Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  CD2-associated protein regulates plasmacytoid dendritic cell migration, but is dispensable for their development and cytokine production 
Journal of immunology (Baltimore, Md. : 1950)  2013;191(12):10.4049/jimmunol.1300454.
Plasmacytoid dendritic cells (pDCs) are a dendritic cell subset that secrete type I interferons (IFNs) in response to microbial stimuli. The scaffold protein, CD2-associated protein (CD2AP), is a marker of human pDCs as it is highly expressed in this cell type. Recently, in human pDCs, decreased CD2AP expression appeared to enhance the production of type I IFNs via an inhibitory receptor-induced signaling cascade. Here, we sought to determine the role of CD2AP in murine pDCs using CD2AP knockout (KO) mice. CD2AP was dispensable for the development of pDCs and for the upregulation of activation markers following stimulation. Loss of CD2AP expression did not affect the production of type I IFNs stimulated by TLR ligation, and only slightly impaired type I IFN production when inhibitory pathways were engaged in vitro. This was also confirmed by showing that CD2AP deficiency did not influence type I IFN production by pDCs in vivo. Since CD2AP plays a role in regulating actin dynamics, we examined the actin cytoskeleton in pDCs and found that activated CD2AP KO pDCs had significantly higher levels of actin polymerization than WT pDCs. Using two different inflammation models, we found that CD2AP KO pDCs have a defect in lymph node migration, correlating with the defects in actin dynamics. Our work excludes a role for CD2AP in the regulation of type I IFNs in pDCs, and suggests that the major function of CD2AP is on the actin cytoskeleton, affecting migration to local lymph nodes under conditions of inflammation.
PMCID: PMC3858535  PMID: 24218450
2.  Macrophage colony stimulating factor induces macrophage proliferation and survival through a pathway involving DAP12 and β-catenin 
Nature immunology  2009;10(7):734-743.
Macrophage colony stimulating factor (MCSF) influences proliferation and survival of mononuclear phagocytes through the CSF-1 receptor. The DAP12 adaptor protein, which transduces signals emanating from various myeloid receptors, is critical for mononuclear phagocyte function. DAP12-mutant mice and humans show defects in osteoclasts and microglia and exhibit brain and bone abnormalities. Here, we demonstrated that DAP12 deficiency impairs MCSF-induced macrophage proliferation and survival in vitro. In addition, DAP12-deficient mice show fewer microglia in defined central nervous system areas, and DAP12-deficient progenitors regenerate myeloid cells inefficiently following BM transplantation. MCSF-CSF1-R signaling induced stabilization and nuclear translocation of β-catenin, which activates cell cycle genes. DAP12 was essential for phosphorylation and nuclear accumulation of β-catenin. These results outline a mechanistic explanation for the multiple defects in DAP12-deficient mononuclear phagocytes.
PMCID: PMC4004764  PMID: 19503107
3.  A human NK cell subset provides an innate source of IL-22 for mucosal immunity 
Nature  2008;457(7230):722-725.
Natural killer (NK) cells are classically viewed as lymphocytes that provide innate surveillance against virally-infected cells and tumor cells through release of cytolytic mediators and IFN-γ. In humans, blood CD56dim NK cells specialize in lysis of cell targets1. In lymph nodes, CD56bright NK cells secrete IFN-γ cooperating with dendritic cells (DC) and T cells in the generation of adaptive responses1, 2. Here we report the characterization of a human NK cell subset located in mucosa-associated lymphoid tissues (MALT), such as tonsils and Payer’s patches, which is hard-wired to secrete interleukin (IL)-22, IL-26, and leukaemia inhibitory factor (LIF). These NK cells, which we refer to as NK-22 cells, are triggered by acute exposure to IL-23. In vitro, NK-22-secreted cytokines stimulate epithelial cells to secrete IL-10, proliferate and express a variety of mitogenic and anti-apoptotic molecules. NK-22 cells are also found in mouse MALT and appear in the small intestine lamina propria during bacterial infection suggesting that NK-22 cells provide an innate source of IL-22 that may help constrain inflammation and protect mucosal sites.
PMCID: PMC3772687  PMID: 18978771
4.  TREM2 and β-catenin regulate bone homeostasis by controlling the rate of osteoclastogenesis 
TREM2 is an immunoreceptor expressed on osteoclasts (OC) and microglia that transmit intracellular signals through the adapter DAP12. Individuals with genetic mutations inactivating TREM2 or DAP12 develop the Nasu-Hakola disease (NHD) with cystic-like lesions of the bone and brain demyelination that lead to fractures and presenile dementia. The mechanism of this disease is poorly understood. Here, we report that TREM2-deficient mice have an osteopenic phenotype reminiscent of NHD. In vitro, lack of TREM2 impairs proliferation and β-catenin activation in osteoclast precursors (OcP) in response to macrophage-colony stimulating factor (M-CSF). This defect results in accelerated differentiation of OcP into mature OC. Corroborating the importance of a balanced proliferation and differentiation of OcP for bone homeostasis, we show that conditional deletion of β-catenin in OcP also results in reduced OcP proliferation and accelerated osteoclastogenesis in vitro as well as osteopenia in vivo. These results reveal that TREM2 regulates the rate of osteoclastogenesis and provide a mechanism for the bone pathology in NHD.
PMCID: PMC3732181  PMID: 22312126
5.  Talin1 and Rap1 Are Critical for Osteoclast Function 
Molecular and Cellular Biology  2013;33(4):830-844.
