PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (78)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  Genetic Determinants of Long-Term Changes in Blood Lipid Concentrations: 10-Year Follow-Up of the GLACIER Study 
PLoS Genetics  2014;10(6):e1004388.
Recent genome-wide meta-analyses identified 157 loci associated with cross-sectional lipid traits. Here we tested whether these loci associate (singly and in trait-specific genetic risk scores [GRS]) with longitudinal changes in total cholesterol (TC) and triglyceride (TG) levels in a population-based prospective cohort from Northern Sweden (the GLACIER Study). We sought replication in a southern Swedish cohort (the MDC Study; N = 2,943). GLACIER Study participants (N = 6,064) were genotyped with the MetaboChip array. Up to 3,495 participants had 10-yr follow-up data available in the GLACIER Study. The TC- and TG-specific GRSs were strongly associated with change in lipid levels (β = 0.02 mmol/l per effect allele per decade follow-up, P = 2.0×10−11 for TC; β = 0.02 mmol/l per effect allele per decade follow-up, P = 5.0×10−5 for TG). In individual SNP analysis, one TC locus, apolipoprotein E (APOE) rs4420638 (β = 0.12 mmol/l per effect allele per decade follow-up, P = 2.0×10−5), and two TG loci, tribbles pseudokinase 1 (TRIB1) rs2954029 (β = 0.09 mmol/l per effect allele per decade follow-up, P = 5.1×10−4) and apolipoprotein A-I (APOA1) rs6589564 (β = 0.31 mmol/l per effect allele per decade follow-up, P = 1.4×10−8), remained significantly associated with longitudinal changes for the respective traits after correction for multiple testing. An additional 12 loci were nominally associated with TC or TG changes. In replication analyses, the APOE rs4420638, TRIB1 rs2954029, and APOA1 rs6589564 associations were confirmed (P≤0.001). In summary, trait-specific GRSs are robustly associated with 10-yr changes in lipid levels and three individual SNPs were strongly associated with 10-yr changes in lipid levels.
Author Summary
Although large cross-sectional studies have proven highly successful in identifying gene variants related to lipid levels and other cardiometabolic traits, very few examples of well-designed longitudinal studies exist where associations between genotypes and long-term changes in lipids have been assessed. Here we undertook analyses in the GLACIER Study to determine whether the 157 previously identified lipid-associated genes variants associate with changes in blood lipid levels over 10-yr follow-up. We identified a variant in APOE that is robustly associated with total cholesterol change and two variants in TRIB1 and APOA1 respectively that are robustly associated with triglyceride change. We replicated these findings in a second Swedish cohort (the MDC Study). The identified genes had previously been associated with cardiovascular traits such as myocardial infarction or coronary heart disease; hence, these novel lipid associations provide additional insight into the pathogenesis of atherosclerotic heart and large vessel disease. By incorporating all 157 established variants into gene scores, we also observed strong associations with 10-yr lipid changes, illustrating the polygenic nature of blood lipid deterioration.
doi:10.1371/journal.pgen.1004388
PMCID: PMC4055682  PMID: 24922540
2.  Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake1234 
Background: Macronutrient intake varies substantially between individuals, and there is evidence that this variation is partly accounted for by genetic variants.
Objective: The objective of the study was to identify common genetic variants that are associated with macronutrient intake.
Design: We performed 2-stage genome-wide association (GWA) meta-analysis of macronutrient intake in populations of European descent. Macronutrients were assessed by using food-frequency questionnaires and analyzed as percentages of total energy consumption from total fat, protein, and carbohydrate. From the discovery GWA (n = 38,360), 35 independent loci associated with macronutrient intake at P < 5 × 10−6 were identified and taken forward to replication in 3 additional cohorts (n = 33,533) from the DietGen Consortium. For one locus, fat mass obesity-associated protein (FTO), cohorts with Illumina MetaboChip genotype data (n = 7724) provided additional replication data.
Results: A variant in the chromosome 19 locus (rs838145) was associated with higher carbohydrate (β ± SE: 0.25 ± 0.04%; P = 1.68 × 10−8) and lower fat (β ± SE: −0.21 ± 0.04%; P = 1.57 × 10−9) consumption. A candidate gene in this region, fibroblast growth factor 21 (FGF21), encodes a fibroblast growth factor involved in glucose and lipid metabolism. The variants in this locus were associated with circulating FGF21 protein concentrations (P < 0.05) but not mRNA concentrations in blood or brain. The body mass index (BMI)–increasing allele of the FTO variant (rs1421085) was associated with higher protein intake (β ± SE: 0.10 ± 0.02%; P = 9.96 × 10−10), independent of BMI (after adjustment for BMI, β ± SE: 0.08 ± 0.02%; P = 3.15 × 10−7).
Conclusion: Our results indicate that variants in genes involved in nutrient metabolism and obesity are associated with macronutrient consumption in humans. Trials related to this study were registered at clinicaltrials.gov as NCT00005131 (Atherosclerosis Risk in Communities), NCT00005133 (Cardiovascular Health Study), NCT00005136 (Family Heart Study), NCT00005121 (Framingham Heart Study), NCT00083369 (Genetic and Environmental Determinants of Triglycerides), NCT01331512 (InCHIANTI Study), and NCT00005487 (Multi-Ethnic Study of Atherosclerosis).
doi:10.3945/ajcn.112.052183
PMCID: PMC3652928  PMID: 23636237
3.  Gene-Lifestyle Interaction and Type 2 Diabetes: The EPIC InterAct Case-Cohort Study 
PLoS Medicine  2014;11(5):e1001647.
In this study, Wareham and colleagues quantified the combined effects of genetic and lifestyle factors on risk of T2D in order to inform strategies for prevention. The authors found that the relative effect of a type 2 diabetes genetic risk score is greater in younger and leaner participants, and the high absolute risk associated with obesity at any level of genetic risk highlights the importance of universal rather than targeted approaches to lifestyle intervention.
Please see later in the article for the Editors' Summary
Background
Understanding of the genetic basis of type 2 diabetes (T2D) has progressed rapidly, but the interactions between common genetic variants and lifestyle risk factors have not been systematically investigated in studies with adequate statistical power. Therefore, we aimed to quantify the combined effects of genetic and lifestyle factors on risk of T2D in order to inform strategies for prevention.
Methods and Findings
The InterAct study includes 12,403 incident T2D cases and a representative sub-cohort of 16,154 individuals from a cohort of 340,234 European participants with 3.99 million person-years of follow-up. We studied the combined effects of an additive genetic T2D risk score and modifiable and non-modifiable risk factors using Prentice-weighted Cox regression and random effects meta-analysis methods. The effect of the genetic score was significantly greater in younger individuals (p for interaction  = 1.20×10−4). Relative genetic risk (per standard deviation [4.4 risk alleles]) was also larger in participants who were leaner, both in terms of body mass index (p for interaction  = 1.50×10−3) and waist circumference (p for interaction  = 7.49×10−9). Examination of absolute risks by strata showed the importance of obesity for T2D risk. The 10-y cumulative incidence of T2D rose from 0.25% to 0.89% across extreme quartiles of the genetic score in normal weight individuals, compared to 4.22% to 7.99% in obese individuals. We detected no significant interactions between the genetic score and sex, diabetes family history, physical activity, or dietary habits assessed by a Mediterranean diet score.
Conclusions
The relative effect of a T2D genetic risk score is greater in younger and leaner participants. However, this sub-group is at low absolute risk and would not be a logical target for preventive interventions. The high absolute risk associated with obesity at any level of genetic risk highlights the importance of universal rather than targeted approaches to lifestyle intervention.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Worldwide, more than 380 million people currently have diabetes, and the condition is becoming increasingly common. Diabetes is characterized by high levels of glucose (sugar) in the blood. Blood sugar levels are usually controlled by insulin, a hormone released by the pancreas after meals (digestion of food produces glucose). In people with type 2 diabetes (the commonest type of diabetes), blood sugar control fails because the fat and muscle cells that normally respond to insulin by removing excess sugar from the blood become less responsive to insulin. Type 2 diabetes can often initially be controlled with diet and exercise (lifestyle changes) and with antidiabetic drugs such as metformin and sulfonylureas, but patients may eventually need insulin injections to control their blood sugar levels. Long-term complications of diabetes, which include an increased risk of heart disease and stroke, reduce the life expectancy of people with diabetes by about ten years compared to people without diabetes.
Why Was This Study Done?
Type 2 diabetes is thought to originate from the interplay between genetic and lifestyle factors. But although rapid progress is being made in understanding the genetic basis of type 2 diabetes, it is not known whether the consequences of adverse lifestyles (for example, being overweight and/or physically inactive) differ according to an individual's underlying genetic risk of diabetes. It is important to investigate this question to inform strategies for prevention. If, for example, obese individuals with a high level of genetic risk have a higher risk of developing diabetes than obese individuals with a low level of genetic risk, then preventative strategies that target lifestyle interventions to obese individuals with a high genetic risk would be more effective than strategies that target all obese individuals. In this case-cohort study, researchers from the InterAct consortium quantify the combined effects of genetic and lifestyle factors on the risk of type 2 diabetes. A case-cohort study measures exposure to potential risk factors in a group (cohort) of people and compares the occurrence of these risk factors in people who later develop the disease with those who remain disease free.
What Did the Researchers Do and Find?
The InterAct study involves 12,403 middle-aged individuals who developed type 2 diabetes after enrollment (incident cases) into the European Prospective Investigation into Cancer and Nutrition (EPIC) and a sub-cohort of 16,154 EPIC participants. The researchers calculated a genetic type 2 diabetes risk score for most of these individuals by determining which of 49 gene variants associated with type 2 diabetes each person carried, and collected baseline information about exposure to lifestyle risk factors for type 2 diabetes. They then used various statistical approaches to examine the combined effects of the genetic risk score and lifestyle factors on diabetes development. The effect of the genetic score was greater in younger individuals than in older individuals and greater in leaner participants than in participants with larger amounts of body fat. The absolute risk of type 2 diabetes, expressed as the ten-year cumulative incidence of type 2 diabetes (the percentage of participants who developed diabetes over a ten-year period) increased with increasing genetic score in normal weight individuals from 0.25% in people with the lowest genetic risk scores to 0.89% in those with the highest scores; in obese people, the ten-year cumulative incidence rose from 4.22% to 7.99% with increasing genetic risk score.
What Do These Findings Mean?
These findings show that in this middle-aged cohort, the relative association with type 2 diabetes of a genetic risk score comprised of a large number of gene variants is greatest in individuals who are younger and leaner at baseline. This finding may in part reflect the methods used to originally identify gene variants associated with type 2 diabetes, and future investigations that include other genetic variants, other lifestyle factors, and individuals living in other settings should be undertaken to confirm this finding. Importantly, however, this study shows that young, lean individuals with a high genetic risk score have a low absolute risk of developing type 2 diabetes. Thus, this sub-group of individuals is not a logical target for preventative interventions. Rather, suggest the researchers, the high absolute risk of type 2 diabetes associated with obesity at any level of genetic risk highlights the importance of universal rather than targeted approaches to lifestyle intervention.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001647.
