PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Exploring the possibility of early cataract diagnostics based on tryptophan fluorescence 
A novel route for early cataract diagnostics is investigated based on the excitation of tryptophan fluorescence (TF) at the red edge of its absorption band at 317 nm. This allows penetration through the cornea and aqueous humour to provide excitation of the ocular lens. The steepness of the red edge gives the potential of depth control of the lens excitation. Such wavelength selection targets the population of tryptophan residues, side chains of which are exposed to the polar aqueous environment. The TF emissions around 350 nm of a series of UV-irradiated as well as control lenses were observed. TF spectra of the UV cases were red-shifted and the intensity decreased with the radiation dose. In contrast, intensity of non-tryptophan emission with maximum at 435 nm exhibited an increase suggesting photochemical conversion of the tryptophan population to 435 nm emitting molecules. We demonstrate that the ratio of intensities at 435 nm to that around 350 nm can be used as a measure of early structural changes caused by UV irradiation in the lens by comparison with images from a conventional slit-lamp, which can only detect defects of optical wavelength size. Such diagnostics at a molecular level could aid research on cataract risk investigation and possible pharmacological research as well as assisting surgical lens replacement decisions.
doi:10.1098/rsif.2010.0608
PMCID: PMC3177609  PMID: 21508010
cataract; diagnostics; tryptophan fluorescence
2.  Blunting of AICAR-induced human skeletal muscle glucose uptake in type 2 diabetes is dependent on age rather than diabetic status 
We demonstrated previously that, in healthy young men, 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR) stimulates human muscle 2-deoxyglucose (2DG) uptake without detectable activation of muscle AMP-activated protein kinase (AMPK) but with extracellular-regulated kinase 1/2 (ERK1/2) activation. We tested whether AICAR stimulates muscle 2DG uptake in healthy older patients with or without type 2 diabetes (T2D). Six healthy young subjects (23 ± 3 yr, BMI 25 ± 2 kg/m−2; means ± SE), eight older subjects (59 ± 4 yr, BMI 28 ± 2 kg/m−2), and eight subjects with T2D (62 ± 4 yr, BMI 27 ± 2 kg/m−2) received a 6-h 2DG infusion (prime 10 mg/kg, 6 mg·kg−1·h−1) and AICAR (10 or 20 mg·kg−1·h−1) from 3 to 6 h. Quadriceps biopsies were taken at 0, 3, and 6 h. We determined 1) 2DG uptake, 2) total AMPKα activity, AMPK, acetyl-CoA carboxylase (ACC), and AS160 phosphorylation, and 3) ERK1/2 phosphorylation. Ten milligrams per kilogram per hour AICAR increased 2DG uptake by 2.9 ± 0.7-fold in young men (P < 0.001), 1.8 ± 0.2-fold in older men (P < 0.01), and 1.6 ± 0.1-fold in men with T2D; 20 mg·kg−1·h−1 AICAR increases were 2.5 ± 0.1-fold (older men, P < 0.001) and 2.2 ± 0.2-fold (men with T2D, P < 0.001). At 3-h AMPK activity and AMPK, ACC and AS160 phosphorylation were unchanged, but ERK1/2 phosphorylation increased at both AICAR doses. The fold changes of ERK1/2 phosphorylation and 2DG uptake closely correlated (R2 = 0.55, P = 0.003). AICAR stimulates muscle 2DG uptake in T2D to the same extent as in healthy age-matched controls, but there is an age-related reduction.
doi:10.1152/ajpendo.90811.2008
PMCID: PMC2681307  PMID: 19190259
5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside; adenosine 5′-monophosphate-activated protein kinase; extracellular-signal-regulated kinase 1/2
3.  Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in type 2 diabetes 
Genome Medicine  2010;2(2):9.
