PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (25)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  RNA and Imidazoquinolines are sensed by distinct TLR7/8 ectodomain sites resulting in functionally disparate signaling events 
Toll-like receptors (TLR) 7 and 8 are pattern recognition receptors controlling antiviral host defense or autoimmune diseases. Apart from foreign and host RNA, synthetic RNA oligoribonucleotides (ORN) or small molecules of the imidazoquinoline family activate TLR7 and 8 and are being developed as therapeutic agonists. The structure-function relationships for RNA ORN and imidazoquinoline sensing and consequent downstream signaling by human TLR7 and TLR8 are unknown. Proteome- and genome-wide analyses in primary human monocyte-derived dendritic cells here showed that TLR8 sensing of RNA ORN vs. imidazoquinoline translates to ligand-specific differential phosphorylation and transcriptional events. Additionally, TLR7 and 8 ectodomains were found to discriminate between RNA ORN and imidazoquinolines by overlapping and non-overlapping recognition sites to which murine loss-of-function mutations and human naturally occurring hyporesponsive polymorphisms map. Our data suggest TLR7 and TLR8 can signal in two different ‘modes’ depending on the class of ligand. Considering RNA ORN and imidazoquinolines have been regarded as functionally interchangeable, our study highlights important functional incongruities whose understanding will be important for developing TLR7 or 8 therapeutics with desirable effector and safety profiles for in vivo application.
doi:10.4049/jimmunol.1303058
PMCID: PMC4066583  PMID: 24813206
Adjuvant; innate immunity; Toll-like receptor; RNA; signal transduction
2.  RNA and Imidazoquinolines are sensed by distinct TLR7/8 ectodomain sites resulting in functionally disparate signaling events 
Toll-like receptors (TLR) 7 and 8 are pattern recognition receptors controlling antiviral host defense or autoimmune diseases. Apart from foreign and host RNA, synthetic RNA oligoribonucleotides (ORN) or small molecules of the imidazoquinoline family activate TLR7 and 8 and are being developed as therapeutic agonists. The structure-function relationships for RNA ORN and imidazoquinoline sensing and consequent downstream signaling by human TLR7 and TLR8 are unknown. Proteome- and genome-wide analyses in primary human monocyte-derived dendritic cells here showed that TLR8 sensing of RNA ORN vs. imidazoquinoline translates to ligand-specific differential phosphorylation and transcriptional events. Additionally, TLR7 and 8 ectodomains were found to discriminate between RNA ORN and imidazoquinolines by overlapping and non-overlapping recognition sites to which murine loss-of-function mutations and human naturally occurring hyporesponsive polymorphisms map. Our data suggest TLR7 and TLR8 can signal in two different ‘modes’ depending on the class of ligand. Considering RNA ORN and imidazoquinolines have been regarded as functionally interchangeable, our study highlights important functional incongruities whose understanding will be important for developing TLR7 or 8 therapeutics with desirable effector and safety profiles for in vivo application.
doi:10.4049/jimmunol.1303058
PMCID: PMC4066583  PMID: 24813206
Adjuvant; innate immunity; Toll-like receptor; RNA; signal transduction
4.  The role of matrix metalloproteases in cystic fibrosis lung disease 
The European respiratory journal  2011;38(3):721-727.
Significant airway remodeling is a major component of the increased morbidity and mortality observed in cystic fibrosis (CF) patients. These airways feature ongoing leukocytic inflammation and unrelenting bacterial infection. In contrast to acute bacterial pneumonia, CF infection is not cleared efficiently and the ensuing inflammatory response causes tissue damage. This structural damage is mainly a result of free proteolytic activity released by infiltrated neutrophils and macrophages. Major proteases in this disease are serine and matrix metalloproteases (MMPs). While the role of serine proteases, such as elastase, has been characterized in detail, there is emerging evidence that MMPs could play a key role in the pathogenesis of CF lung disease. This review summarizes studies linking MMPs with CF lung disease and discusses the potential value of MMPs as future therapeutic targets in CF and other chronic lung diseases.
doi:10.1183/09031936.00173210
PMCID: PMC4036453  PMID: 21233269
Cystic fibrosis; lung disease; elastase; neutrophil; proteases; antiproteases
5.  Airway, but not serum or urinary, levels of YKL-40 reflect inflammation in early cystic fibrosis lung disease 
Background
Cystic fibrosis (CF) lung disease begins in early life and is progressive with the major risk factor being an exaggerated inflammatory response. Currently, assessment of neutrophilic inflammation in early cystic fibrosis (CF) lung disease relies on bronchoalveolar lavage (BAL). The chitinase-like protein YKL-40 is raised in sputum and serum of adults with CF. We investigated YKL-40 in BAL, serum and urine to determine whether this reflected inflammation and infection in young children with CF.
Methods
YKL-40 was measured in matched samples of BAL, serum and urine obtained from 36 infants and young children with CF participating in an early surveillance program. Levels were compared to clinical data and markers of inflammation detected in the lung.
