have been published in 2012. A new PYGM knock-in mouse model will provide opportunities to investigate the exercise intolerance and very low activity level of people with McArdle disease. New reports on variants in ACTN3 and ACE have increased the level of uncertainty regarding their true role in skeletal muscle metabolism and strength traits. The evidence continues to accumulate on the positive effects of regular physical activity on body mass index (BMI) or adiposity in individuals at risk of obesity as assessed by their FTO genotype or by the number of risk alleles they carry at multiple obesity-susceptibility loci. Serum levels of triglycerides and the risk of hypertriglyceridemia were shown to be influenced by the interactions between a single nucleotide polymorphism (SNP) in the NOS3 gene and physical activity level. Allelic variation at nine SNPs was shown to account for the heritable component of the changes in submaximal exercise heart rate induced by the HERITAGE Family Study exercise program. SNPs at the RBPMS, YWHAQ, and CREB1 loci were found to be particularly strong predictors of the changes in submaximal exercise heart rate. The 2012 review ends with comments on the importance of relying more on experimental data, the urgency of identifying panels of genomic predictors of the response to regular exercise and particularly of adverse responses, and the exciting opportunities offered by recent advances in our understanding of the global architecture of the human genome as reported by the ENCODE project.
doi:10.1249/MSS.0b013e31828b28a3
PMCID: PMC3640622  PMID: 23470294
Genetics; exercise training; physical activity; candidate genes; gene–exercise interaction; single nucleotide polymorphism; quantitative trait locus; genomic predictors
Willer, Cristen J. | Schmidt, Ellen M. | Sengupta, Sebanti | Peloso, Gina M. | Gustafsson, Stefan | Kanoni, Stavroula | Ganna, Andrea | Chen, Jin | Buchkovich, Martin L. | Mora, Samia | Beckmann, Jacques S. | Bragg-Gresham, Jennifer L. | Chang, Hsing-Yi | Demirkan, Ayşe | Den Hertog, Heleen M. | Do, Ron | Donnelly, Louise A. | Ehret, Georg B. | Esko, Tõnu | Feitosa, Mary F. | Ferreira, Teresa | Fischer, Krista | Fontanillas, Pierre | Fraser, Ross M. | Freitag, Daniel F. | Gurdasani, Deepti | Heikkilä, Kauko | Hyppönen, Elina | Isaacs, Aaron | Jackson, Anne U. | Johansson, Åsa | Johnson, Toby | Kaakinen, Marika | Kettunen, Johannes | Kleber, Marcus E. | Li, Xiaohui | Luan, Jian’an | Lyytikäinen, Leo-Pekka | Magnusson, Patrik K.E. | Mangino, Massimo | Mihailov, Evelin | Montasser, May E. | Müller-Nurasyid, Martina | Nolte, Ilja M. | O’Connell, Jeffrey R. | Palmer, Cameron D. | Perola, Markus | Petersen, Ann-Kristin | Sanna, Serena | Saxena, Richa | Service, Susan K. | Shah, Sonia | Shungin, Dmitry | Sidore, Carlo | Song, Ci | Strawbridge, Rona J. | Surakka, Ida | Tanaka, Toshiko | Teslovich, Tanya M. | Thorleifsson, Gudmar | Van den Herik, Evita G. | Voight, Benjamin F. | Volcik, Kelly A. | Waite, Lindsay L. | Wong, Andrew | Wu, Ying | Zhang, Weihua | Absher, Devin | Asiki, Gershim | Barroso, Inês | Been, Latonya F. | Bolton, Jennifer L. | Bonnycastle, Lori L | Brambilla, Paolo | Burnett, Mary S. | Cesana, Giancarlo | Dimitriou, Maria | Doney, Alex S.F. | Döring, Angela | Elliott, Paul | Epstein, Stephen E. | Ingi Eyjolfsson, Gudmundur | Gigante, Bruna | Goodarzi, Mark O. | Grallert, Harald | Gravito, Martha L. | Groves, Christopher J. | Hallmans, Göran | Hartikainen, Anna-Liisa | Hayward, Caroline | Hernandez, Dena | Hicks, Andrew A. | Holm, Hilma | Hung, Yi-Jen | Illig, Thomas | Jones, Michelle R. | Kaleebu, Pontiano | Kastelein, John J.P. | Khaw, Kay-Tee | Kim, Eric | Klopp, Norman | Komulainen, Pirjo | Kumari, Meena | Langenberg, Claudia | Lehtimäki, Terho | Lin, Shih-Yi | Lindström, Jaana | Loos, Ruth J.F. | Mach, François | McArdle, Wendy L | Meisinger, Christa | Mitchell, Braxton D. | Müller, Gabrielle | Nagaraja, Ramaiah | Narisu, Narisu | Nieminen, Tuomo V.M. | Nsubuga, Rebecca N. | Olafsson, Isleifur | Ong, Ken K. | Palotie, Aarno | Papamarkou, Theodore | Pomilla, Cristina | Pouta, Anneli | Rader, Daniel J. | Reilly, Muredach P. | Ridker, Paul M. | Rivadeneira, Fernando | Rudan, Igor | Ruokonen, Aimo | Samani, Nilesh | Scharnagl, Hubert | Seeley, Janet | Silander, Kaisa | Stančáková, Alena | Stirrups, Kathleen | Swift, Amy J. | Tiret, Laurence | Uitterlinden, Andre G. | van Pelt, L. Joost | Vedantam, Sailaja | Wainwright, Nicholas | Wijmenga, Cisca | Wild, Sarah H. | Willemsen, Gonneke | Wilsgaard, Tom | Wilson, James F. | Young, Elizabeth H. | Zhao, Jing Hua | Adair, Linda S. | Arveiler, Dominique | Assimes, Themistocles L. | Bandinelli, Stefania | Bennett, Franklyn | Bochud, Murielle | Boehm, Bernhard O. | Boomsma, Dorret I. | Borecki, Ingrid B. | Bornstein, Stefan R. | Bovet, Pascal | Burnier, Michel | Campbell, Harry | Chakravarti, Aravinda | Chambers, John C. | Chen, Yii-Der Ida | Collins, Francis S. | Cooper, Richard S. | Danesh, John | Dedoussis, George | de Faire, Ulf | Feranil, Alan B. | Ferrières, Jean | Ferrucci, Luigi | Freimer, Nelson B. | Gieger, Christian | Groop, Leif C. | Gudnason, Vilmundur | Gyllensten, Ulf | Hamsten, Anders | Harris, Tamara B. | Hingorani, Aroon | Hirschhorn, Joel N. | Hofman, Albert | Hovingh, G. Kees | Hsiung, Chao Agnes | Humphries, Steve E. | Hunt, Steven C. | Hveem, Kristian | Iribarren, Carlos | Järvelin, Marjo-Riitta | Jula, Antti | Kähönen, Mika | Kaprio, Jaakko | Kesäniemi, Antero | Kivimaki, Mika | Kooner, Jaspal S. | Koudstaal, Peter J. | Krauss, Ronald M. | Kuh, Diana | Kuusisto, Johanna | Kyvik, Kirsten O. | Laakso, Markku | Lakka, Timo A. | Lind, Lars | Lindgren, Cecilia M. | Martin, Nicholas G. | März, Winfried | McCarthy, Mark I. | McKenzie, Colin A. | Meneton, Pierre | Metspalu, Andres | Moilanen, Leena | Morris, Andrew D. | Munroe, Patricia B. | Njølstad, Inger | Pedersen, Nancy L. | Power, Chris | Pramstaller, Peter P. | Price, Jackie F. | Psaty, Bruce M. | Quertermous, Thomas | Rauramaa, Rainer | Saleheen, Danish | Salomaa, Veikko | Sanghera, Dharambir K. | Saramies, Jouko | Schwarz, Peter E.H. | Sheu, Wayne H-H | Shuldiner, Alan R. | Siegbahn, Agneta | Spector, Tim D. | Stefansson, Kari | Strachan, David P. | Tayo, Bamidele O. | Tremoli, Elena | Tuomilehto, Jaakko | Uusitupa, Matti | van Duijn, Cornelia M. | Vollenweider, Peter | Wallentin, Lars | Wareham, Nicholas J. | Whitfield, John B. | Wolffenbuttel, Bruce H.R. | Ordovas, Jose M. | Boerwinkle, Eric | Palmer, Colin N.A. | Thorsteinsdottir, Unnur | Chasman, Daniel I. | Rotter, Jerome I. | Franks, Paul W. | Ripatti, Samuli | Cupples, L. Adrienne | Sandhu, Manjinder S. | Rich, Stephen S. | Boehnke, Michael | Deloukas, Panos | Kathiresan, Sekar | Mohlke, Karen L. | Ingelsson, Erik | Abecasis, Gonçalo R.