The US National Diabetes Information Clearinghouse provides information about diabetes for patients, health-care professionals and the general public, including detailed information on diabetes prevention (in English and Spanish)
The UK National Health Service Choices website provides information for patients and carers about type 2 diabetes and about living with diabetes; it also provides people's stories about diabetes
The charity Diabetes UK provides detailed information for patients and carers in several languages, including information on healthy lifestyles for people with diabetes
The UK-based non-profit organization Healthtalkonline has interviews with people about their experiences of diabetes
The Genetic Landscape of Diabetes is published by the US National Center for Biotechnology Information
More information on the InterAct study is available
MedlinePlus provides links to further resources and advice about diabetes and diabetes prevention (in English and Spanish)
doi:10.1371/journal.pmed.1001647
PMCID: PMC4028183  PMID: 24845081
4.  Discovery and Refinement of Loci Associated with Lipid Levels 
Willer, Cristen J. | Schmidt, Ellen M. | Sengupta, Sebanti | Peloso, Gina M. | Gustafsson, Stefan | Kanoni, Stavroula | Ganna, Andrea | Chen, Jin | Buchkovich, Martin L. | Mora, Samia | Beckmann, Jacques S. | Bragg-Gresham, Jennifer L. | Chang, Hsing-Yi | Demirkan, Ayşe | Den Hertog, Heleen M. | Do, Ron | Donnelly, Louise A. | Ehret, Georg B. | Esko, Tõnu | Feitosa, Mary F. | Ferreira, Teresa | Fischer, Krista | Fontanillas, Pierre | Fraser, Ross M. | Freitag, Daniel F. | Gurdasani, Deepti | Heikkilä, Kauko | Hyppönen, Elina | Isaacs, Aaron | Jackson, Anne U. | Johansson, Åsa | Johnson, Toby | Kaakinen, Marika | Kettunen, Johannes | Kleber, Marcus E. | Li, Xiaohui | Luan, Jian’an | Lyytikäinen, Leo-Pekka | Magnusson, Patrik K.E. | Mangino, Massimo | Mihailov, Evelin | Montasser, May E. | Müller-Nurasyid, Martina | Nolte, Ilja M. | O’Connell, Jeffrey R. | Palmer, Cameron D. | Perola, Markus | Petersen, Ann-Kristin | Sanna, Serena | Saxena, Richa | Service, Susan K. | Shah, Sonia | Shungin, Dmitry | Sidore, Carlo | Song, Ci | Strawbridge, Rona J. | Surakka, Ida | Tanaka, Toshiko | Teslovich, Tanya M. | Thorleifsson, Gudmar | Van den Herik, Evita G. | Voight, Benjamin F. | Volcik, Kelly A. | Waite, Lindsay L. | Wong, Andrew | Wu, Ying | Zhang, Weihua | Absher, Devin | Asiki, Gershim | Barroso, Inês | Been, Latonya F. | Bolton, Jennifer L. | Bonnycastle, Lori L | Brambilla, Paolo | Burnett, Mary S. | Cesana, Giancarlo | Dimitriou, Maria | Doney, Alex S.F. | Döring, Angela | Elliott, Paul | Epstein, Stephen E. | Ingi Eyjolfsson, Gudmundur | Gigante, Bruna | Goodarzi, Mark O. | Grallert, Harald | Gravito, Martha L. | Groves, Christopher J. | Hallmans, Göran | Hartikainen, Anna-Liisa | Hayward, Caroline | Hernandez, Dena | Hicks, Andrew A. | Holm, Hilma | Hung, Yi-Jen | Illig, Thomas | Jones, Michelle R. | Kaleebu, Pontiano | Kastelein, John J.P. | Khaw, Kay-Tee | Kim, Eric | Klopp, Norman | Komulainen, Pirjo | Kumari, Meena | Langenberg, Claudia | Lehtimäki, Terho | Lin, Shih-Yi | Lindström, Jaana | Loos, Ruth J.F. | Mach, François | McArdle, Wendy L | Meisinger, Christa | Mitchell, Braxton D. | Müller, Gabrielle | Nagaraja, Ramaiah | Narisu, Narisu | Nieminen, Tuomo V.M. | Nsubuga, Rebecca N. | Olafsson, Isleifur | Ong, Ken K. | Palotie, Aarno | Papamarkou, Theodore | Pomilla, Cristina | Pouta, Anneli | Rader, Daniel J. | Reilly, Muredach P. | Ridker, Paul M. | Rivadeneira, Fernando | Rudan, Igor | Ruokonen, Aimo | Samani, Nilesh | Scharnagl, Hubert | Seeley, Janet | Silander, Kaisa | Stančáková, Alena | Stirrups, Kathleen | Swift, Amy J. | Tiret, Laurence | Uitterlinden, Andre G. | van Pelt, L. Joost | Vedantam, Sailaja | Wainwright, Nicholas | Wijmenga, Cisca | Wild, Sarah H. | Willemsen, Gonneke | Wilsgaard, Tom | Wilson, James F. | Young, Elizabeth H. | Zhao, Jing Hua | Adair, Linda S. | Arveiler, Dominique | Assimes, Themistocles L. | Bandinelli, Stefania | Bennett, Franklyn | Bochud, Murielle | Boehm, Bernhard O. | Boomsma, Dorret I. | Borecki, Ingrid B. | Bornstein, Stefan R. | Bovet, Pascal | Burnier, Michel | Campbell, Harry | Chakravarti, Aravinda | Chambers, John C. | Chen, Yii-Der Ida | Collins, Francis S. | Cooper, Richard S. | Danesh, John | Dedoussis, George | de Faire, Ulf | Feranil, Alan B. | Ferrières, Jean | Ferrucci, Luigi | Freimer, Nelson B. | Gieger, Christian | Groop, Leif C. | Gudnason, Vilmundur | Gyllensten, Ulf | Hamsten, Anders | Harris, Tamara B. | Hingorani, Aroon | Hirschhorn, Joel N. | Hofman, Albert | Hovingh, G. Kees | Hsiung, Chao Agnes | Humphries, Steve E. | Hunt, Steven C. | Hveem, Kristian | Iribarren, Carlos | Järvelin, Marjo-Riitta | Jula, Antti | Kähönen, Mika | Kaprio, Jaakko | Kesäniemi, Antero | Kivimaki, Mika | Kooner, Jaspal S. | Koudstaal, Peter J. | Krauss, Ronald M. | Kuh, Diana | Kuusisto, Johanna | Kyvik, Kirsten O. | Laakso, Markku | Lakka, Timo A. | Lind, Lars | Lindgren, Cecilia M. | Martin, Nicholas G. | März, Winfried | McCarthy, Mark I. | McKenzie, Colin A. | Meneton, Pierre | Metspalu, Andres | Moilanen, Leena | Morris, Andrew D. | Munroe, Patricia B. | Njølstad, Inger | Pedersen, Nancy L. | Power, Chris | Pramstaller, Peter P. | Price, Jackie F. | Psaty, Bruce M. | Quertermous, Thomas | Rauramaa, Rainer | Saleheen, Danish | Salomaa, Veikko | Sanghera, Dharambir K. | Saramies, Jouko | Schwarz, Peter E.H. | Sheu, Wayne H-H | Shuldiner, Alan R. | Siegbahn, Agneta | Spector, Tim D. | Stefansson, Kari | Strachan, David P. | Tayo, Bamidele O. | Tremoli, Elena | Tuomilehto, Jaakko | Uusitupa, Matti | van Duijn, Cornelia M. | Vollenweider, Peter | Wallentin, Lars | Wareham, Nicholas J. | Whitfield, John B. | Wolffenbuttel, Bruce H.R. | Ordovas, Jose M. | Boerwinkle, Eric | Palmer, Colin N.A. | Thorsteinsdottir, Unnur | Chasman, Daniel I. | Rotter, Jerome I. | Franks, Paul W. | Ripatti, Samuli | Cupples, L. Adrienne | Sandhu, Manjinder S. | Rich, Stephen S. | Boehnke, Michael | Deloukas, Panos | Kathiresan, Sekar | Mohlke, Karen L. | Ingelsson, Erik | Abecasis, Gonçalo R.
Nature genetics  2013;45(11):10.1038/ng.2797.
Low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides, and total cholesterol are heritable, modifiable, risk factors for coronary artery disease. To identify new loci and refine known loci influencing these lipids, we examined 188,578 individuals using genome-wide and custom genotyping arrays. We identify and annotate 157 loci associated with lipid levels at P < 5×10−8, including 62 loci not previously associated with lipid levels in humans. Using dense genotyping in individuals of European, East Asian, South Asian, and African ancestry, we narrow association signals in 12 loci. We find that loci associated with blood lipids are often associated with cardiovascular and metabolic traits including coronary artery disease, type 2 diabetes, blood pressure, waist-hip ratio, and body mass index. Our results illustrate the value of genetic data from individuals of diverse ancestries and provide insights into biological mechanisms regulating blood lipids to guide future genetic, biological, and therapeutic research.
doi:10.1038/ng.2797
PMCID: PMC3838666  PMID: 24097068
5.  Common variants associated with plasma triglycerides and risk for coronary artery disease 
Do, Ron | Willer, Cristen J. | Schmidt, Ellen M. | Sengupta, Sebanti | Gao, Chi | Peloso, Gina M. | Gustafsson, Stefan | Kanoni, Stavroula | Ganna, Andrea | Chen, Jin | Buchkovich, Martin L. | Mora, Samia | Beckmann, Jacques S. | Bragg-Gresham, Jennifer L. | Chang, Hsing-Yi | Demirkan, Ayşe | Den Hertog, Heleen M. | Donnelly, Louise A. | Ehret, Georg B. | Esko, Tõnu | Feitosa, Mary F. | Ferreira, Teresa | Fischer, Krista | Fontanillas, Pierre | Fraser, Ross M. | Freitag, Daniel F. | Gurdasani, Deepti | Heikkilä, Kauko | Hyppönen, Elina | Isaacs, Aaron | Jackson, Anne U. | Johansson, Åsa | Johnson, Toby | Kaakinen, Marika | Kettunen, Johannes | Kleber, Marcus E. | Li, Xiaohui | Luan, Jian'an | Lyytikäinen, Leo-Pekka | Magnusson, Patrik K.E. | Mangino, Massimo | Mihailov, Evelin | Montasser, May E. | Müller-Nurasyid, Martina | Nolte, Ilja M. | O'Connell, Jeffrey R. | Palmer, Cameron D. | Perola, Markus | Petersen, Ann-Kristin | Sanna, Serena | Saxena, Richa | Service, Susan K. | Shah, Sonia | Shungin, Dmitry | Sidore, Carlo | Song, Ci | Strawbridge, Rona J. | Surakka, Ida | Tanaka, Toshiko | Teslovich, Tanya M. | Thorleifsson, Gudmar | Van den Herik, Evita G. | Voight, Benjamin F. | Volcik, Kelly A. | Waite, Lindsay L. | Wong, Andrew | Wu, Ying | Zhang, Weihua | Absher, Devin | Asiki, Gershim | Barroso, Inês | Been, Latonya F. | Bolton, Jennifer L. | Bonnycastle, Lori L | Brambilla, Paolo | Burnett, Mary S. | Cesana, Giancarlo | Dimitriou, Maria | Doney, Alex S.F. | Döring, Angela | Elliott, Paul | Epstein, Stephen E. | Eyjolfsson, Gudmundur Ingi | Gigante, Bruna | Goodarzi, Mark O. | Grallert, Harald | Gravito, Martha L. | Groves, Christopher J. | Hallmans, Göran | Hartikainen, Anna-Liisa | Hayward, Caroline | Hernandez, Dena | Hicks, Andrew A. | Holm, Hilma | Hung, Yi-Jen | Illig, Thomas | Jones, Michelle R. | Kaleebu, Pontiano | Kastelein, John J.P. | Khaw, Kay-Tee | Kim, Eric | Klopp, Norman | Komulainen, Pirjo | Kumari, Meena | Langenberg, Claudia | Lehtimäki, Terho | Lin, Shih-Yi | Lindström, Jaana | Loos, Ruth J.F. | Mach, François | McArdle, Wendy L | Meisinger, Christa | Mitchell, Braxton D. | Müller, Gabrielle | Nagaraja, Ramaiah | Narisu, Narisu | Nieminen, Tuomo V.M. | Nsubuga, Rebecca N. | Olafsson, Isleifur | Ong, Ken K. | Palotie, Aarno | Papamarkou, Theodore | Pomilla, Cristina | Pouta, Anneli | Rader, Daniel J. | Reilly, Muredach P. | Ridker, Paul M. | Rivadeneira, Fernando | Rudan, Igor | Ruokonen, Aimo | Samani, Nilesh | Scharnagl, Hubert | Seeley, Janet | Silander, Kaisa | Stančáková, Alena | Stirrups, Kathleen | Swift, Amy J. | Tiret, Laurence | Uitterlinden, Andre G. | van Pelt, L. Joost | Vedantam, Sailaja | Wainwright, Nicholas | Wijmenga, Cisca | Wild, Sarah H. | Willemsen, Gonneke | Wilsgaard, Tom | Wilson, James F. | Young, Elizabeth H. | Zhao, Jing Hua | Adair, Linda S. | Arveiler, Dominique | Assimes, Themistocles L. | Bandinelli, Stefania | Bennett, Franklyn | Bochud, Murielle | Boehm, Bernhard O. | Boomsma, Dorret I. | Borecki, Ingrid B. | Bornstein, Stefan R. | Bovet, Pascal | Burnier, Michel | Campbell, Harry | Chakravarti, Aravinda | Chambers, John C. | Chen, Yii-Der Ida | Collins, Francis S. | Cooper, Richard S. | Danesh, John | Dedoussis, George | de Faire, Ulf | Feranil, Alan B. | Ferrières, Jean | Ferrucci, Luigi | Freimer, Nelson B. | Gieger, Christian | Groop, Leif C. | Gudnason, Vilmundur | Gyllensten, Ulf | Hamsten, Anders | Harris, Tamara B. | Hingorani, Aroon | Hirschhorn, Joel N. | Hofman, Albert | Hovingh, G. Kees | Hsiung, Chao Agnes | Humphries, Steve E. | Hunt, Steven C. | Hveem, Kristian | Iribarren, Carlos | Järvelin, Marjo-Riitta | Jula, Antti | Kähönen, Mika | Kaprio, Jaakko | Kesäniemi, Antero | Kivimaki, Mika | Kooner, Jaspal S. | Koudstaal, Peter J. | Krauss, Ronald M. | Kuh, Diana | Kuusisto, Johanna | Kyvik, Kirsten O. | Laakso, Markku | Lakka, Timo A. | Lind, Lars | Lindgren, Cecilia M. | Martin, Nicholas G. | März, Winfried | McCarthy, Mark I. | McKenzie, Colin A. | Meneton, Pierre | Metspalu, Andres | Moilanen, Leena | Morris, Andrew D. | Munroe, Patricia B. | Njølstad, Inger | Pedersen, Nancy L. | Power, Chris | Pramstaller, Peter P. | Price, Jackie F. | Psaty, Bruce M. | Quertermous, Thomas | Rauramaa, Rainer | Saleheen, Danish | Salomaa, Veikko | Sanghera, Dharambir K. | Saramies, Jouko | Schwarz, Peter E.H. | Sheu, Wayne H-H | Shuldiner, Alan R. | Siegbahn, Agneta | Spector, Tim D. | Stefansson, Kari | Strachan, David P. | Tayo, Bamidele O. | Tremoli, Elena | Tuomilehto, Jaakko | Uusitupa, Matti | van Duijn, Cornelia M. | Vollenweider, Peter | Wallentin, Lars | Wareham, Nicholas J. | Whitfield, John B. | Wolffenbuttel, Bruce H.R. | Altshuler, David | Ordovas, Jose M. | Boerwinkle, Eric | Palmer, Colin N.A. | Thorsteinsdottir, Unnur | Chasman, Daniel I. | Rotter, Jerome I. | Franks, Paul W. | Ripatti, Samuli | Cupples, L. Adrienne | Sandhu, Manjinder S. | Rich, Stephen S. | Boehnke, Michael | Deloukas, Panos | Mohlke, Karen L. | Ingelsson, Erik | Abecasis, Goncalo R. | Daly, Mark J. | Neale, Benjamin M. | Kathiresan, Sekar
Nature genetics  2013;45(11):1345-1352.
Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiologic studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids (P<5×10−8 for each) to examine the role of triglycerides on risk for CAD. First, we highlight loci associated with both low-density lipoprotein cholesterol (LDL-C) and triglycerides, and show that the direction and magnitude of both are factors in determining CAD risk. Second, we consider loci with only a strong magnitude of association with triglycerides and show that these loci are also associated with CAD. Finally, in a model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol, a polymorphism's strength of effect on triglycerides is correlated with the magnitude of its effect on CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for CAD.
doi:10.1038/ng.2795
PMCID: PMC3904346  PMID: 24097064
6.  Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture 
Berndt, Sonja I. | Gustafsson, Stefan | Mägi, Reedik | Ganna, Andrea | Wheeler, Eleanor | Feitosa, Mary F. | Justice, Anne E. | Monda, Keri L. | Croteau-Chonka, Damien C. | Day, Felix R. | Esko, Tõnu | Fall, Tove | Ferreira, Teresa | Gentilini, Davide | Jackson, Anne U. | Luan, Jian’an | Randall, Joshua C. | Vedantam, Sailaja | Willer, Cristen J. | Winkler, Thomas W. | Wood, Andrew R. | Workalemahu, Tsegaselassie | Hu, Yi-Juan | Lee, Sang Hong | Liang, Liming | Lin, Dan-Yu | Min, Josine L. | Neale, Benjamin M. | Thorleifsson, Gudmar | Yang, Jian | Albrecht, Eva | Amin, Najaf | Bragg-Gresham, Jennifer L. | Cadby, Gemma | den Heijer, Martin | Eklund, Niina | Fischer, Krista | Goel, Anuj | Hottenga, Jouke-Jan | Huffman, Jennifer E. | Jarick, Ivonne | Johansson, Åsa | Johnson, Toby | Kanoni, Stavroula | Kleber, Marcus E. | König, Inke R. | Kristiansson, Kati | Kutalik, Zoltán | Lamina, Claudia | Lecoeur, Cecile | Li, Guo | Mangino, Massimo | McArdle, Wendy L. | Medina-Gomez, Carolina | Müller-Nurasyid, Martina | Ngwa, Julius S. | Nolte, Ilja M. | Paternoster, Lavinia | Pechlivanis, Sonali | Perola, Markus | Peters, Marjolein J. | Preuss, Michael | Rose, Lynda M. | Shi, Jianxin | Shungin, Dmitry | Smith, Albert Vernon | Strawbridge, Rona J. | Surakka, Ida | Teumer, Alexander | Trip, Mieke D. | Tyrer, Jonathan | Van Vliet-Ostaptchouk, Jana V. | Vandenput, Liesbeth | Waite, Lindsay L. | Zhao, Jing Hua | Absher, Devin | Asselbergs, Folkert W. | Atalay, Mustafa | Attwood, Antony P. | Balmforth, Anthony J. | Basart, Hanneke | Beilby, John | Bonnycastle, Lori L. | Brambilla, Paolo | Bruinenberg, Marcel | Campbell, Harry | Chasman, Daniel I. | Chines, Peter S. | Collins, Francis S. | Connell, John M. | Cookson, William | de Faire, Ulf | de Vegt, Femmie | Dei, Mariano | Dimitriou, Maria | Edkins, Sarah | Estrada, Karol | Evans, David M. | Farrall, Martin | Ferrario, Marco M. | Ferrières, Jean | Franke, Lude | Frau, Francesca | Gejman, Pablo V. | Grallert, Harald | Grönberg, Henrik | Gudnason, Vilmundur | Hall, Alistair S. | Hall, Per | Hartikainen, Anna-Liisa | Hayward, Caroline | Heard-Costa, Nancy L. | Heath, Andrew C. | Hebebrand, Johannes | Homuth, Georg | Hu, Frank B. | Hunt, Sarah E. | Hyppönen, Elina | Iribarren, Carlos | Jacobs, Kevin B. | Jansson, John-Olov | Jula, Antti | Kähönen, Mika | Kathiresan, Sekar | Kee, Frank | Khaw, Kay-Tee | Kivimaki, Mika | Koenig, Wolfgang | Kraja, Aldi T. | Kumari, Meena | Kuulasmaa, Kari | Kuusisto, Johanna | Laitinen, Jaana H. | Lakka, Timo A. | Langenberg, Claudia | Launer, Lenore J. | Lind, Lars | Lindström, Jaana | Liu, Jianjun | Liuzzi, Antonio | Lokki, Marja-Liisa | Lorentzon, Mattias | Madden, Pamela A. | Magnusson, Patrik K. | Manunta, Paolo | Marek, Diana | März, Winfried | Mateo Leach, Irene | McKnight, Barbara | Medland, Sarah E. | Mihailov, Evelin | Milani, Lili | Montgomery, Grant W. | Mooser, Vincent | Mühleisen, Thomas W. | Munroe, Patricia B. | Musk, Arthur W. | Narisu, Narisu | Navis, Gerjan | Nicholson, George | Nohr, Ellen A. | Ong, Ken K. | Oostra, Ben A. | Palmer, Colin N.A. | Palotie, Aarno | Peden, John F. | Pedersen, Nancy | Peters, Annette | Polasek, Ozren | Pouta, Anneli | Pramstaller, Peter P. | Prokopenko, Inga | Pütter, Carolin | Radhakrishnan, Aparna | Raitakari, Olli | Rendon, Augusto | Rivadeneira, Fernando | Rudan, Igor | Saaristo, Timo E. | Sambrook, Jennifer G. | Sanders, Alan R. | Sanna, Serena | Saramies, Jouko | Schipf, Sabine | Schreiber, Stefan | Schunkert, Heribert | Shin, So-Youn | Signorini, Stefano | Sinisalo, Juha | Skrobek, Boris | Soranzo, Nicole | Stančáková, Alena | Stark, Klaus | Stephens, Jonathan C. | Stirrups, Kathleen | Stolk, Ronald P. | Stumvoll, Michael | Swift, Amy J. | Theodoraki, Eirini V. | Thorand, Barbara | Tregouet, David-Alexandre | Tremoli, Elena | Van der Klauw, Melanie M. | van Meurs, Joyce B.J. | Vermeulen, Sita H. | Viikari, Jorma | Virtamo, Jarmo | Vitart, Veronique | Waeber, Gérard | Wang, Zhaoming | Widén, Elisabeth | Wild, Sarah H. | Willemsen, Gonneke | Winkelmann, Bernhard R. | Witteman, Jacqueline C.M. | Wolffenbuttel, Bruce H.R. | Wong, Andrew | Wright, Alan F. | Zillikens, M. Carola | Amouyel, Philippe | Boehm, Bernhard O. | Boerwinkle, Eric | Boomsma, Dorret I. | Caulfield, Mark J. | Chanock, Stephen J. | Cupples, L. Adrienne | Cusi, Daniele | Dedoussis, George V. | Erdmann, Jeanette | Eriksson, Johan G. | Franks, Paul W. | Froguel, Philippe | Gieger, Christian | Gyllensten, Ulf | Hamsten, Anders | Harris, Tamara B. | Hengstenberg, Christian | Hicks, Andrew A. | Hingorani, Aroon | Hinney, Anke | Hofman, Albert | Hovingh, Kees G. | Hveem, Kristian | Illig, Thomas | Jarvelin, Marjo-Riitta | Jöckel, Karl-Heinz | Keinanen-Kiukaanniemi, Sirkka M. | Kiemeney, Lambertus A. | Kuh, Diana | Laakso, Markku | Lehtimäki, Terho | Levinson, Douglas F. | Martin, Nicholas G. | Metspalu, Andres | Morris, Andrew D. | Nieminen, Markku S. | Njølstad, Inger | Ohlsson, Claes | Oldehinkel, Albertine J. | Ouwehand, Willem H. | Palmer, Lyle J. | Penninx, Brenda | Power, Chris | Province, Michael A. | Psaty, Bruce M. | Qi, Lu | Rauramaa, Rainer | Ridker, Paul M. | Ripatti, Samuli | Salomaa, Veikko | Samani, Nilesh J. | Snieder, Harold | Sørensen, Thorkild I.A. | Spector, Timothy D. | Stefansson, Kari | Tönjes, Anke | Tuomilehto, Jaakko | Uitterlinden, André G. | Uusitupa, Matti | van der Harst, Pim | Vollenweider, Peter | Wallaschofski, Henri | Wareham, Nicholas J. | Watkins, Hugh | Wichmann, H.-Erich | Wilson, James F. | Abecasis, Goncalo R. | Assimes, Themistocles L. | Barroso, Inês | Boehnke, Michael | Borecki, Ingrid B. | Deloukas, Panos | Fox, Caroline S. | Frayling, Timothy | Groop, Leif C. | Haritunian, Talin | Heid, Iris M. | Hunter, David | Kaplan, Robert C. | Karpe, Fredrik | Moffatt, Miriam | Mohlke, Karen L. | O’Connell, Jeffrey R. | Pawitan, Yudi | Schadt, Eric E. | Schlessinger, David | Steinthorsdottir, Valgerdur | Strachan, David P. | Thorsteinsdottir, Unnur | van Duijn, Cornelia M. | Visscher, Peter M. | Di Blasio, Anna Maria | Hirschhorn, Joel N. | Lindgren, Cecilia M. | Morris, Andrew P. | Meyre, David | Scherag, André | McCarthy, Mark I. | Speliotes, Elizabeth K. | North, Kari E. | Loos, Ruth J.F. | Ingelsson, Erik
Nature genetics  2013;45(5):501-512.
Approaches exploiting extremes of the trait distribution may reveal novel loci for common traits, but it is unknown whether such loci are generalizable to the general population. In a genome-wide search for loci associated with upper vs. lower 5th percentiles of body mass index, height and waist-hip ratio, as well as clinical classes of obesity including up to 263,407 European individuals, we identified four new loci (IGFBP4, H6PD, RSRC1, PPP2R2A) influencing height detected in the tails and seven new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3, ZZZ3) for clinical classes of obesity. Further, we show that there is large overlap in terms of genetic structure and distribution of variants between traits based on extremes and the general population and little etiologic heterogeneity between obesity subgroups.
doi:10.1038/ng.2606
PMCID: PMC3973018  PMID: 23563607
7.  Loss of FTO Antagonises Wnt Signaling and Leads to Developmental Defects Associated with Ciliopathies 
PLoS ONE  2014;9(2):e87662.