Results
YKL-40 in BAL correlated with pulmonary infection [β=1.30 (SE 0.34), p < 0.001] and BAL markers of inflammation [macrophage number: r2 = 0.34, p < 0.001; neutrophil number: r2 = 0.74, p < 0.001; neutrophil elastase: r2 = 0.47, p < 0.001; CXCL8: r2 = 0.45, p < 0.001; IL-β: r2 = 0.62, p < 0.001]. YKL-40 was detectable in serum but levels did not correlate with BAL levels in the same individuals (r2 = 0.04, p = 0.14) or with inflammatory markers. YKL-40 was below the limit of detection in urine (30 pg/ml).
Conclusions
This study demonstrates that levels of the chitinase-like protein YKL-40 reflect airway inflammation and infection in early CF lung disease. The lack of increased YKL-40 in serum in the absence of systemic inflammation limits the benefit of this potential biomarker in early disease.
doi:10.1186/1471-2466-14-28
PMCID: PMC3946043  PMID: 24576297
Cystic fibrosis; YKL-40; Biomarker; Lung disease
6.  Influenza A(H1N1)pdm09 and Cystic Fibrosis Lung Disease: A Systematic Meta-Analysis 
PLoS ONE  2014;9(1):e78583.
Background
To systematically assess the literature published on the clinical impact of Influenza A(H1N1)pdm09 on cystic fibrosis (CF) patients.
Methods
An online search in PUBMED database was conducted. Original articles on CF patients with Influenza A(H1N1)pdm09 infection were included. We analyzed incidence, symptoms, clinical course and treatment.
Results
Four surveys with a total of 202 CF patients infected by Influenza A(H1N1)pdm09 were included. The meta-analysis showed that hospitalisation rates were higher in CF patients compared to the general population. While general disease symptoms were comparable, the clinical course was more severe and case fatality rate (CFR) was higher in CF patients compared to asthmatics and the general population.
Conclusions
Evidence so far suggests that CF patients infected with Influenza A(H1N1)pdm09 show increased morbidity and a higher CFR compared to patients with other chronic respiratory diseases and healthy controls. Particularly, CF patients with advanced stage disease seem to be more susceptible to severe lung disease. Accordingly, early antiviral and antibiotic treatment strategies are essential in CF patients. Preventive measures, including vaccination as well as hygiene measures during the influenza season, should be reinforced and improved in CF patients.
doi:10.1371/journal.pone.0078583
PMCID: PMC3888399  PMID: 24427261
7.  Hypersensitivity pneumonitis: lessons for diagnosis and treatment of a rare entity in children 
Hypersensitivity pneumonitis (HP) also called exogenous allergic alveolitis = extrinsic allergic alveolitis in children is an uncommon condition and may not be recognized and treated appropriately.
To assess current means of diagnosis and therapy and compare this to recommendations, we used the Surveillance Unit for Rare Paediatric Disorders (ESPED) to identify incident cases of HP in Germany during 2005/6. In addition, cases of HP reported for reference from all over Germany to our center in the consecutive year were included.
Twenty-three children with confirmed pediatric HP were identified. All (age 9.4 y (4.4-15.1) presented with dyspnoea at rest or with exercise, mean FVC was 39% of predicted, seven of the 23 children already had a chronic disease state at presentation. IgG against bird was elevated in 20, and against fungi in 15. Bronchoalveolar lavage was done in 18 subjects (41% lymphocytes, CD4/CD8 1.99), and lung biopsy in 6. Except 2, all children were treated with prolonged courses of systemic steroids. Outcome was not favourable in all cases.
Late diagnosis in up to a quarter of the children with HP and inappropriate steroid treatment must be overcome to improve management of HP. Inclusion of children with HP into international, web-based registry studies will help to study and follow up such rare lung diseases.
doi:10.1186/1750-1172-8-121
PMCID: PMC3751081  PMID: 23924322
Biopsy; Bronchoalveolar lavage; Children; Diffuse parenchymal lung diseases; Exogenous allergic alveolitis = extrinsic allergic alveolitis; Precipitins; Steroid treatment
8.  Comèl-Netherton syndrome – defined as primary immunodeficiency 
Background
Mutations in SPINK5, encoding the serine protease inhibitor LEKTI, cause Comèl-Netherton syndrome, an autosomal-recessive disease characterized by congenital ichthyosis, bamboo hair, and atopic diathesis. Despite increased frequency of infections, the immunocompetence of Comèl-Netherton syndrome patients has not been extensively investigated.
Objective
To define Comèl-Netherton syndrome as a primary immunodeficiency and to explore the benefit of IVIG replacement therapy.
Methods
We enrolled nine patients with Comèl-Netherton syndrome, sequenced SPINK5, and analyzed LEKTI expression by immunohistochemistry. Immune function was assessed by measuring cognate immunity, serum cytokine-levels and natural killer cell cytotoxicity.
Results
All patients presented with recurrent skin infections caused predominantly by Staphylococcus aureus. All but one reported recurrent respiratory tract infections; 78% had sepsis and/or pneumonia; 67% suffered from recurrent gastroenteritis and failure to thrive. Mutations in SPINK5 – including six novel mutations- were identified in eight patients. LEKTI expression was decreased or absent in all patients.