Nature genetics  2013;45(11):10.1038/ng.2797.
Low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides, and total cholesterol are heritable, modifiable, risk factors for coronary artery disease. To identify new loci and refine known loci influencing these lipids, we examined 188,578 individuals using genome-wide and custom genotyping arrays. We identify and annotate 157 loci associated with lipid levels at P < 5×10−8, including 62 loci not previously associated with lipid levels in humans. Using dense genotyping in individuals of European, East Asian, South Asian, and African ancestry, we narrow association signals in 12 loci. We find that loci associated with blood lipids are often associated with cardiovascular and metabolic traits including coronary artery disease, type 2 diabetes, blood pressure, waist-hip ratio, and body mass index. Our results illustrate the value of genetic data from individuals of diverse ancestries and provide insights into biological mechanisms regulating blood lipids to guide future genetic, biological, and therapeutic research.
doi:10.1038/ng.2797
PMCID: PMC3838666  PMID: 24097068
Do, Ron | Willer, Cristen J. | Schmidt, Ellen M. | Sengupta, Sebanti | Gao, Chi | Peloso, Gina M. | Gustafsson, Stefan | Kanoni, Stavroula | Ganna, Andrea | Chen, Jin | Buchkovich, Martin L. | Mora, Samia | Beckmann, Jacques S. | Bragg-Gresham, Jennifer L. | Chang, Hsing-Yi | Demirkan, Ayşe | Den Hertog, Heleen M. | Donnelly, Louise A. | Ehret, Georg B. | Esko, Tõnu | Feitosa, Mary F. | Ferreira, Teresa | Fischer, Krista | Fontanillas, Pierre | Fraser, Ross M. | Freitag, Daniel F. | Gurdasani, Deepti | Heikkilä, Kauko | Hyppönen, Elina | Isaacs, Aaron | Jackson, Anne U. | Johansson, Åsa | Johnson, Toby | Kaakinen, Marika | Kettunen, Johannes | Kleber, Marcus E. | Li, Xiaohui | Luan, Jian'an | Lyytikäinen, Leo-Pekka | Magnusson, Patrik K.E. | Mangino, Massimo | Mihailov, Evelin | Montasser, May E. | Müller-Nurasyid, Martina | Nolte, Ilja M. | O'Connell, Jeffrey R. | Palmer, Cameron D. | Perola, Markus | Petersen, Ann-Kristin | Sanna, Serena | Saxena, Richa | Service, Susan K. | Shah, Sonia | Shungin, Dmitry | Sidore, Carlo | Song, Ci | Strawbridge, Rona J. | Surakka, Ida | Tanaka, Toshiko | Teslovich, Tanya M. | Thorleifsson, Gudmar | Van den Herik, Evita G. | Voight, Benjamin F. | Volcik, Kelly A. | Waite, Lindsay L. | Wong, Andrew | Wu, Ying | Zhang, Weihua | Absher, Devin | Asiki, Gershim | Barroso, Inês | Been, Latonya F. | Bolton, Jennifer L. | Bonnycastle, Lori L | Brambilla, Paolo | Burnett, Mary S. | Cesana, Giancarlo | Dimitriou, Maria | Doney, Alex S.F. | Döring, Angela | Elliott, Paul | Epstein, Stephen E. | Eyjolfsson, Gudmundur Ingi | Gigante, Bruna | Goodarzi, Mark O. | Grallert, Harald | Gravito, Martha L. | Groves, Christopher J. | Hallmans, Göran | Hartikainen, Anna-Liisa | Hayward, Caroline | Hernandez, Dena | Hicks, Andrew A. | Holm, Hilma | Hung, Yi-Jen | Illig, Thomas | Jones, Michelle R. | Kaleebu, Pontiano | Kastelein, John J.P. | Khaw, Kay-Tee | Kim, Eric | Klopp, Norman | Komulainen, Pirjo | Kumari, Meena | Langenberg, Claudia | Lehtimäki, Terho | Lin, Shih-Yi | Lindström, Jaana | Loos, Ruth J.F. | Mach, François | McArdle, Wendy L | Meisinger, Christa | Mitchell, Braxton D. | Müller, Gabrielle | Nagaraja, Ramaiah | Narisu, Narisu | Nieminen, Tuomo V.M. | Nsubuga, Rebecca N. | Olafsson, Isleifur | Ong, Ken K. | Palotie, Aarno | Papamarkou, Theodore | Pomilla, Cristina | Pouta, Anneli | Rader, Daniel J. | Reilly, Muredach P. | Ridker, Paul M. | Rivadeneira, Fernando | Rudan, Igor | Ruokonen, Aimo | Samani, Nilesh | Scharnagl, Hubert | Seeley, Janet | Silander, Kaisa | Stančáková, Alena | Stirrups, Kathleen | Swift, Amy J. | Tiret, Laurence | Uitterlinden, Andre G. | van Pelt, L. Joost | Vedantam, Sailaja | Wainwright, Nicholas | Wijmenga, Cisca | Wild, Sarah H. | Willemsen, Gonneke | Wilsgaard, Tom | Wilson, James F. | Young, Elizabeth H. | Zhao, Jing Hua | Adair, Linda S. | Arveiler, Dominique | Assimes, Themistocles L. | Bandinelli, Stefania | Bennett, Franklyn | Bochud, Murielle | Boehm, Bernhard O. | Boomsma, Dorret I. | Borecki, Ingrid B. | Bornstein, Stefan R. | Bovet, Pascal | Burnier, Michel | Campbell, Harry | Chakravarti, Aravinda | Chambers, John C. | Chen, Yii-Der Ida | Collins, Francis S. | Cooper, Richard S. | Danesh, John | Dedoussis, George | de Faire, Ulf | Feranil, Alan B. | Ferrières, Jean | Ferrucci, Luigi | Freimer, Nelson B. | Gieger, Christian | Groop, Leif C. | Gudnason, Vilmundur | Gyllensten, Ulf | Hamsten, Anders | Harris, Tamara B. | Hingorani, Aroon | Hirschhorn, Joel N. | Hofman, Albert | Hovingh, G. Kees | Hsiung, Chao Agnes | Humphries, Steve E. | Hunt, Steven C. | Hveem, Kristian | Iribarren, Carlos | Järvelin, Marjo-Riitta | Jula, Antti | Kähönen, Mika | Kaprio, Jaakko | Kesäniemi, Antero | Kivimaki, Mika | Kooner, Jaspal S. | Koudstaal, Peter J. | Krauss, Ronald M. | Kuh, Diana | Kuusisto, Johanna | Kyvik, Kirsten O. | Laakso, Markku | Lakka, Timo A. | Lind, Lars | Lindgren, Cecilia M. | Martin, Nicholas G. | März, Winfried | McCarthy, Mark I. | McKenzie, Colin A. | Meneton, Pierre | Metspalu, Andres | Moilanen, Leena | Morris, Andrew D. | Munroe, Patricia B. | Njølstad, Inger | Pedersen, Nancy L. | Power, Chris | Pramstaller, Peter P. | Price, Jackie F. | Psaty, Bruce M. | Quertermous, Thomas | Rauramaa, Rainer | Saleheen, Danish | Salomaa, Veikko | Sanghera, Dharambir K. | Saramies, Jouko | Schwarz, Peter E.H. | Sheu, Wayne H-H | Shuldiner, Alan R. | Siegbahn, Agneta | Spector, Tim D. | Stefansson, Kari | Strachan, David P. | Tayo, Bamidele O. | Tremoli, Elena | Tuomilehto, Jaakko | Uusitupa, Matti | van Duijn, Cornelia M. | Vollenweider, Peter | Wallentin, Lars | Wareham, Nicholas J. | Whitfield, John B. | Wolffenbuttel, Bruce H.R. | Altshuler, David | Ordovas, Jose M. | Boerwinkle, Eric | Palmer, Colin N.A. | Thorsteinsdottir, Unnur | Chasman, Daniel I. | Rotter, Jerome I. | Franks, Paul W. | Ripatti, Samuli | Cupples, L. Adrienne | Sandhu, Manjinder S. | Rich, Stephen S. | Boehnke, Michael | Deloukas, Panos | Mohlke, Karen L. | Ingelsson, Erik | Abecasis, Goncalo R. | Daly, Mark J. | Neale, Benjamin M. | Kathiresan, Sekar