To determine talin1's role in osteoclasts, we mated TLN1fl/fl mice with those expressing cathepsin K-Cre (CtsK-TLN1) to delete the gene in mature osteoclasts or with lysozyme M-Cre (LysM-TLN1) mice to delete TLN1 in all osteoclast lineage cells. Absence of TLN1 impairs macrophage colony-stimulating factor (M-CSF)-stimulated inside-out integrin activation and cytoskeleton organization in mature osteoclasts. Talin1-deficient precursors normally express osteoclast differentiation markers when exposed to M-CSF and receptor activator of nuclear factor κB (RANK) ligand but attach to substrate and migrate poorly, arresting their development into mature resorptive cells. In keeping with inhibited resorption, CtsK-TLN1 mice exhibit an ∼5-fold increase in bone mass. Osteoclast-specific deletion of Rap1 (CtsK-Rap1), which promotes talin/β integrin recognition, yields similar osteopetrotic mice. The fact that the osteopetrosis of CtsK-TLN1 and CtsK-Rap1 mice is substantially more severe than that of those lacking αvβ3 is likely due to added failed activation of β1 integrins. In keeping with osteoclast dysfunction, mice in whom talin is deleted late in the course of osteoclastogenesis are substantially protected from ovariectomy-induced osteoporosis and the periarticular osteolysis attending inflammatory arthritis. Thus, talin1 and Rap1 are critical for resorptive function, and their selective inhibition in mature osteoclasts retards pathological bone loss.
PMCID: PMC3571341  PMID: 23230271
6.  Transepithelial migration of neutrophils into the lung requires TREM-1 
Acute respiratory infections are responsible for more than 4 million deaths each year. Neutrophils play an essential role in the innate immune response to lung infection. These cells have an armamentarium of pattern recognition molecules and antimicrobial agents that identify and eliminate pathogens. In the setting of infection, neutrophil triggering receptor expressed on myeloid cells 1 (TREM-1) amplifies inflammatory signaling. Here we demonstrate for the first time that TREM-1 also plays an important role in transepithelial migration of neutrophils into the airspace. We developed a TREM-1/3–deficient mouse model of pneumonia and found that absence of TREM-1/3 markedly increased mortality following Pseudomonas aeruginosa challenge. Unexpectedly, TREM-1/3 deficiency resulted in increased local and systemic cytokine production. TREM-1/3–deficient neutrophils demonstrated intact bacterial killing, phagocytosis, and chemotaxis; however, histologic examination of TREM-1/3–deficient lungs revealed decreased neutrophil infiltration of the airways. TREM-1/3–deficient neutrophils effectively migrated across primary endothelial cell monolayers but failed to migrate across primary airway epithelia grown at the air-liquid interface. These data define a new function for TREM-1 in neutrophil migration across airway epithelial cells and suggest that it amplifies inflammation through targeted neutrophil migration into the lung.
PMCID: PMC3533287  PMID: 23241959
7.  Non-redundant role of CCRL2 in lung dendritic cell trafficking 
Blood  2010;116(16):2942-2949.
CCRL2 is a heptahelic transmembrane receptor that shows the highest degree of homology with CCR1, an inflammatory chemokine receptor. CCRL2 mRNA was rapidly (30 min) and transiently (2-4 hrs) regulated during dendritic cell (DC) maturation. Protein expression paralleled RNA regulation. In vivo, CCRL2 was expressed by activated DC and macrophages, but not by eosinophils and T cells. CCRL2−/− mice showed normal recruitment of circulating DC into the lung but a defective trafficking of antigen-loaded lung DC to mediastinal lymph nodes. This defect was associated to a reduction in lymph node cellularity and reduced priming of Th2 response. CCRL2−/− mice were protected in a model of OVA-induced airway inflammation with reduced leukocyte recruitment in the BAL (eosinophils and mononuclear cells) and reduced production of the Th2 cytokines IL-4 and IL-5 and chemokines CCL11 and CCL17. The central role of CCRL2 deficiency in DC was supported by the fact that adoptive transfer of CCRL2−/− antigen-loaded DC in wild type animals recapitulated the phenotype observed in knock out mice. These data show a nonredundant role of CCRL2 in lung DC trafficking and propose a role for this receptor in the control of excessive airway inflammatory responses.
PMCID: PMC3389732  PMID: 20606167
8.  RNA sensor–induced type I IFN prevents diabetes caused by a β cell–tropic virus in mice 
The Journal of Clinical Investigation  2011;121(4):1497-1507.
Viral infections have been linked to the onset of type I diabetes (T1D), with viruses postulated to induce disease directly by causing β cell injury and subsequent release of autoantigens and indirectly via the host type I interferon (IFN-I) response triggered by the virus. Consistent with this, resistance to T1D is associated with polymorphisms that impair the function of melanoma differentiation associated gene-5 (MDA5), a sensor of viral RNA that elicits IFN-I responses. In animal models, triggering of another viral sensor, TLR3, has been implicated in diabetes. Here, we found that MDA5 and TLR3 are both required to prevent diabetes in mice infected with encephalomyocarditis virus strain D (EMCV-D), which has tropism for the insulin-producing β cells of the pancreas. Infection of Tlr3–/– mice caused diabetes due to impaired IFN-I responses and virus-induced β cell damage rather than T cell–mediated autoimmunity. Mice lacking just 1 copy of Mda5 developed transient hyperglycemia when infected with EMCV-D, whereas homozygous Mda5–/– mice developed severe cardiac pathology. TLR3 and MDA5 controlled EMCV-D infection and diabetes by acting in hematopoietic and stromal cells, respectively, inducing IFN-I responses at kinetically distinct time points. We therefore conclude that optimal functioning of viral sensors and prompt IFN-I responses are required to prevent diabetes when caused by a virus that infects and damages the β cells of the pancreas.
PMCID: PMC3069767  PMID: 21403398

Results 1-8 (8)