Background
Skeletal muscle insulin resistance (IR) is considered a critical component of type II diabetes, yet to date IR has evaded characterization at the global gene expression level in humans. MicroRNAs (miRNAs) are considered fine-scale rheostats of protein-coding gene product abundance. The relative importance and mode of action of miRNAs in human complex diseases remains to be fully elucidated. We produce a global map of coding and non-coding RNAs in human muscle IR with the aim of identifying novel disease biomarkers.
Methods
We profiled >47,000 mRNA sequences and >500 human miRNAs using gene-chips and 118 subjects (n = 71 patients versus n = 47 controls). A tissue-specific gene-ranking system was developed to stratify thousands of miRNA target-genes, removing false positives, yielding a weighted inhibitor score, which integrated the net impact of both up- and down-regulated miRNAs. Both informatic and protein detection validation was used to verify the predictions of in vivo changes.
Results
The muscle mRNA transcriptome is invariant with respect to insulin or glucose homeostasis. In contrast, a third of miRNAs detected in muscle were altered in disease (n = 62), many changing prior to the onset of clinical diabetes. The novel ranking metric identified six canonical pathways with proven links to metabolic disease while the control data demonstrated no enrichment. The Benjamini-Hochberg adjusted Gene Ontology profile of the highest ranked targets was metabolic (P < 7.4 × 10-8), post-translational modification (P < 9.7 × 10-5) and developmental (P < 1.3 × 10-6) processes. Protein profiling of six development-related genes validated the predictions. Brain-derived neurotrophic factor protein was detectable only in muscle satellite cells and was increased in diabetes patients compared with controls, consistent with the observation that global miRNA changes were opposite from those found during myogenic differentiation.
Conclusions
We provide evidence that IR in humans may be related to coordinated changes in multiple microRNAs, which act to target relevant signaling pathways. It would appear that miRNAs can produce marked changes in target protein abundance in vivo by working in a combinatorial manner. Thus, miRNA detection represents a new molecular biomarker strategy for insulin resistance, where micrograms of patient material is needed to monitor efficacy during drug or life-style interventions.
doi:10.1186/gm130
PMCID: PMC2847700  PMID: 20353613
4.  Extremely short duration high intensity interval training substantially improves insulin action in young healthy males 
Background
Traditional high volume aerobic exercise training reduces cardiovascular and metabolic disease risk but involves a substantial time commitment. Extremely low volume high-intensity interval training (HIT) has recently been demonstrated to produce improvements to aerobic function, but it is unknown whether HIT has the capacity to improve insulin action and hence glycemic control.
Methods
Sixteen young men (age: 21 ± 2 y; BMI: 23.7 ± 3.1 kg·m-2; VO2peak: 48 ± 9 ml·kg-1·min-1) performed 2 weeks of supervised HIT comprising of a total of 15 min of exercise (6 sessions; 4–6 × 30-s cycle sprints per session). Aerobic performance (250-kJ self-paced cycling time trial), and glucose, insulin and NEFA responses to a 75-g oral glucose load (oral glucose tolerance test; OGTT) were determined before and after training.
Results
Following 2 weeks of HIT, the area under the plasma glucose, insulin and NEFA concentration-time curves were all reduced (12%, 37%, 26% respectively, all P < 0.001). Fasting plasma insulin and glucose concentrations remained unchanged, but there was a tendency for reduced fasting plasma NEFA concentrations post-training (pre: 350 ± 36 v post: 290 ± 39 μmol·l-1, P = 0.058). Insulin sensitivity, as measured by the Cederholm index, was improved by 23% (P < 0.01), while aerobic cycling performance improved by ~6% (P < 0.01).
Conclusion
The efficacy of a high intensity exercise protocol, involving only ~250 kcal of work each week, to substantially improve insulin action in young sedentary subjects is remarkable. This novel time-efficient training paradigm can be used as a strategy to reduce metabolic risk factors in young and middle aged sedentary populations who otherwise would not adhere to time consuming traditional aerobic exercise regimes.
doi:10.1186/1472-6823-9-3
PMCID: PMC2640399  PMID: 19175906

Results 1-4 (4)