Nature genetics  2013;45(11):1345-1352.
Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiologic studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids (P<5×10−8 for each) to examine the role of triglycerides on risk for CAD. First, we highlight loci associated with both low-density lipoprotein cholesterol (LDL-C) and triglycerides, and show that the direction and magnitude of both are factors in determining CAD risk. Second, we consider loci with only a strong magnitude of association with triglycerides and show that these loci are also associated with CAD. Finally, in a model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol, a polymorphism's strength of effect on triglycerides is correlated with the magnitude of its effect on CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for CAD.
doi:10.1038/ng.2795
PMCID: PMC3904346  PMID: 24097064
This review of the exercise genomics literature emphasizes the highest quality papers published in 2011. Given this emphasis on the best publications, only a small number of published papers are reviewed. One study found that physical activity levels were significantly lower in patients with mitochondrial DNA mutations compared to controls. A two-stage fine mapping follow-up of a previous linkage peak found strong associations between sequence variation in the activin A receptor, type-1B (ACVR1B) gene and knee extensor strength, with rs2854464 emerging as the most promising candidate polymorphism. The association of higher muscular strength with the rs2854464 A-allele was confirmed in two separate cohorts. A study using a combination of transcriptomic and genomic data identified a comprehensive map of the transcriptomic features important for aerobic exercise training-induced improvements in maximal oxygen consumption, but no genetic variants derived from candidate transcripts were associated with trainability. A large-scale de novo meta-analysis confirmed that the effect of sequence variation in the fat mass and obesity-associated (FTO) gene on the risk of obesity differs between sedentary and physically active adults. Evidence for gene-physical activity interactions on type 2 diabetes risk was found in two separate studies. A large study of women found that physical activity modified the effect of polymorphisms in the lipoprotein lipase (LPL), hepatic lipase (LIPC), and cholesteryl ester transfer protein (CETP) genes, identified in previous genome-wide association study (GWAS) reports, on HDL-C. We conclude that a strong exercise genomics corpus of evidence would not only translate into powerful genomic predictors but would also have a major impact on exercise biology and exercise behavior research.
doi:10.1249/MSS.0b013e31824f28b6
PMCID: PMC3994883  PMID: 22330029
Genetics; exercise training; candidate genes; gene-exercise interaction; single nucleotide polymorphism; quantitative trait locus; genomic predictors
PLoS Genetics  2014;10(4):e1004235.