Common intronic variants in the Human fat mass and obesity-associated gene (FTO) are found to be associated with an increased risk of obesity. Overexpression of FTO correlates with increased food intake and obesity, whilst loss-of-function results in lethality and severe developmental defects. Despite intense scientific discussions around the role of FTO in energy metabolism, the function of FTO during development remains undefined. Here, we show that loss of Fto leads to developmental defects such as growth retardation, craniofacial dysmorphism and aberrant neural crest cells migration in Zebrafish. We find that the important developmental pathway, Wnt, is compromised in the absence of FTO, both in vivo (zebrafish) and in vitro (Fto−/− MEFs and HEK293T). Canonical Wnt signalling is down regulated by abrogated β-Catenin translocation to the nucleus whilst non-canonical Wnt/Ca2+ pathway is activated via its key signal mediators CaMKII and PKCδ. Moreover, we demonstrate that loss of Fto results in short, absent or disorganised cilia leading to situs inversus, renal cystogenesis, neural crest cell defects and microcephaly in Zebrafish. Congruently, Fto knockout mice display aberrant tissue specific cilia. These data identify FTO as a protein-regulator of the balanced activation between canonical and non-canonical branches of the Wnt pathway. Furthermore, we present the first evidence that FTO plays a role in development and cilia formation/function.
doi:10.1371/journal.pone.0087662
PMCID: PMC3913654  PMID: 24503721
8.  Genetic variants influencing circulating lipid levels and risk of coronary artery disease 
Objectives
Genetic studies might provide new insights into the biological mechanisms underlying lipid metabolism and risk of CAD. We therefore conducted a genome-wide association study to identify novel genetic determinants of LDL-c, HDL-c and triglycerides.
Methods and results
We combined genome-wide association data from eight studies, comprising up to 17,723 participants with information on circulating lipid concentrations. We did independent replication studies in up to 37,774 participants from eight populations and also in a population of Indian Asian descent. We also assessed the association between SNPs at lipid loci and risk of CAD in up to 9,633 cases and 38,684 controls.
We identified four novel genetic loci that showed reproducible associations with lipids (P values 1.6 × 10−8 to 3.1 × 10−10). These include a potentially functional SNP in the SLC39A8 gene for HDL-c, a SNP near the MYLIP/GMPR and PPP1R3B genes for LDL-c and at the AFF1 gene for triglycerides. SNPs showing strong statistical association with one or more lipid traits at the CELSR2, APOB, APOE-C1-C4-C2 cluster, LPL, ZNF259-APOA5-A4-C3-A1 cluster and TRIB1 loci were also associated with CAD risk (P values 1.1 × 10−3 to 1.2 × 10−9).
Conclusions
We have identified four novel loci associated with circulating lipids. We also show that in addition to those that are largely associated with LDL-c, genetic loci mainly associated with circulating triglycerides and HDL-c are also associated with risk of CAD. These findings potentially provide new insights into the biological mechanisms underlying lipid metabolism and CAD risk.
doi:10.1161/ATVBAHA.109.201020
PMCID: PMC3891568  PMID: 20864672
lipids; lipoproteins; genetics; epidemiology
9.  Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes 
Nature genetics  2012;44(3):297-301.
Genome-wide association studies revealed that common non-coding variants in MTNR1B (encoding melatonin receptor 1B, also known as MT2) increase type 2 diabetes (T2D) risk1,2. Although the strongest association signal was highly significant (P<10−20), its contribution to T2D risk was modest (odds ratio, OR~1.10-1.15)1-3. We performed large-scale exon resequencing in 7,632 Europeans including 2,186 T2D patients and identified 40 non-synonymous variants, including 36 very rare variants (minor allele frequency, MAF<0.1%) associated with T2D (OR=3.31[1.78;6.18]95%); P=1.64×10−4. A four-tier functional investigation of all 40 mutants revealed that 14 were non-functional and rare (MAF<1%); four were very rare with complete loss of melatonin binding and signaling capabilities. Among the very rare variants, the partial or total loss-of-function variants, but not the neutral ones, contributed to T2D (OR=5.67[2.17;14.82]95%; P=4.09×10−4). Genotyping the four complete loss-of-function variants in 11,854 additional individuals revealed their association with T2D risk (Ncases=8,153/Ncontrols=10,100; OR=3.88[1.49;10.07]95%; P=5.37×10−3). This study establishes a firm functional link between MTNR1B and T2D risk.
doi:10.1038/ng.1053
PMCID: PMC3773908  PMID: 22286214
10.  Perilipin Deficiency and Autosomal Dominant Partial Lipodystrophy 
The New England journal of medicine  2011;364(8):740-748.
Summary
Perilipin is the most abundant adipocyte-specific protein that coats lipid droplets, and it is required for optimal lipid incorporation and release from the droplet. We identified two heterozygous frameshift mutations in the perilipin gene (PLIN1) in three families with partial lipodystrophy, severe dyslipidemia, and insulin-resistant diabetes. Subcutaneous fat from the patients was characterized by smaller-than-normal adipocytes, macrophage infiltration, and fibrosis. In contrast to wild-type perilipin, mutant forms of the protein failed to increase triglyceride accumulation when expressed heterologously in preadipocytes. These findings define a novel dominant form of inherited lipodystrophy and highlight the serious metabolic consequences of a primary defect in the formation of lipid droplets in adipose tissue.
doi:10.1056/NEJMoa1007487
PMCID: PMC3773916  PMID: 21345103
11.  The emerging use of zebrafish to model metabolic disease 
Disease Models & Mechanisms  2013;6(5):1080-1088.
The zebrafish research community is celebrating! The zebrafish genome has recently been sequenced, the Zebrafish Mutation Project (launched by the Wellcome Trust Sanger Institute) has published the results of its first large-scale ethylnitrosourea (ENU) mutagenesis screen, and a host of new techniques, such as the genome editing technologies TALEN and CRISPR-Cas, are enabling specific mutations to be created in model organisms and investigated in vivo. The zebrafish truly seems to be coming of age. These powerful resources invoke the question of whether zebrafish can be increasingly used to model human disease, particularly common, chronic diseases of metabolism such as obesity and type 2 diabetes. In recent years, there has been considerable success, mainly from genomic approaches, in identifying genetic variants that are associated with these conditions in humans; however, mechanistic insights into the role of implicated disease loci are lacking. In this Review, we highlight some of the advantages and disadvantages of zebrafish to address the organism’s utility as a model system for human metabolic diseases.
doi:10.1242/dmm.011346
PMCID: PMC3759328  PMID: 24046387
12.  Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits 
Randall, Joshua C. | Winkler, Thomas W. | Kutalik, Zoltán | Berndt, Sonja I. | Jackson, Anne U. | Monda, Keri L. | Kilpeläinen, Tuomas O. | Esko, Tõnu | Mägi, Reedik | Li, Shengxu | Workalemahu, Tsegaselassie | Feitosa, Mary F. | Croteau-Chonka, Damien C. | Day, Felix R. | Fall, Tove | Ferreira, Teresa | Gustafsson, Stefan | Locke, Adam E. | Mathieson, Iain | Scherag, Andre | Vedantam, Sailaja | Wood, Andrew R. | Liang, Liming | Steinthorsdottir, Valgerdur | Thorleifsson, Gudmar | Dermitzakis, Emmanouil T. | Dimas, Antigone S. | Karpe, Fredrik | Min, Josine L. | Nicholson, George | Clegg, Deborah J. | Person, Thomas | Krohn, Jon P. | Bauer, Sabrina | Buechler, Christa | Eisinger, Kristina | Bonnefond, Amélie | Froguel, Philippe | Hottenga, Jouke-Jan | Prokopenko, Inga | Waite, Lindsay L. | Harris, Tamara B. | Smith, Albert Vernon | Shuldiner, Alan R. | McArdle, Wendy L. | Caulfield, Mark J. | Munroe, Patricia B. | Grönberg, Henrik | Chen, Yii-Der Ida | Li, Guo | Beckmann, Jacques S. | Johnson, Toby | Thorsteinsdottir, Unnur | Teder-Laving, Maris | Khaw, Kay-Tee | Wareham, Nicholas J. | Zhao, Jing Hua | Amin, Najaf | Oostra, Ben A. | Kraja, Aldi T. | Province, Michael A. | Cupples, L. Adrienne | Heard-Costa, Nancy L. | Kaprio, Jaakko | Ripatti, Samuli | Surakka, Ida | Collins, Francis S. | Saramies, Jouko | Tuomilehto, Jaakko | Jula, Antti | Salomaa, Veikko | Erdmann, Jeanette | Hengstenberg, Christian | Loley, Christina | Schunkert, Heribert | Lamina, Claudia | Wichmann, H. Erich | Albrecht, Eva | Gieger, Christian | Hicks, Andrew A. | Johansson, Åsa | Pramstaller, Peter P. | Kathiresan, Sekar | Speliotes, Elizabeth K. | Penninx, Brenda | Hartikainen, Anna-Liisa | Jarvelin, Marjo-Riitta | Gyllensten, Ulf | Boomsma, Dorret I. | Campbell, Harry | Wilson, James F. | Chanock, Stephen J. | Farrall, Martin | Goel, Anuj | Medina-Gomez, Carolina | Rivadeneira, Fernando | Estrada, Karol | Uitterlinden, André G. | Hofman, Albert | Zillikens, M. Carola | den Heijer, Martin | Kiemeney, Lambertus A. | Maschio, Andrea | Hall, Per | Tyrer, Jonathan | Teumer, Alexander | Völzke, Henry | Kovacs, Peter | Tönjes, Anke | Mangino, Massimo | Spector, Tim D. | Hayward, Caroline | Rudan, Igor | Hall, Alistair S. | Samani, Nilesh J. | Attwood, Antony Paul | Sambrook, Jennifer G. | Hung, Joseph | Palmer, Lyle J. | Lokki, Marja-Liisa | Sinisalo, Juha | Boucher, Gabrielle | Huikuri, Heikki | Lorentzon, Mattias | Ohlsson, Claes | Eklund, Niina | Eriksson, Johan G. | Barlassina, Cristina | Rivolta, Carlo | Nolte, Ilja M. | Snieder, Harold | Van der Klauw, Melanie M. | Van Vliet-Ostaptchouk, Jana V. | Gejman, Pablo V. | Shi, Jianxin | Jacobs, Kevin B. | Wang, Zhaoming | Bakker, Stephan J. L. | Mateo Leach, Irene | Navis, Gerjan | van der Harst, Pim | Martin, Nicholas G. | Medland, Sarah E. | Montgomery, Grant W. | Yang, Jian | Chasman, Daniel I. | Ridker, Paul M. | Rose, Lynda M. | Lehtimäki, Terho | Raitakari, Olli | Absher, Devin | Iribarren, Carlos | Basart, Hanneke | Hovingh, Kees G. | Hyppönen, Elina | Power, Chris | Anderson, Denise | Beilby, John P. | Hui, Jennie | Jolley, Jennifer | Sager, Hendrik | Bornstein, Stefan R. | Schwarz, Peter E. H. | Kristiansson, Kati | Perola, Markus | Lindström, Jaana | Swift, Amy J. | Uusitupa, Matti | Atalay, Mustafa | Lakka, Timo A. | Rauramaa, Rainer | Bolton, Jennifer L. | Fowkes, Gerry | Fraser, Ross M. | Price, Jackie F. | Fischer, Krista | KrjutÅ¡kov, Kaarel | Metspalu, Andres | Mihailov, Evelin | Langenberg, Claudia | Luan, Jian'an | Ong, Ken K. | Chines, Peter S. | Keinanen-Kiukaanniemi, Sirkka M. | Saaristo, Timo E. | Edkins, Sarah | Franks, Paul W. | Hallmans, Göran | Shungin, Dmitry | Morris, Andrew David | Palmer, Colin N. A. | Erbel, Raimund | Moebus, Susanne | Nöthen, Markus M. | Pechlivanis, Sonali | Hveem, Kristian | Narisu, Narisu | Hamsten, Anders | Humphries, Steve E. | Strawbridge, Rona J. | Tremoli, Elena | Grallert, Harald | Thorand, Barbara | Illig, Thomas | Koenig, Wolfgang | Müller-Nurasyid, Martina | Peters, Annette | Boehm, Bernhard O. | Kleber, Marcus E. | März, Winfried | Winkelmann, Bernhard R. | Kuusisto, Johanna | Laakso, Markku | Arveiler, Dominique | Cesana, Giancarlo | Kuulasmaa, Kari | Virtamo, Jarmo | Yarnell, John W. G. | Kuh, Diana | Wong, Andrew | Lind, Lars | de Faire, Ulf | Gigante, Bruna | Magnusson, Patrik K. E. | Pedersen, Nancy L. | Dedoussis, George | Dimitriou, Maria | Kolovou, Genovefa | Kanoni, Stavroula | Stirrups, Kathleen | Bonnycastle, Lori L. | Njølstad, Inger | Wilsgaard, Tom | Ganna, Andrea | Rehnberg, Emil | Hingorani, Aroon | Kivimaki, Mika | Kumari, Meena | Assimes, Themistocles L. | Barroso, Inês | Boehnke, Michael | Borecki, Ingrid B. | Deloukas, Panos | Fox, Caroline S. | Frayling, Timothy | Groop, Leif C. | Haritunians, Talin | Hunter, David | Ingelsson, Erik | Kaplan, Robert | Mohlke, Karen L. | O'Connell, Jeffrey R. | Schlessinger, David | Strachan, David P. | Stefansson, Kari | van Duijn, Cornelia M. | Abecasis, Gonçalo R. | McCarthy, Mark I. | Hirschhorn, Joel N. | Qi, Lu | Loos, Ruth J. F. | Lindgren, Cecilia M. | North, Kari E. | Heid, Iris M.
