PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Neural correlates of auditory temporal predictions during sensorimotor synchronization 
Musical ensemble performance requires temporally precise interpersonal action coordination. To play in synchrony, ensemble musicians presumably rely on anticipatory mechanisms that enable them to predict the timing of sounds produced by co-performers. Previous studies have shown that individuals differ in their ability to predict upcoming tempo changes in paced finger-tapping tasks (indexed by cross-correlations between tap timing and pacing events) and that the degree of such prediction influences the accuracy of sensorimotor synchronization (SMS) and interpersonal coordination in dyadic tapping tasks. The current functional magnetic resonance imaging study investigated the neural correlates of auditory temporal predictions during SMS in a within-subject design. Hemodynamic responses were recorded from 18 musicians while they tapped in synchrony with auditory sequences containing gradual tempo changes under conditions of varying cognitive load (achieved by a simultaneous visual n-back working-memory task comprising three levels of difficulty: observation only, 1-back, and 2-back object comparisons). Prediction ability during SMS decreased with increasing cognitive load. Results of a parametric analysis revealed that the generation of auditory temporal predictions during SMS recruits (1) a distributed network of cortico-cerebellar motor-related brain areas (left dorsal premotor and motor cortex, right lateral cerebellum, SMA proper and bilateral inferior parietal cortex) and (2) medial cortical areas (medial prefrontal cortex, posterior cingulate cortex). While the first network is presumably involved in basic sensory prediction, sensorimotor integration, motor timing, and temporal adaptation, activation in the second set of areas may be related to higher-level social-cognitive processes elicited during action coordination with auditory signals that resemble music performed by human agents.
doi:10.3389/fnhum.2013.00380
PMCID: PMC3748321  PMID: 23970857
temporal prediction; sensorimotor synchronization; medial prefrontal cortex; motor timing; dual-task interference
2.  Synchronized Drumming Enhances Activity in the Caudate and Facilitates Prosocial Commitment - If the Rhythm Comes Easily 
PLoS ONE  2011;6(11):e27272.
Why does chanting, drumming or dancing together make people feel united? Here we investigate the neural mechanisms underlying interpersonal synchrony and its subsequent effects on prosocial behavior among synchronized individuals. We hypothesized that areas of the brain associated with the processing of reward would be active when individuals experience synchrony during drumming, and that these reward signals would increase prosocial behavior toward this synchronous drum partner. 18 female non-musicians were scanned with functional magnetic resonance imaging while they drummed a rhythm, in alternating blocks, with two different experimenters: one drumming in-synchrony and the other out-of-synchrony relative to the participant. In the last scanning part, which served as the experimental manipulation for the following prosocial behavioral test, one of the experimenters drummed with one half of the participants in-synchrony and with the other out-of-synchrony. After scanning, this experimenter “accidentally” dropped eight pencils, and the number of pencils collected by the participants was used as a measure of prosocial commitment. Results revealed that participants who mastered the novel rhythm easily before scanning showed increased activity in the caudate during synchronous drumming. The same area also responded to monetary reward in a localizer task with the same participants. The activity in the caudate during experiencing synchronous drumming also predicted the number of pencils the participants later collected to help the synchronous experimenter of the manipulation run. In addition, participants collected more pencils to help the experimenter when she had drummed in-synchrony than out-of-synchrony during the manipulation run. By showing an overlap in activated areas during synchronized drumming and monetary reward, our findings suggest that interpersonal synchrony is related to the brain's reward system.
doi:10.1371/journal.pone.0027272
PMCID: PMC3217964  PMID: 22110623
3.  The Perception of Musical Spontaneity in Improvised and Imitated Jazz Performances 
The ability to evaluate spontaneity in human behavior is called upon in the esthetic appreciation of dramatic arts and music. The current study addresses the behavioral and brain mechanisms that mediate the perception of spontaneity in music performance. In a functional magnetic resonance imaging experiment, 22 jazz musicians listened to piano melodies and judged whether they were improvised or imitated. Judgment accuracy (mean 55%; range 44–65%), which was low but above chance, was positively correlated with musical experience and empathy. Analysis of listeners’ hemodynamic responses revealed that amygdala activation was stronger for improvisations than imitations. This activation correlated with the variability of performance timing and intensity (loudness) in the melodies, suggesting that the amygdala is involved in the detection of behavioral uncertainty. An analysis based on the subjective classification of melodies according to listeners’ judgments revealed that a network including the pre-supplementary motor area, frontal operculum, and anterior insula was most strongly activated for melodies judged to be improvised. This may reflect the increased engagement of an action simulation network when melodic predictions are rendered challenging due to perceived instability in the performer's actions. Taken together, our results suggest that, while certain brain regions in skilled individuals may be generally sensitive to objective cues to spontaneity in human behavior, the ability to evaluate spontaneity accurately depends upon whether an individual's action-related experience and perspective taking skills enable faithful internal simulation of the given behavior.
doi:10.3389/fpsyg.2011.00083
PMCID: PMC3125527  PMID: 21738518
music; improvisation; spontaneity; uncertainty; amygdala; action simulation; human fMRI
4.  Functional dissociation of ventral frontal and dorsomedial default mode network components during resting state and emotional autobiographical recall 
Human Brain Mapping  2013;35(7):3302-3313.
Humans spend a substantial share of their lives mind-wandering. This spontaneous thinking activity usually comprises autobiographical recall, emotional, and self-referential components. While neuroimaging studies have demonstrated that a specific brain “default mode network” (DMN) is consistently engaged by the “resting state” of the mind, the relative contribution of key cognitive components to DMN activity is still poorly understood. Here we used fMRI to investigate whether activity in neural components of the DMN can be differentially explained by active recall of relevant emotional autobiographical memories as compared with the resting state. Our study design combined emotional autobiographical memory, neutral memory and resting state conditions, separated by a serial subtraction control task. Shared patterns of activation in the DMN were observed in both emotional autobiographical and resting conditions, when compared with serial subtraction. Directly contrasting autobiographical and resting conditions demonstrated a striking dissociation within the DMN in that emotional autobiographical retrieval led to stronger activation of the dorsomedial core regions (medial prefrontal cortex, posterior cingulate cortex), whereas the resting state condition engaged a ventral frontal network (ventral striatum, subgenual and ventral anterior cingulate cortices) in addition to the IPL. Our results reveal an as yet unreported dissociation within the DMN. Whereas the dorsomedial component can be explained by emotional autobiographical memory, the ventral frontal one is predominantly associated with the resting state proper, possibly underlying fundamental motivational mechanisms engaged during spontaneous unconstrained ideation. Hum Brain Mapp 35:3302–3313, 2014. © 2013 Wiley Periodicals, Inc.
doi:10.1002/hbm.22403
PMCID: PMC4216410  PMID: 25050426
fMRI; default mode; autobiographical memory; emotion; functional dissociation

Results 1-4 (4)