Variants in the growth factor receptor-bound protein 10 (GRB10) gene were in a GWAS meta-analysis associated with reduced glucose-stimulated insulin secretion and increased risk of type 2 diabetes (T2D) if inherited from the father, but inexplicably reduced fasting glucose when inherited from the mother. GRB10 is a negative regulator of insulin signaling and imprinted in a parent-of-origin fashion in different tissues. GRB10 knock-down in human pancreatic islets showed reduced insulin and glucagon secretion, which together with changes in insulin sensitivity may explain the paradoxical reduction of glucose despite a decrease in insulin secretion. Together, these findings suggest that tissue-specific methylation and possibly imprinting of GRB10 can influence glucose metabolism and contribute to T2D pathogenesis. The data also emphasize the need in genetic studies to consider whether risk alleles are inherited from the mother or the father.
Author Summary
In this paper, we report the first large genome-wide association study in man for glucose-stimulated insulin secretion (GSIS) indices during an oral glucose tolerance test. We identify seven genetic loci and provide effects on GSIS for all previously reported glycemic traits and obesity genetic loci in a large-scale sample. We observe paradoxical effects of genetic variants in the growth factor receptor-bound protein 10 (GRB10) gene yielding both reduced GSIS and reduced fasting plasma glucose concentrations, specifically showing a parent-of-origin effect of GRB10 on lower fasting plasma glucose and enhanced insulin sensitivity for maternal and elevated glucose and decreased insulin sensitivity for paternal transmissions of the risk allele. We also observe tissue-specific differences in DNA methylation and allelic imbalance in expression of GRB10 in human pancreatic islets. We further disrupt GRB10 by shRNA in human islets, showing reduction of both insulin and glucagon expression and secretion. In conclusion, we provide evidence for complex regulation of GRB10 in human islets. Our data suggest that tissue-specific methylation and imprinting of GRB10 can influence glucose metabolism and contribute to T2D pathogenesis. The data also emphasize the need in genetic studies to consider whether risk alleles are inherited from the mother or the father.
doi:10.1371/journal.pgen.1004235
PMCID: PMC3974640  PMID: 24699409
This review of the exercise genomics literature emphasizes the strongest papers published in 2010 as defined by sample size, quality of phenotype measurements, quality of the exercise program or physical activity exposure, study design, adjustment for multiple testing, quality of genotyping, and other related study characteristics. One study on voluntary running wheel behavior was performed in 448 mice from 41 inbred strains. Several quantitative trait loci for running distance, speed, and duration were identified. Several studies on the alpha-3 actinin (ACTN3) R577X nonsense polymorphism and the angiotensin converting enzyme (ACE) I/D polymorphism were reported with no clear evidence for a joint effect, but the studies were generally underpowered. Skeletal muscle RNA abundance at baseline for 29 transcripts and 11 single nucleotide polymorphisms (SNPs) were both found to be predictive of the VO2max response to exercise training in one report from multiple laboratories. None of the 50 loci associated with adiposity traits is known to influence physical activity behavior. However, physical activity appears to reduce the obesity-promoting effects of at least 12 of these loci. Evidence continues to be strong for a role of gene-exercise interaction effects on the improvement in insulin sensitivity following exposure to regular exercise. SNPs in the cAMP responsive element binding position 1 (CREB1) gene were associated with training-induced heart rate response, in the C-reactive protein (CRP) gene with training-induced changes in left ventricular mass, and in the methylenetetrahydrofolate reductase (MTHFR) gene with carotid stiffness in low-fit individuals. We conclude that progress is being made but that high-quality research designs and replication studies with large sample sizes are urgently needed.
doi:10.1249/MSS.0b013e3182155d21
PMCID: PMC3951763  PMID: 21499051
Genetics; exercise training; candidate genes; gene-exercise interaction; single nucleotide polymorphism; quantitative trait locus; genomic predictors
PLoS ONE  2014;9(3):e91442.