PLoS Genetics  2013;9(6):e1003500.
Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723 individuals) and took forward 348 SNPs into follow-up (additional 137,052 individuals) in a total of 94 studies. Seven loci displayed significant sex-difference (FDR<5%), including four previously established (near GRB14/COBLL1, LYPLAL1/SLC30A10, VEGFA, ADAMTS9) and three novel anthropometric trait loci (near MAP3K1, HSD17B4, PPARG), all of which were genome-wide significant in women (P<5×10−8), but not in men. Sex-differences were apparent only for waist phenotypes, not for height, weight, BMI, or hip circumference. Moreover, we found no evidence for genetic effects with opposite directions in men versus women. The PPARG locus is of specific interest due to its role in diabetes genetics and therapy. Our results demonstrate the value of sex-specific GWAS to unravel the sexually dimorphic genetic underpinning of complex traits.
Author Summary
Men and women differ substantially regarding height, weight, and body fat. Interestingly, previous work detecting genetic effects for waist-to-hip ratio, to assess body fat distribution, has found that many of these showed sex-differences. However, systematic searches for sex-differences in genetic effects have not yet been conducted. Therefore, we undertook a genome-wide search for sexually dimorphic genetic effects for anthropometric traits including 133,723 individuals in a large meta-analysis and followed promising variants in further 137,052 individuals, including a total of 94 studies. We identified seven loci with significant sex-difference including four previously established (near GRB14/COBLL1, LYPLAL1/SLC30A10, VEGFA, ADAMTS9) and three novel anthropometric trait loci (near MAP3K1, HSD17B4, PPARG), all of which were significant in women, but not in men. Of interest is that sex-difference was only observed for waist phenotypes, but not for height or body-mass-index. We found no evidence for sex-differences with opposite effect direction for men and women. The PPARG locus is of specific interest due to its link to diabetes genetics and therapy. Our findings demonstrate the importance of investigating sex differences, which may lead to a better understanding of disease mechanisms with a potential relevance to treatment options.
doi:10.1371/journal.pgen.1003500
PMCID: PMC3674993  PMID: 23754948
13.  No Interactions Between Previously Associated 2-Hour Glucose Gene Variants and Physical Activity or BMI on 2-Hour Glucose Levels 
Scott, Robert A. | Chu, Audrey Y. | Grarup, Niels | Manning, Alisa K. | Hivert, Marie-France | Shungin, Dmitry | Tönjes, Anke | Yesupriya, Ajay | Barnes, Daniel | Bouatia-Naji, Nabila | Glazer, Nicole L. | Jackson, Anne U. | Kutalik, Zoltán | Lagou, Vasiliki | Marek, Diana | Rasmussen-Torvik, Laura J. | Stringham, Heather M. | Tanaka, Toshiko | Aadahl, Mette | Arking, Dan E. | Bergmann, Sven | Boerwinkle, Eric | Bonnycastle, Lori L. | Bornstein, Stefan R. | Brunner, Eric | Bumpstead, Suzannah J. | Brage, Soren | Carlson, Olga D. | Chen, Han | Chen, Yii-Der Ida | Chines, Peter S. | Collins, Francis S. | Couper, David J. | Dennison, Elaine M. | Dowling, Nicole F. | Egan, Josephine S. | Ekelund, Ulf | Erdos, Michael R. | Forouhi, Nita G. | Fox, Caroline S. | Goodarzi, Mark O. | Grässler, Jürgen | Gustafsson, Stefan | Hallmans, Göran | Hansen, Torben | Hingorani, Aroon | Holloway, John W. | Hu, Frank B. | Isomaa, Bo | Jameson, Karen A. | Johansson, Ingegerd | Jonsson, Anna | Jørgensen, Torben | Kivimaki, Mika | Kovacs, Peter | Kumari, Meena | Kuusisto, Johanna | Laakso, Markku | Lecoeur, Cécile | Lévy-Marchal, Claire | Li, Guo | Loos, Ruth J.F. | Lyssenko, Valeri | Marmot, Michael | Marques-Vidal, Pedro | Morken, Mario A. | Müller, Gabriele | North, Kari E. | Pankow, James S. | Payne, Felicity | Prokopenko, Inga | Psaty, Bruce M. | Renström, Frida | Rice, Ken | Rotter, Jerome I. | Rybin, Denis | Sandholt, Camilla H. | Sayer, Avan A. | Shrader, Peter | Schwarz, Peter E.H. | Siscovick, David S. | Stančáková, Alena | Stumvoll, Michael | Teslovich, Tanya M. | Waeber, Gérard | Williams, Gordon H. | Witte, Daniel R. | Wood, Andrew R. | Xie, Weijia | Boehnke, Michael | Cooper, Cyrus | Ferrucci, Luigi | Froguel, Philippe | Groop, Leif | Kao, W.H. Linda | Vollenweider, Peter | Walker, Mark | Watanabe, Richard M. | Pedersen, Oluf | Meigs, James B. | Ingelsson, Erik | Barroso, Inês | Florez, Jose C. | Franks, Paul W. | Dupuis, Josée | Wareham, Nicholas J. | Langenberg, Claudia
Diabetes  2012;61(5):1291-1296.
Gene–lifestyle interactions have been suggested to contribute to the development of type 2 diabetes. Glucose levels 2 h after a standard 75-g glucose challenge are used to diagnose diabetes and are associated with both genetic and lifestyle factors. However, whether these factors interact to determine 2-h glucose levels is unknown. We meta-analyzed single nucleotide polymorphism (SNP) × BMI and SNP × physical activity (PA) interaction regression models for five SNPs previously associated with 2-h glucose levels from up to 22 studies comprising 54,884 individuals without diabetes. PA levels were dichotomized, with individuals below the first quintile classified as inactive (20%) and the remainder as active (80%). BMI was considered a continuous trait. Inactive individuals had higher 2-h glucose levels than active individuals (β = 0.22 mmol/L [95% CI 0.13–0.31], P = 1.63 × 10−6). All SNPs were associated with 2-h glucose (β = 0.06–0.12 mmol/allele, P ≤ 1.53 × 10−7), but no significant interactions were found with PA (P > 0.18) or BMI (P ≥ 0.04). In this large study of gene–lifestyle interaction, we observed no interactions between genetic and lifestyle factors, both of which were associated with 2-h glucose. It is perhaps unlikely that top loci from genome-wide association studies will exhibit strong subgroup-specific effects, and may not, therefore, make the best candidates for the study of interactions.
doi:10.2337/db11-0973
PMCID: PMC3331745  PMID: 22415877
14.  Meta-analysis and imputation refines the association of 15q25 with smoking quantity 
Liu, Jason Z. | Tozzi, Federica | Waterworth, Dawn M. | Pillai, Sreekumar G. | Muglia, Pierandrea | Middleton, Lefkos | Berrettini, Wade | Knouff, Christopher W. | Yuan, Xin | Waeber, Gérard | Vollenweider, Peter | Preisig, Martin | Wareham, Nicholas J | Zhao, Jing Hua | Loos, Ruth J.F. | Barroso, Inês | Khaw, Kay-Tee | Grundy, Scott | Barter, Philip | Mahley, Robert | Kesaniemi, Antero | McPherson, Ruth | Vincent, John B. | Strauss, John | Kennedy, James L. | Farmer, Anne | McGuffin, Peter | Day, Richard | Matthews, Keith | Bakke, Per | Gulsvik, Amund | Lucae, Susanne | Ising, Marcus | Brueckl, Tanja | Horstmann, Sonja | Wichmann, H.-Erich | Rawal, Rajesh | Dahmen, Norbert | Lamina, Claudia | Polasek, Ozren | Zgaga, Lina | Huffman, Jennifer | Campbell, Susan | Kooner, Jaspal | Chambers, John C | Burnett, Mary Susan | Devaney, Joseph M. | Pichard, Augusto D. | Kent, Kenneth M. | Satler, Lowell | Lindsay, Joseph M. | Waksman, Ron | Epstein, Stephen | Wilson, James F. | Wild, Sarah H. | Campbell, Harry | Vitart, Veronique | Reilly, Muredach P. | Li, Mingyao | Qu, Liming | Wilensky, Robert | Matthai, William | Hakonarson, Hakon H. | Rader, Daniel J. | Franke, Andre | Wittig, Michael | Schäfer, Arne | Uda, Manuela | Terracciano, Antonio | Xiao, Xiangjun | Busonero, Fabio | Scheet, Paul | Schlessinger, David | St Clair, David | Rujescu, Dan | Abecasis, Gonçalo R. | Grabe, Hans Jörgen | Teumer, Alexander | Völzke, Henry | Petersmann, Astrid | John, Ulrich | Rudan, Igor | Hayward, Caroline | Wright, Alan F. | Kolcic, Ivana | Wright, Benjamin J | Thompson, John R | Balmforth, Anthony J. | Hall, Alistair S. | Samani, Nilesh J. | Anderson, Carl A. | Ahmad, Tariq | Mathew, Christopher G. | Parkes, Miles | Satsangi, Jack | Caulfield, Mark | Munroe, Patricia B. | Farrall, Martin | Dominiczak, Anna | Worthington, Jane | Thomson, Wendy | Eyre, Steve | Barton, Anne | Mooser, Vincent | Francks, Clyde | Marchini, Jonathan
Nature genetics  2010;42(5):436-440.
