PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Effects of Promyelocytic Leukemia Protein on Virus-Host Balance 
Journal of Virology  2002;76(8):3810-3818.
The cellular promyelocytic leukemia protein (PML) associates with the proteins of several viruses and in some cases reduces viral propagation in cell culture. To examine the role of PML in vivo, we compared immune responses and virus loads of PML-deficient and control mice infected with lymphocytic choriomeningitis virus (LCMV) and vesicular stomatitis virus (VSV). PML−/− mice exhibited accelerated primary footpad swelling reactions to very-low-dose LCMV, higher swelling peaks upon high-dose inoculation, and higher viral loads in the early phase of systemic LCMV infection. T-cell-mediated hepatitis and consequent mortality upon infection with a hepatotropic LCMV strain required 10- to 100-times-lower inocula despite normal cytotoxic T-lymphocyte reactivity in PML−/− mice. Furthermore, PML deficiency rendered mice 10 times more susceptible to lethal immunopathology upon intracerebral LCMV inoculation. Accordingly, 10-times-lower VSV inocula elicited specific neutralizing-antibody responses, a replication-based effect not observed with inactivated virus or after immunization with recombinant VSV glycoprotein. These in vivo observations corroborated our results showing more virus production in PML−/− fibroblasts. Thus, PML is a contributor to innate immunity, defining host susceptibility to viral infections and to immunopathology.
doi:10.1128/JVI.76.8.3810-3818.2002
PMCID: PMC136073  PMID: 11907221
2.  Fes-Cre Targets Phosphatidylinositol Glycan Class a (Piga) Inactivation to Hematopoietic Stem Cells in the Bone Marrow 
A somatic mutation in the X-linked phosphatidylinositol glycan class A (PIGA) gene causes the loss of glycosyl phosphatidylinositol (GPI)-linked proteins on blood cells from patients with paroxysmal nocturnal hemoglobinuria. Because all blood cell lineages may be affected it is thought that the mutation occurs in a hematopoietic stem cell. In transgenic mice, germline transmission of an inactive Piga gene is embryonic lethal. To inactivate the murine Piga gene in early hematopoiesis we therefore chose conditional gene inactivation using the Cre/loxP system. We expressed Cre recombinase under the transcription regulatory sequences of the human c-fes gene. FES-Cre inactivated PIGA in hematopoietic cells of mice carrying a floxed Piga allele (LF mice). PIGA− cells were found in all hematopoietic lineages of definitive but not primitive hematopoiesis. Their proportions were low in newborn mice but subsequently increased continuously to produce for the first time mice that have almost exclusively PIGA− blood cells. The loss of GPI-linked proteins occurred mainly in c-kit+CD34+Lin− progenitor cells before the CFU-GEMM stage. Using bone marrow reconstitution experiments with purified PIGA− cells we demonstrate that LF mice have long-term bone marrow repopulating cells that lack GPI-linked proteins, indicating that recombination of the floxed Piga allele occurs in the hematopoietic stem cell.
PMCID: PMC2195941  PMID: 11535627
hematopoiesis; stem cell; c-fes; paroxysmal nocturnal hemoglobinuria; conditional gene inactivation
3.  A metabolic prosurvival role for PML in breast cancer  
The Journal of Clinical Investigation  2012;122(9):3088-3100.
Cancer cells exhibit an aberrant metabolism that facilitates more efficient production of biomass and hence tumor growth and progression. However, the genetic cues modulating this metabolic switch remain largely undetermined. We identified a metabolic function for the promyelocytic leukemia (PML) gene, uncovering an unexpected role for this bona fide tumor suppressor in breast cancer cell survival. We found that PML acted as both a negative regulator of PPARγ coactivator 1A (PGC1A) acetylation and a potent activator of PPAR signaling and fatty acid oxidation. We further showed that PML promoted ATP production and inhibited anoikis. Importantly, PML expression allowed luminal filling in 3D basement membrane breast culture models, an effect that was reverted by the pharmacological inhibition of fatty acid oxidation. Additionally, immunohistochemical analysis of breast cancer biopsies revealed that PML was overexpressed in a subset of breast cancers and enriched in triple-negative cases. Indeed, PML expression in breast cancer correlated strikingly with reduced time to recurrence, a gene signature of poor prognosis, and activated PPAR signaling. These findings have important therapeutic implications, as PML and its key role in fatty acid oxidation metabolism are amenable to pharmacological suppression, a potential future mode of cancer prevention and treatment.
doi:10.1172/JCI62129
PMCID: PMC3433768  PMID: 22886304

Results 1-3 (3)