Background/Objectives
Recent large-scale genome-wide association studies have identified multiple loci robustly associated with BMI, predominantly in European ancestry (EA) populations. However, associations of these loci with obesity and related traits have not been well described in Chinese Hans. This study aimed to investigate whether BMI-associated loci are, individually and collectively, associated with adiposity-related traits and obesity in Chinese Hans and whether these associations are modified by physical activity (PA).
Subjects/Methods
We genotyped 28 BMI-associated single nucleotide polymorphisms (SNPs) in a population-based cohort including 2,894 unrelated Han Chinese. Genetic risk score (GRS), EA and East Asian ancestry (EAA) GRSs were calculated by adding BMI-increasing alleles based on all, EA and EAA identified SNPs, respectively. Interactions of GRS and PA were examined by including the interaction-term in the regression model.
Results
Individually, 26 of 28 SNPs showed directionally consistent effects on BMI, and associations of four loci (TMEM18, PCSK1, BDNF and MAP2K5) reached nominal significance (P<0.05). The GRS was associated with increased BMI, trunk fat and body fat percentages; and increased risk of obesity and overweight (all P<0.05). Effect sizes (0.11 vs. 0.17 kg/m2) and explained variance (0.90% vs. 1.45%) of GRS for BMI tended to be lower in Chinese Hans than in Europeans. The EA GRS and EAA GRS were associated with 0.11 and 0.13 kg/m2 higher BMI, respectively. In addition, we found that PA attenuated the effect of the GRS on BMI (Pinteraction = 0.022).
Conclusions
Our observations suggest that the combined effect of obesity-susceptibility loci on BMI tended to be lower in Han Chinese than in EA. The overall, EA and EAA GRSs exert similar effects on adiposity traits. Genetic predisposition to increased BMI is attenuated by PA in this population of Han Chinese.
doi:10.1371/journal.pone.0091442
PMCID: PMC3953410  PMID: 24626232
Genes & Nutrition  2014;9(2):385.
We analysed single nucleotide polymorphisms (SNPs) tagging the genetic variability of six candidate genes (ATF6, FABP1, LPIN2, LPIN3, MLXIPL and MTTP) involved in the regulation of hepatic lipid metabolism, an important regulatory site of energy balance for associations with body mass index (BMI) and changes in weight and waist circumference. We also investigated effect modification by sex and dietary intake. Data of 6,287 individuals participating in the European prospective investigation into cancer and nutrition were included in the analyses. Data on weight and waist circumference were followed up for 6.9 ± 2.5 years. Association of 69 tagSNPs with baseline BMI and annual changes in weight as well as waist circumference were investigated using linear regression analysis. Interactions with sex, GI and intake of carbohydrates, fat as well as saturated, monounsaturated and polyunsaturated fatty acids were examined by including multiplicative SNP-covariate terms into the regression model. Neither baseline BMI nor annual weight or waist circumference changes were significantly associated with variation in the selected genes in the entire study population after correction for multiple testing. One SNP (rs1164) in LPIN2 appeared to be significantly interacting with sex (p = 0.0003) and was associated with greater annual weight gain in men (56.8 ± 23.7 g/year per allele, p = 0.02) than in women (−25.5 ± 19.8 g/year per allele, p = 0.2). With respect to gene–nutrient interaction, we could not detect any significant interactions when accounting for multiple testing. Therefore, out of our six candidate genes, LPIN2 may be considered as a candidate for further studies.
Electronic supplementary material
The online version of this article (doi:10.1007/s12263-014-0385-7) contains supplementary material, which is available to authorized users.
doi:10.1007/s12263-014-0385-7
PMCID: PMC3968289  PMID: 24496996
LPIN2; Obesity; Weight gain; Gene–diet interaction

Results 1-25 (110)