Smoking is a leading global cause of disease and mortality1. We performed a genomewide meta-analytic association study of smoking-related behavioral traits in a total sample of 41,150 individuals drawn from 20 disease, population, and control cohorts. Our analysis confirmed an effect on smoking quantity (SQ) at a locus on 15q25 (P=9.45e-19) that includes three genes encoding neuronal nicotinic acetylcholine receptor subunits (CHRNA5, CHRNA3, CHRNB4). We used data from the 1000 Genomes project to investigate the region using imputation, which allowed analysis of virtually all common variants in the region and offered a five-fold increase in coverage over the HapMap. This increased the spectrum of potentially causal single nucleotide polymorphisms (SNPs), which included a novel SNP that showed the highest significance, rs55853698, located within the promoter region of CHRNA5. Conditional analysis also identified a secondary locus (rs6495308) in CHRNA3.
doi:10.1038/ng.572
PMCID: PMC3612983  PMID: 20418889
15.  Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways 
Scott, Robert A | Lagou, Vasiliki | Welch, Ryan P | Wheeler, Eleanor | Montasser, May E | Luan, Jian’an | Mägi, Reedik | Strawbridge, Rona J | Rehnberg, Emil | Gustafsson, Stefan | Kanoni, Stavroula | Rasmussen-Torvik, Laura J | Yengo, Loïc | Lecoeur, Cecile | Shungin, Dmitry | Sanna, Serena | Sidore, Carlo | Johnson, Paul C D | Jukema, J Wouter | Johnson, Toby | Mahajan, Anubha | Verweij, Niek | Thorleifsson, Gudmar | Hottenga, Jouke-Jan | Shah, Sonia | Smith, Albert V | Sennblad, Bengt | Gieger, Christian | Salo, Perttu | Perola, Markus | Timpson, Nicholas J | Evans, David M | Pourcain, Beate St | Wu, Ying | Andrews, Jeanette S | Hui, Jennie | Bielak, Lawrence F | Zhao, Wei | Horikoshi, Momoko | Navarro, Pau | Isaacs, Aaron | O’Connell, Jeffrey R | Stirrups, Kathleen | Vitart, Veronique | Hayward, Caroline | Esko, Tönu | Mihailov, Evelin | Fraser, Ross M | Fall, Tove | Voight, Benjamin F | Raychaudhuri, Soumya | Chen, Han | Lindgren, Cecilia M | Morris, Andrew P | Rayner, Nigel W | Robertson, Neil | Rybin, Denis | Liu, Ching-Ti | Beckmann, Jacques S | Willems, Sara M | Chines, Peter S | Jackson, Anne U | Kang, Hyun Min | Stringham, Heather M | Song, Kijoung | Tanaka, Toshiko | Peden, John F | Goel, Anuj | Hicks, Andrew A | An, Ping | Müller-Nurasyid, Martina | Franco-Cereceda, Anders | Folkersen, Lasse | Marullo, Letizia | Jansen, Hanneke | Oldehinkel, Albertine J | Bruinenberg, Marcel | Pankow, James S | North, Kari E | Forouhi, Nita G | Loos, Ruth J F | Edkins, Sarah | Varga, Tibor V | Hallmans, Göran | Oksa, Heikki | Antonella, Mulas | Nagaraja, Ramaiah | Trompet, Stella | Ford, Ian | Bakker, Stephan J L | Kong, Augustine | Kumari, Meena | Gigante, Bruna | Herder, Christian | Munroe, Patricia B | Caulfield, Mark | Antti, Jula | Mangino, Massimo | Small, Kerrin | Miljkovic, Iva | Liu, Yongmei | Atalay, Mustafa | Kiess, Wieland | James, Alan L | Rivadeneira, Fernando | Uitterlinden, Andre G | Palmer, Colin N A | Doney, Alex S F | Willemsen, Gonneke | Smit, Johannes H | Campbell, Susan | Polasek, Ozren | Bonnycastle, Lori L | Hercberg, Serge | Dimitriou, Maria | Bolton, Jennifer L | Fowkes, Gerard R | Kovacs, Peter | Lindström, Jaana | Zemunik, Tatijana | Bandinelli, Stefania | Wild, Sarah H | Basart, Hanneke V | Rathmann, Wolfgang | Grallert, Harald | Maerz, Winfried | Kleber, Marcus E | Boehm, Bernhard O | Peters, Annette | Pramstaller, Peter P | Province, Michael A | Borecki, Ingrid B | Hastie, Nicholas D | Rudan, Igor | Campbell, Harry | Watkins, Hugh | Farrall, Martin | Stumvoll, Michael | Ferrucci, Luigi | Waterworth, Dawn M | Bergman, Richard N | Collins, Francis S | Tuomilehto, Jaakko | Watanabe, Richard M | de Geus, Eco J C | Penninx, Brenda W | Hofman, Albert | Oostra, Ben A | Psaty, Bruce M | Vollenweider, Peter | Wilson, James F | Wright, Alan F | Hovingh, G Kees | Metspalu, Andres | Uusitupa, Matti | Magnusson, Patrik K E | Kyvik, Kirsten O | Kaprio, Jaakko | Price, Jackie F | Dedoussis, George V | Deloukas, Panos | Meneton, Pierre | Lind, Lars | Boehnke, Michael | Shuldiner, Alan R | van Duijn, Cornelia M | Morris, Andrew D | Toenjes, Anke | Peyser, Patricia A | Beilby, John P | Körner, Antje | Kuusisto, Johanna | Laakso, Markku | Bornstein, Stefan R | Schwarz, Peter E H | Lakka, Timo A | Rauramaa, Rainer | Adair, Linda S | Smith, George Davey | Spector, Tim D | Illig, Thomas | de Faire, Ulf | Hamsten, Anders | Gudnason, Vilmundur | Kivimaki, Mika | Hingorani, Aroon | Keinanen-Kiukaanniemi, Sirkka M | Saaristo, Timo E | Boomsma, Dorret I | Stefansson, Kari | van der Harst, Pim | Dupuis, Josée | Pedersen, Nancy L | Sattar, Naveed | Harris, Tamara B | Cucca, Francesco | Ripatti, Samuli | Salomaa, Veikko | Mohlke, Karen L | Balkau, Beverley | Froguel, Philippe | Pouta, Anneli | Jarvelin, Marjo-Riitta | Wareham, Nicholas J | Bouatia-Naji, Nabila | McCarthy, Mark I | Franks, Paul W | Meigs, James B | Teslovich, Tanya M | Florez, Jose C | Langenberg, Claudia | Ingelsson, Erik | Prokopenko, Inga | Barroso, Inês
Nature genetics  2012;44(9):991-1005.
Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have raised the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional follow-up of these newly discovered loci will further improve our understanding of glycemic control.
doi:10.1038/ng.2385
PMCID: PMC3433394  PMID: 22885924
16.  Mosaic Overgrowth with Fibroadipose Hyperplasia is Caused by Somatic Activating Mutations in PIK3CA 
Nature genetics  2012;44(8):928-933.
The phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathway is critical for cellular growth and metabolism. Correspondingly, loss of function of PTEN, a negative regulator of PI3K, or activating mutations in AKT1, AKT2, or AKT3 have been found in distinct disorders featuring overgrowth or hypoglycemia. We performed exome sequencing of DNA from unaffected and affected cells of a patient with an unclassified syndrome of congenital, progressive segmental overgrowth of fibrous and adipose tissue and bone and identified the cancer-associated p.His1047Leu mutation in PIK3CA, which encodes the p110α catalytic subunit of PI3K, only in affected cells. Sequencing of PIK3CA in 10 further patients with overlapping syndromes identified either p.His1047Leu or a second cancer-associated mutation, p.His1047Arg, in 9 cases. Affected dermal fibroblasts showed enhanced basal and EGF-stimulated phosphatidylinositol-3,4,5-trisphosphate (PIP3) generation and concomitant activation of downstream signaling. Our findings characterize a distinct overgrowth syndrome, biochemically demonstrate activation of PI3K signaling and thereby identify a rational therapeutic target.
doi:10.1038/ng.2332
PMCID: PMC3461408  PMID: 22729222
18.  Variants in MTNR1B influence fasting glucose levels 
Prokopenko, Inga | Langenberg, Claudia | Florez, Jose C | Saxena, Richa | Soranzo, Nicole | Thorleifsson, Gudmar | Loos, Ruth J F | Manning, Alisa K | Jackson, Anne U | Aulchenko, Yurii | Potter, Simon C | Erdos, Michael R | Sanna, Serena | Hottenga, Jouke-Jan | Wheeler, Eleanor | Kaakinen, Marika | Lyssenko, Valeriya | Chen, Wei-Min | Ahmadi, Kourosh | Beckmann, Jacques S | Bergman, Richard N | Bochud, Murielle | Bonnycastle, Lori L | Buchanan, Thomas A | Cao, Antonio | Cervino, Alessandra | Coin, Lachlan | Collins, Francis S | Crisponi, Laura | de Geus, Eco J C | Dehghan, Abbas | Deloukas, Panos | Doney, Alex S F | Elliott, Paul | Freimer, Nelson | Gateva, Vesela | Herder, Christian | Hofman, Albert | Hughes, Thomas E | Hunt, Sarah | Illig, Thomas | Inouye, Michael | Isomaa, Bo | Johnson, Toby | Kong, Augustine | Krestyaninova, Maria | Kuusisto, Johanna | Laakso, Markku | Lim, Noha | Lindblad, Ulf | Lindgren, Cecilia M | McCann, Owen T | Mohlke, Karen L | Morris, Andrew D | Naitza, Silvia | Orrù, Marco | Palmer, Colin N A | Pouta, Anneli | Randall, Joshua | Rathmann, Wolfgang | Saramies, Jouko | Scheet, Paul | Scott, Laura J | Scuteri, Angelo | Sharp, Stephen | Sijbrands, Eric | Smit, Jan H | Song, Kijoung | Steinthorsdottir, Valgerdur | Stringham, Heather M | Tuomi, Tiinamaija | Tuomilehto, Jaakko | Uitterlinden, André G | Voight, Benjamin F | Waterworth, Dawn | Wichmann, H-Erich | Willemsen, Gonneke | Witteman, Jacqueline C M | Yuan, Xin | Zhao, Jing Hua | Zeggini, Eleftheria | Schlessinger, David | Sandhu, Manjinder | Boomsma, Dorret I | Uda, Manuela | Spector, Tim D | Penninx, Brenda WJH | Altshuler, David | Vollenweider, Peter | Jarvelin, Marjo Riitta | Lakatta, Edward | Waeber, Gerard | Fox, Caroline S | Peltonen, Leena | Groop, Leif C | Mooser, Vincent | Cupples, L Adrienne | Thorsteinsdottir, Unnur | Boehnke, Michael | Barroso, Inês | Van Duijn, Cornelia | Dupuis, Josée | Watanabe, Richard M | Stefansson, Kari | McCarthy, Mark I | Wareham, Nicholas J | Meigs, James B | Abecasis, Gonçalo R
Nature genetics  2008;41(1):77-81.
To identify previously unknown genetic loci associated with fasting glucose concentrations, we examined the leading association signals in ten genome-wide association scans involving a total of 36,610 individuals of European descent. Variants in the gene encoding melatonin receptor 1B (MTNR1B) were consistently associated with fasting glucose across all ten studies. The strongest signal was observed at rs10830963, where each G allele (frequency 0.30 in HapMap CEU) was associated with an increase of 0.07 (95% CI = 0.06-0.08) mmol/l in fasting glucose levels (P = 3.2 = × 10−50) and reduced beta-cell function as measured by homeostasis model assessment (HOMA-B, P = 1.1 × 10−15). The same allele was associated with an increased risk of type 2 diabetes (odds ratio = 1.09 (1.05-1.12), per G allele P = 3.3 × 10−7) in a meta-analysis of 13 case-control studies totaling 18,236 cases and 64,453 controls. Our analyses also confirm previous associations of fasting glucose with variants at the G6PC2 (rs560887, P = 1.1 × 10−57) and GCK (rs4607517, P = 1.0 × 10−25) loci.
doi:10.1038/ng.290
PMCID: PMC2682768  PMID: 19060907
19.  Human SH2B1 mutations are associated with maladaptive behaviors and obesity  
The Journal of Clinical Investigation  2012;122(12):4732-4736.
Src homology 2 B adapter protein 1 (SH2B1) modulates signaling by a variety of ligands that bind to receptor tyrosine kinases or JAK-associated cytokine receptors, including leptin, insulin, growth hormone (GH), and nerve growth factor (NGF). Targeted deletion of Sh2b1 in mice results in increased food intake, obesity, and insulin resistance, with an intermediate phenotype seen in heterozygous null mice on a high-fat diet. We identified SH2B1 loss-of-function mutations in a large cohort of patients with severe early-onset obesity. Mutation carriers exhibited hyperphagia, childhood-onset obesity, disproportionate insulin resistance, and reduced final height as adults. Unexpectedly, mutation carriers exhibited a spectrum of behavioral abnormalities that were not reported in controls, including social isolation and aggression. We conclude that SH2B1 plays a critical role in the control of human food intake and body weight and is implicated in maladaptive human behavior.
