PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Protein phosphatase 2a (PP2A) binds within the oligomerization domain of striatin and regulates the phosphorylation and activation of the mammalian Ste20-Like kinase Mst3 
BMC Biochemistry  2011;12:54.
Background
Striatin, a putative protein phosphatase 2A (PP2A) B-type regulatory subunit, is a multi-domain scaffolding protein that has recently been linked to several diseases including cerebral cavernous malformation (CCM), which causes symptoms ranging from headaches to stroke. Striatin association with the PP2A A/C (structural subunit/catalytic subunit) heterodimer alters PP2A substrate specificity, but targets and roles of striatin-associated PP2A are not known. In addition to binding the PP2A A/C heterodimer to form a PP2A holoenzyme, striatin associates with cerebral cavernous malformation 3 (CCM3) protein, the mammalian Mps one binder (MOB) homolog, Mob3/phocein, the mammalian sterile 20-like (Mst) kinases, Mst3, Mst4 and STK25, and several other proteins to form a large signaling complex. Little is known about the molecular architecture of the striatin complex and the regulation of these sterile 20-like kinases.
Results
To help define the molecular organization of striatin complexes and to determine whether Mst3 might be negatively regulated by striatin-associated PP2A, a structure-function analysis of striatin was performed. Two distinct regions of striatin are capable of stably binding directly or indirectly to Mob3--one N-terminal, including the coiled-coil domain, and another more C-terminal, including the WD-repeat domain. In addition, striatin residues 191-344 contain determinants necessary for efficient association of Mst3, Mst4, and CCM3. PP2A associates with the coiled-coil domain of striatin, but unlike Mob3 and Mst3, its binding appears to require striatin oligomerization. Deletion of the caveolin-binding domain on striatin abolishes striatin family oligomerization and PP2A binding. Point mutations in striatin that disrupt PP2A association cause hyperphosphorylation and activation of striatin-associated Mst3.
Conclusions
Striatin orchestrates the regulation of Mst3 by PP2A. It binds Mst3 likely as a dimer with CCM3 via residues lying between striatin's calmodulin-binding and WD-domains and recruits the PP2A A/C heterodimer to its coiled-coil/oligomerization domain. Residues outside the previously reported coiled-coil domain of striatin are necessary for its oligomerization. Striatin-associated PP2A is critical for Mst3 dephosphorylation and inactivation. Upon inhibition of PP2A, Mst3 activation appears to involve autophosphorylation of multiple activation loop phosphorylation sites. Mob3 can associate with striatin sequences C-terminal to the Mst3 binding site but also with sequences proximal to striatin-associated PP2A, consistent with a possible role for Mob 3 in the regulation of Mst3 by PP2A.
doi:10.1186/1471-2091-12-54
PMCID: PMC3217859  PMID: 21985334
2.  RegA proteins from phage T4 and RB69 have conserved helix–loop groove RNA binding motifs but different RNA binding specificities 
Nucleic Acids Research  2001;29(5):1175-1184.
The RegA proteins from the bacteriophage T4 and RB69 are translational repressors that control the expression of multiple phage mRNAs. RegA proteins from the two phages share 78% sequence identity; however, in vivo expression studies have suggested that the RB69 RegA protein binds target RNAs with a higher affinity than T4 RegA protein. To study the RNA binding properties of T4 and RB69 RegA proteins more directly, the binding sites of RB69 RegA protein on synthetic RNAs corresponding to the translation initiation region of two RB69 target genes were mapped by RNase protection assays. These assays revealed that RB69 RegA protein protects nucleotides –9 to –3 (relative to the start codon) on RB69 gene 44, which contains the sequence GAAAAUU. On RB69 gene 45, the protected site (nucleotides –8 to –3) contains a similar purine-rich sequence: GAAAUA. Interestingly, T4 RegA protein protected the same nucleotides on these RNAs. To examine the specificity of RNA binding, quantitative RNA gel shift assays were performed with synthetic RNAs corresponding to recognition elements (REs) in three T4 and three RB69 mRNAs. Comparative gel shift assays demonstrated that RB69 RegA protein has an ∼7-fold higher affinity for T4 gene 44 RE RNA than T4 RegA protein. RB69 RegA protein also binds RB69 gene 44 RE RNA with a 4-fold higher affinity than T4 RegA protein. On the other hand, T4 RegA exhibited a higher affinity than RB69 RegA protein for RB69 gene 45 RE RNA. With respect to their affinities for cognate RNAs, both RegA proteins exhibited the following hierarchy of affinities: gene 44 > gene 45 > regA. Interestingly, T4 RegA exhibited the highest affinity towards RB69 gene 45 RE RNA, whereas RB69 RegA protein had the highest affinity for T4 gene 44 RE RNA. The helix–loop groove RNA binding motif of T4 RegA protein is fully conserved in RB69 RegA protein. However, homology modeling of the structure of RB69 RegA protein reveals that the divergent residues are clustered in two areas of the surface, and that there are two large areas of high conservation near the helix–loop groove, which may also play a role in RNA binding.
PMCID: PMC29736  PMID: 11222767

Results 1-2 (2)