doi:10.1172/JCI62696
PMCID: PMC3533535  PMID: 23160192
20.  Genome-Wide Association Identifies Nine Common Variants Associated With Fasting Proinsulin Levels and Provides New Insights Into the Pathophysiology of Type 2 Diabetes 
Strawbridge, Rona J. | Dupuis, Josée | Prokopenko, Inga | Barker, Adam | Ahlqvist, Emma | Rybin, Denis | Petrie, John R. | Travers, Mary E. | Bouatia-Naji, Nabila | Dimas, Antigone S. | Nica, Alexandra | Wheeler, Eleanor | Chen, Han | Voight, Benjamin F. | Taneera, Jalal | Kanoni, Stavroula | Peden, John F. | Turrini, Fabiola | Gustafsson, Stefan | Zabena, Carina | Almgren, Peter | Barker, David J.P. | Barnes, Daniel | Dennison, Elaine M. | Eriksson, Johan G. | Eriksson, Per | Eury, Elodie | Folkersen, Lasse | Fox, Caroline S. | Frayling, Timothy M. | Goel, Anuj | Gu, Harvest F. | Horikoshi, Momoko | Isomaa, Bo | Jackson, Anne U. | Jameson, Karen A. | Kajantie, Eero | Kerr-Conte, Julie | Kuulasmaa, Teemu | Kuusisto, Johanna | Loos, Ruth J.F. | Luan, Jian'an | Makrilakis, Konstantinos | Manning, Alisa K. | Martínez-Larrad, María Teresa | Narisu, Narisu | Nastase Mannila, Maria | Öhrvik, John | Osmond, Clive | Pascoe, Laura | Payne, Felicity | Sayer, Avan A. | Sennblad, Bengt | Silveira, Angela | Stančáková, Alena | Stirrups, Kathy | Swift, Amy J. | Syvänen, Ann-Christine | Tuomi, Tiinamaija | van 't Hooft, Ferdinand M. | Walker, Mark | Weedon, Michael N. | Xie, Weijia | Zethelius, Björn | Ongen, Halit | Mälarstig, Anders | Hopewell, Jemma C. | Saleheen, Danish | Chambers, John | Parish, Sarah | Danesh, John | Kooner, Jaspal | Östenson, Claes-Göran | Lind, Lars | Cooper, Cyrus C. | Serrano-Ríos, Manuel | Ferrannini, Ele | Forsen, Tom J. | Clarke, Robert | Franzosi, Maria Grazia | Seedorf, Udo | Watkins, Hugh | Froguel, Philippe | Johnson, Paul | Deloukas, Panos | Collins, Francis S. | Laakso, Markku | Dermitzakis, Emmanouil T. | Boehnke, Michael | McCarthy, Mark I. | Wareham, Nicholas J. | Groop, Leif | Pattou, François | Gloyn, Anna L. | Dedoussis, George V. | Lyssenko, Valeriya | Meigs, James B. | Barroso, Inês | Watanabe, Richard M. | Ingelsson, Erik | Langenberg, Claudia | Hamsten, Anders | Florez, Jose C.
Diabetes  2011;60(10):2624-2634.
OBJECTIVE
Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology.
RESEARCH DESIGN AND METHODS
We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates.
RESULTS
Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10−8). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10−4), improved β-cell function (P = 1.1 × 10−5), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10−6). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets.
CONCLUSIONS
We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis.
doi:10.2337/db11-0415
PMCID: PMC3178302  PMID: 21873549
21.  Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure 
Wain, Louise V | Verwoert, Germaine C | O’Reilly, Paul F | Shi, Gang | Johnson, Toby | Johnson, Andrew D | Bochud, Murielle | Rice, Kenneth M | Henneman, Peter | Smith, Albert V | Ehret, Georg B | Amin, Najaf | Larson, Martin G | Mooser, Vincent | Hadley, David | Dörr, Marcus | Bis, Joshua C | Aspelund, Thor | Esko, Tõnu | Janssens, A Cecile JW | Zhao, Jing Hua | Heath, Simon | Laan, Maris | Fu, Jingyuan | Pistis, Giorgio | Luan, Jian’an | Arora, Pankaj | Lucas, Gavin | Pirastu, Nicola | Pichler, Irene | Jackson, Anne U | Webster, Rebecca J | Zhang, Feng | Peden, John F | Schmidt, Helena | Tanaka, Toshiko | Campbell, Harry | Igl, Wilmar | Milaneschi, Yuri | Hotteng, Jouke-Jan | Vitart, Veronique | Chasman, Daniel I | Trompet, Stella | Bragg-Gresham, Jennifer L | Alizadeh, Behrooz Z | Chambers, John C | Guo, Xiuqing | Lehtimäki, Terho | Kühnel, Brigitte | Lopez, Lorna M | Polašek, Ozren | Boban, Mladen | Nelson, Christopher P | Morrison, Alanna C | Pihur, Vasyl | Ganesh, Santhi K | Hofman, Albert | Kundu, Suman | Mattace-Raso, Francesco US | Rivadeneira, Fernando | Sijbrands, Eric JG | Uitterlinden, Andre G | Hwang, Shih-Jen | Vasan, Ramachandran S | Wang, Thomas J | Bergmann, Sven | Vollenweider, Peter | Waeber, Gérard | Laitinen, Jaana | Pouta, Anneli | Zitting, Paavo | McArdle, Wendy L | Kroemer, Heyo K | Völker, Uwe | Völzke, Henry | Glazer, Nicole L | Taylor, Kent D | Harris, Tamara B | Alavere, Helene | Haller, Toomas | Keis, Aime | Tammesoo, Mari-Liis | Aulchenko, Yurii | Barroso, Inês | Khaw, Kay-Tee | Galan, Pilar | Hercberg, Serge | Lathrop, Mark | Eyheramendy, Susana | Org, Elin | Sõber, Siim | Lu, Xiaowen | Nolte, Ilja M | Penninx, Brenda W | Corre, Tanguy | Masciullo, Corrado | Sala, Cinzia | Groop, Leif | Voight, Benjamin F | Melander, Olle | O’Donnell, Christopher J | Salomaa, Veikko | d’Adamo, Adamo Pio | Fabretto, Antonella | Faletra, Flavio | Ulivi, Sheila | Del Greco, M Fabiola | Facheris, Maurizio | Collins, Francis S | Bergman, Richard N | Beilby, John P | Hung, Joseph | Musk, A William | Mangino, Massimo | Shin, So-Youn | Soranzo, Nicole | Watkins, Hugh | Goel, Anuj | Hamsten, Anders | Gider, Pierre | Loitfelder, Marisa | Zeginigg, Marion | Hernandez, Dena | Najjar, Samer S | Navarro, Pau | Wild, Sarah H | Corsi, Anna Maria | Singleton, Andrew | de Geus, Eco JC | Willemsen, Gonneke | Parker, Alex N | Rose, Lynda M | Buckley, Brendan | Stott, David | Orru, Marco | Uda, Manuela | van der Klauw, Melanie M | Zhang, Weihua | Li, Xinzhong | Scott, James | Chen, Yii-Der Ida | Burke, Gregory L | Kähönen, Mika | Viikari, Jorma | Döring, Angela | Meitinger, Thomas | Davies, Gail | Starr, John M | Emilsson, Valur | Plump, Andrew | Lindeman, Jan H | ’t Hoen, Peter AC | König, Inke R | Felix, Janine F | Clarke, Robert | Hopewell, Jemma C | Ongen, Halit | Breteler, Monique | Debette, Stéphanie | DeStefano, Anita L | Fornage, Myriam | Mitchell, Gary F | Smith, Nicholas L | Holm, Hilma | Stefansson, Kari | Thorleifsson, Gudmar | Thorsteinsdottir, Unnur | Samani, Nilesh J | Preuss, Michael | Rudan, Igor | Hayward, Caroline | Deary, Ian J | Wichmann, H-Erich | Raitakari, Olli T | Palmas, Walter | Kooner, Jaspal S | Stolk, Ronald P | Jukema, J Wouter | Wright, Alan F | Boomsma, Dorret I | Bandinelli, Stefania | Gyllensten, Ulf B | Wilson, James F | Ferrucci, Luigi | Schmidt, Reinhold | Farrall, Martin | Spector, Tim D | Palmer, Lyle J | Tuomilehto, Jaakko | Pfeufer, Arne | Gasparini, Paolo | Siscovick, David | Altshuler, David | Loos, Ruth JF | Toniolo, Daniela | Snieder, Harold | Gieger, Christian | Meneton, Pierre | Wareham, Nicholas J | Oostra, Ben A | Metspalu, Andres | Launer, Lenore | Rettig, Rainer | Strachan, David P | Beckmann, Jacques S | Witteman, Jacqueline CM | Erdmann, Jeanette | van Dijk, Ko Willems | Boerwinkle, Eric | Boehnke, Michael | Ridker, Paul M | Jarvelin, Marjo-Riitta | Chakravarti, Aravinda | Abecasis, Goncalo R | Gudnason, Vilmundur | Newton-Cheh, Christopher | Levy, Daniel | Munroe, Patricia B | Psaty, Bruce M | Caulfield, Mark J | Rao, Dabeeru C | Tobin, Martin D | Elliott, Paul | van Duijn, Cornelia M
Nature genetics  2011;43(10):1005-1011.
Numerous genetic loci influence systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans 1-3. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N=74,064) and follow-up studies (N=48,607), we identified at genome-wide significance (P= 2.7×10-8 to P=2.3×10-13) four novel PP loci (at 4q12 near CHIC2/PDGFRAI, 7q22.3 near PIK3CG, 8q24.12 in NOV, 11q24.3 near ADAMTS-8), two novel MAP loci (3p21.31 in MAP4, 10q25.3 near ADRB1) and one locus associated with both traits (2q24.3 near FIGN) which has recently been associated with SBP in east Asians. For three of the novel PP signals, the estimated effect for SBP was opposite to that for DBP, in contrast to the majority of common SBP- and DBP-associated variants which show concordant effects on both traits. These findings indicate novel genetic mechanisms underlying blood pressure variation, including pathways that may differentially influence SBP and DBP.
doi:10.1038/ng.922
PMCID: PMC3445021  PMID: 21909110
22.  The Metabochip, a Custom Genotyping Array for Genetic Studies of Metabolic, Cardiovascular, and Anthropometric Traits 
PLoS Genetics  2012;8(8):e1002793.
Genome-wide association studies have identified hundreds of loci for type 2 diabetes, coronary artery disease and myocardial infarction, as well as for related traits such as body mass index, glucose and insulin levels, lipid levels, and blood pressure. These studies also have pointed to thousands of loci with promising but not yet compelling association evidence. To establish association at additional loci and to characterize the genome-wide significant loci by fine-mapping, we designed the “Metabochip,” a custom genotyping array that assays nearly 200,000 SNP markers. Here, we describe the Metabochip and its component SNP sets, evaluate its performance in capturing variation across the allele-frequency spectrum, describe solutions to methodological challenges commonly encountered in its analysis, and evaluate its performance as a platform for genotype imputation. The metabochip achieves dramatic cost efficiencies compared to designing single-trait follow-up reagents, and provides the opportunity to compare results across a range of related traits. The metabochip and similar custom genotyping arrays offer a powerful and cost-effective approach to follow-up large-scale genotyping and sequencing studies and advance our understanding of the genetic basis of complex human diseases and traits.
Author Summary
Recent genetic studies have identified hundreds of regions of the human genome that contribute to risk for type 2 diabetes, coronary artery disease and myocardial infarction, and to related quantitative traits such as body mass index, glucose and insulin levels, blood lipid levels, and blood pressure. These results motivate two central questions: (1) can further genetic investigation identify additional associated regions?; and (2) can more detailed genetic investigation help us identify the causal variants (or variants more strongly correlated with the causal variants) in the regions identified so far? Addressing these questions requires assaying many genetic variants in DNA samples from thousands of individuals, which is expensive and timeconsuming when done a few SNPs at a time. To facilitate these investigations, we designed the “Metabochip,” a custom genotyping array that assays variation in nearly 200,000 sites in the human genome. Here we describe the Metabochip, evaluate its performance in assaying human genetic variation, and describe solutions to methodological challenges commonly encountered in its analysis.
doi:10.1371/journal.pgen.1002793
PMCID: PMC3410907  PMID: 22876189
23.  Genome-wide meta-analysis of common variant differences between men and women 
Boraska, Vesna | Jerončić, Ana | Colonna, Vincenza | Southam, Lorraine | Nyholt, Dale R. | William Rayner, Nigel | Perry, John R.B. | Toniolo, Daniela | Albrecht, Eva | Ang, Wei | Bandinelli, Stefania | Barbalic, Maja | Barroso, Inês | Beckmann, Jacques S. | Biffar, Reiner | Boomsma, Dorret | Campbell, Harry | Corre, Tanguy | Erdmann, Jeanette | Esko, Tõnu | Fischer, Krista | Franceschini, Nora | Frayling, Timothy M. | Girotto, Giorgia | Gonzalez, Juan R. | Harris, Tamara B. | Heath, Andrew C. | Heid, Iris M. | Hoffmann, Wolfgang | Hofman, Albert | Horikoshi, Momoko | Hua Zhao, Jing | Jackson, Anne U. | Hottenga, Jouke-Jan | Jula, Antti | Kähönen, Mika | Khaw, Kay-Tee | Kiemeney, Lambertus A. | Klopp, Norman | Kutalik, Zoltán | Lagou, Vasiliki | Launer, Lenore J. | Lehtimäki, Terho | Lemire, Mathieu | Lokki, Marja-Liisa | Loley, Christina | Luan, Jian'an | Mangino, Massimo | Mateo Leach, Irene | Medland, Sarah E. | Mihailov, Evelin | Montgomery, Grant W. | Navis, Gerjan | Newnham, John | Nieminen, Markku S. | Palotie, Aarno | Panoutsopoulou, Kalliope | Peters, Annette | Pirastu, Nicola | Polašek, Ozren | Rehnström, Karola | Ripatti, Samuli | Ritchie, Graham R.S. | Rivadeneira, Fernando | Robino, Antonietta | Samani, Nilesh J. | Shin, So-Youn | Sinisalo, Juha | Smit, Johannes H. | Soranzo, Nicole | Stolk, Lisette | Swinkels, Dorine W. | Tanaka, Toshiko | Teumer, Alexander | Tönjes, Anke | Traglia, Michela | Tuomilehto, Jaakko | Valsesia, Armand | van Gilst, Wiek H. | van Meurs, Joyce B.J. | Smith, Albert Vernon | Viikari, Jorma | Vink, Jacqueline M. | Waeber, Gerard | Warrington, Nicole M. | Widen, Elisabeth | Willemsen, Gonneke | Wright, Alan F. | Zanke, Brent W. | Zgaga, Lina | Boehnke, Michael | d'Adamo, Adamo Pio | de Geus, Eco | Demerath, Ellen W. | den Heijer, Martin | Eriksson, Johan G. | Ferrucci, Luigi | Gieger, Christian | Gudnason, Vilmundur | Hayward, Caroline | Hengstenberg, Christian | Hudson, Thomas J. | Järvelin, Marjo-Riitta | Kogevinas, Manolis | Loos, Ruth J.F. | Martin, Nicholas G. | Metspalu, Andres | Pennell, Craig E. | Penninx, Brenda W. | Perola, Markus | Raitakari, Olli | Salomaa, Veikko | Schreiber, Stefan | Schunkert, Heribert | Spector, Tim D. | Stumvoll, Michael | Uitterlinden, André G. | Ulivi, Sheila | van der Harst, Pim | Vollenweider, Peter | Völzke, Henry | Wareham, Nicholas J. | Wichmann, H.-Erich | Wilson, James F. | Rudan, Igor | Xue, Yali | Zeggini, Eleftheria
Human Molecular Genetics  2012;21(21):4805-4815.
The male-to-female sex ratio at birth is constant across world populations with an average of 1.06 (106 male to 100 female live births) for populations of European descent. The sex ratio is considered to be affected by numerous biological and environmental factors and to have a heritable component. The aim of this study was to investigate the presence of common allele modest effects at autosomal and chromosome X variants that could explain the observed sex ratio at birth. We conducted a large-scale genome-wide association scan (GWAS) meta-analysis across 51 studies, comprising overall 114 863 individuals (61 094 women and 53 769 men) of European ancestry and 2 623 828 common (minor allele frequency >0.05) single-nucleotide polymorphisms (SNPs). Allele frequencies were compared between men and women for directly-typed and imputed variants within each study. Forward-time simulations for unlinked, neutral, autosomal, common loci were performed under the demographic model for European populations with a fixed sex ratio and a random mating scheme to assess the probability of detecting significant allele frequency differences. We do not detect any genome-wide significant (P < 5 × 10−8) common SNP differences between men and women in this well-powered meta-analysis. The simulated data provided results entirely consistent with these findings. This large-scale investigation across ∼115 000 individuals shows no detectable contribution from common genetic variants to the observed skew in the sex ratio. The absence of sex-specific differences is useful in guiding genetic association study design, for example when using mixed controls for sex-biased traits.
doi:10.1093/hmg/dds304
PMCID: PMC3471397  PMID: 22843499
24.  A genome-wide association meta-analysis identifies new childhood obesity loci 
Bradfield, Jonathan P. | Taal, H. Rob | Timpson, Nicholas J. | Scherag, André | Lecoeur, Cecile | Warrington, Nicole M. | Hypponen, Elina | Holst, Claus | Valcarcel, Beatriz | Thiering, Elisabeth | Salem, Rany M. | Schumacher, Fredrick R. | Cousminer, Diana L. | Sleiman, Patrick M.A. | Zhao, Jianhua | Berkowitz, Robert I. | Vimaleswaran, Karani S. | Jarick, Ivonne | Pennell, Craig E. | Evans, David M. | St. Pourcain, Beate | Berry, Diane J. | Mook-Kanamori, Dennis O | Hofman, Albert | Rivadeinera, Fernando | Uitterlinden, André G. | van Duijn, Cornelia M. | van der Valk, Ralf J.P. | de Jongste, Johan C. | Postma, Dirkje S. | Boomsma, Dorret I. | Gauderman, William J. | Hassanein, Mohamed T. | Lindgren, Cecilia M. | Mägi, Reedik | Boreham, Colin A.G. | Neville, Charlotte E. | Moreno, Luis A. | Elliott, Paul | Pouta, Anneli | Hartikainen, Anna-Liisa | Li, Mingyao | Raitakari, Olli | Lehtimäki, Terho | Eriksson, Johan G. | Palotie, Aarno | Dallongeville, Jean | Das, Shikta | Deloukas, Panos | McMahon, George | Ring, Susan M. | Kemp, John P. | Buxton, Jessica L. | Blakemore, Alexandra I.F. | Bustamante, Mariona | Guxens, Mònica | Hirschhorn, Joel N. | Gillman, Matthew W. | Kreiner-Møller, Eskil | Bisgaard, Hans | Gilliland, Frank D. | Heinrich, Joachim | Wheeler, Eleanor | Barroso, Inês | O'Rahilly, Stephen | Meirhaeghe, Aline | Sørensen, Thorkild I.A. | Power, Chris | Palmer, Lyle J. | Hinney, Anke | Widen, Elisabeth | Farooqi, I. Sadaf | McCarthy, Mark I. | Froguel, Philippe | Meyre, David | Hebebrand, Johannes | Jarvelin, Marjo-Riitta | Jaddoe, Vincent W.V. | Smith, George Davey | Hakonarson, Hakon | Grant, Struan F.A.
Nature Genetics  2012;44(5):526-531.
Multiple genetic variants have been associated with adult obesity and a few with severe obesity in childhood; however, less progress has been made to establish genetic influences on common early-onset obesity. We performed a North American-Australian-European collaborative meta-analysis of fourteen studies consisting of 5,530 cases (≥95th percentile of body mass index (BMI)) and 8,318 controls (<50th percentile of BMI) of European ancestry. Taking forward the eight novel signals yielding association with P < 5×10−6 in to nine independent datasets (n = 2,818 cases and 4,083 controls) we observed two loci that yielded a genome wide significant combined P-value, namely near OLFM4 on 13q14 (rs9568856; P=1.82×10−9; OR=1.22) and within HOXB5 on 17q21 (rs9299; P=3.54×10−9; OR=1.14). Both loci continued to show association when including two extreme childhood obesity cohorts (n = 2,214 cases and 2,674 controls). Finally, these two loci yielded directionally consistent associations in the GIANT meta-analysis of adult BMI1.
doi:10.1038/ng.2247
PMCID: PMC3370100  PMID: 22484627
25.  Genome-wide association and large scale follow-up identifies 16 new loci influencing lung function 
Artigas, María Soler | Loth, Daan W | Wain, Louise V | Gharib, Sina A | Obeidat, Ma’en | Tang, Wenbo | Zhai, Guangju | Zhao, Jing Hua | Smith, Albert Vernon | Huffman, Jennifer E | Albrecht, Eva | Jackson, Catherine M | Evans, David M | Cadby, Gemma | Fornage, Myriam | Manichaikul, Ani | Lopez, Lorna M | Johnson, Toby | Aldrich, Melinda C | Aspelund, Thor | Barroso, Inês | Campbell, Harry | Cassano, Patricia A | Couper, David J | Eiriksdottir, Gudny | Franceschini, Nora | Garcia, Melissa | Gieger, Christian | Gislason, Gauti Kjartan | Grkovic, Ivica | Hammond, Christopher J | Hancock, Dana B | Harris, Tamara B | Ramasamy, Adaikalavan | Heckbert, Susan R | Heliövaara, Markku | Homuth, Georg | Hysi, Pirro G | James, Alan L | Jankovic, Stipan | Joubert, Bonnie R | Karrasch, Stefan | Klopp, Norman | Koch, Beate | Kritchevsky, Stephen B | Launer, Lenore J | Liu, Yongmei | Loehr, Laura R | Lohman, Kurt | Loos, Ruth JF | Lumley, Thomas | Al Balushi, Khalid A | Ang, Wei Q | Barr, R Graham | Beilby, John | Blakey, John D | Boban, Mladen | Boraska, Vesna | Brisman, Jonas | Britton, John R | Brusselle, Guy G | Cooper, Cyrus | Curjuric, Ivan | Dahgam, Santosh | Deary, Ian J | Ebrahim, Shah | Eijgelsheim, Mark | Francks, Clyde | Gaysina, Darya | Granell, Raquel | Gu, Xiangjun | Hankinson, John L | Hardy, Rebecca | Harris, Sarah E | Henderson, John | Henry, Amanda | Hingorani, Aroon D | Hofman, Albert | Holt, Patrick G | Hui, Jennie | Hunter, Michael L | Imboden, Medea | Jameson, Karen A | Kerr, Shona M | Kolcic, Ivana | Kronenberg, Florian | Liu, Jason Z | Marchini, Jonathan | McKeever, Tricia | Morris, Andrew D | Olin, Anna-Carin | Porteous, David J | Postma, Dirkje S | Rich, Stephen S | Ring, Susan M | Rivadeneira, Fernando | Rochat, Thierry | Sayer, Avan Aihie | Sayers, Ian | Sly, Peter D | Smith, George Davey | Sood, Akshay | Starr, John M | Uitterlinden, André G | Vonk, Judith M | Wannamethee, S Goya | Whincup, Peter H | Wijmenga, Cisca | Williams, O Dale | Wong, Andrew | Mangino, Massimo | Marciante, Kristin D | McArdle, Wendy L | Meibohm, Bernd | Morrison, Alanna C | North, Kari E | Omenaas, Ernst | Palmer, Lyle J | Pietiläinen, Kirsi H | Pin, Isabelle | Polašek, Ozren | Pouta, Anneli | Psaty, Bruce M | Hartikainen, Anna-Liisa | Rantanen, Taina | Ripatti, Samuli | Rotter, Jerome I | Rudan, Igor | Rudnicka, Alicja R | Schulz, Holger | Shin, So-Youn | Spector, Tim D | Surakka, Ida | Vitart, Veronique | Völzke, Henry | Wareham, Nicholas J | Warrington, Nicole M | Wichmann, H-Erich | Wild, Sarah H | Wilk, Jemma B | Wjst, Matthias | Wright, Alan F | Zgaga, Lina | Zemunik, Tatijana | Pennell, Craig E | Nyberg, Fredrik | Kuh, Diana | Holloway, John W | Boezen, H Marike | Lawlor, Debbie A | Morris, Richard W | Probst-Hensch, Nicole | Kaprio, Jaakko | Wilson, James F | Hayward, Caroline | Kähönen, Mika | Heinrich, Joachim | Musk, Arthur W | Jarvis, Deborah L | Gläser, Sven | Järvelin, Marjo-Riitta | Stricker, Bruno H Ch | Elliott, Paul | O’Connor, George T | Strachan, David P | London, Stephanie J | Hall, Ian P | Gudnason, Vilmundur | Tobin, Martin D
Nature Genetics  2011;43(11):1082-1090.
Pulmonary function measures reflect respiratory health and predict mortality, and are used in the diagnosis of chronic obstructive pulmonary disease (COPD). We tested genome-wide association with the forced expiratory volume in 1 second (FEV1) and the ratio of FEV1 to forced vital capacity (FVC) in 48,201 individuals of European ancestry, with follow-up of top associations in up to an additional 46,411 individuals. We identified new regions showing association (combined P<5×10−8) with pulmonary function, in or near MFAP2, TGFB2, HDAC4, RARB, MECOM (EVI1), SPATA9, ARMC2, NCR3, ZKSCAN3, CDC123, C10orf11, LRP1, CCDC38, MMP15, CFDP1, and KCNE2. Identification of these 16 new loci may provide insight into the molecular mechanisms regulating pulmonary function and into molecular targets for future therapy to alleviate reduced lung function.
doi:10.1038/ng.941
PMCID: PMC3267376  PMID: 21946350

Results 1-25 (78)