Immunologic evaluation revealed reduced memory B cells and defective responses to vaccination with Pneumovax® and bacteriophage phiX174, characterized by impaired antibody amplification and class-switching. Immune dysregulation was suggested by a skewed TH1-phenotype and elevated proinflammatory cytokine levels, while serum concentrations of the chemokine RANTES and NK cell cytotoxicity were decreased.
Treatment with intravenous immunoglobulin substitution resulted in remarkable clinical improvement and temporarily increased NK cell cytotoxicity.
Conclusion
These data provide new insights into the immunopathology of Comèl-Netherton syndrome and demonstrate that this multisystem disorder, characterized by lack of LEKTI expression in epithelial cells, is complicated by cognate and innate immunodeficiency that responds favorably to IVIG therapy.
doi:10.1016/j.jaci.2009.06.009
PMCID: PMC3685174  PMID: 19683336
Comèl-Netherton Syndrome; SPINK5; LEKTI; immune deficiency; NK cell cytotoxicity; selective antibody deficiency; IVIG; ichthyosis; bamboo hair; atopic diathesis
9.  Modified Foxp3 mRNA protects against asthma through an IL-10–dependent mechanism  
The Journal of Clinical Investigation  2013;123(3):1216-1228.
Chemically modified mRNA is capable of inducing therapeutic levels of protein expression while circumventing the threat of genomic integration often associated with viral vectors. We utilized this novel therapeutic tool to express the regulatory T cell transcription factor, FOXP3, in a time- and site-specific fashion in murine lung, in order to prevent allergic asthma in vivo. We show that modified Foxp3 mRNA rebalanced pulmonary T helper cell responses and protected from allergen-induced tissue inflammation, airway hyperresponsiveness, and goblet cell metaplasia in 2 asthma models. This protection was conferred following delivery of modified mRNA either before or after the onset of allergen challenge, demonstrating its potential as both a preventive and a therapeutic agent. Mechanistically, FOXP3 induction controlled Th2 and Th17 inflammation by regulating innate immune cell recruitment through an IL-10–dependent pathway. The protective effects of FOXP3 could be reversed by depletion of IL-10 or administration of recombinant IL-17A or IL-23. Delivery of Foxp3 mRNA to sites of inflammation may offer a novel, safe therapeutic tool for the treatment of allergic asthma and other diseases driven by an imbalance in helper T cell responses.
doi:10.1172/JCI65351
PMCID: PMC3582134  PMID: 23391720
10.  Role of Breast Regression Protein–39 in the Pathogenesis of Cigarette Smoke–Induced Inflammation and Emphysema 
The exaggerated expression of chitinase-like protein YKL-40, the human homologue of breast regression protein–39 (BRP-39), was reported in a number of diseases, including chronic obstructive pulmonary disease (COPD). However, the in vivo roles of YKL-40 in normal physiology or in the pathogenesis of specific diseases such as COPD remain poorly understood. We hypothesized that BRP-39/YKL-40 plays an important role in the pathogenesis of cigarette smoke (CS)–induced emphysema. To test this hypothesis, 10-week-old wild-type and BRP-39 null mutant mice (BRP-39−/−) were exposed to room air (RA) and CS for up to 10 months. The expression of BRP-39 was significantly induced in macrophages, airway epithelial cells, and alveolar Type II cells in the lungs of CS-exposed mice compared with RA-exposed mice, at least in part via an IL-18 signaling–dependent pathway. The null mutation of BRP-39 significantly reduced CS-induced bronchoalveolar lavage and tissue inflammation. However, CS-induced epithelial cell apoptosis and alveolar destruction were further enhanced in the absence of BRP-39. Consistent with these findings in mice, the tissue expression of YKL-40 was significantly increased in the lungs of current smokers compared with the lungs of ex-smokers or nonsmokers. In addition, serum concentrations of YKL-40 were significantly higher in smokers with COPD than in nonsmokers or smokers without COPD. These studies demonstrate a novel regulatory role of BRP-39/YKL-40 in CS-induced inflammation and emphysematous destruction. These studies also underscore that maintaining physiologic concentrations of YKL-40 in the lung is therapeutically important in preventing excessive inflammatory responses or emphysematous alveolar destruction.
doi:10.1165/rcmb.2010-0081OC
PMCID: PMC3135840  PMID: 20656949
YKL-40/BRP-39; COPD; emphysema; cigarette smoke
11.  RIG-like Helicase Innate Immunity Inhibits Vascular Endothelial Growth Factor Tissue Responses via a Type I IFN–dependent Mechanism 
Rationale: Vascular endothelial growth factor (VEGF) regulates vascular, inflammatory, remodeling, and cell death responses. It plays a critical role in normal pulmonary physiology, and VEGF excess and deficiency have been implicated in the pathogenesis of asthma and chronic obstructive pulmonary disease, respectively. Although viruses are an important cause of chronic obstructive pulmonary disease exacerbations and innate responses play an important role in these exacerbations, the effects of antiviral responses on VEGF homeostasis have not been evaluated.
Objectives: We hypothesized that antiviral innate immunity regulates VEGF tissue responses.
Methods: We compared the effects of transgenic VEGF165 in mice treated with viral pathogen–associated molecular pattern polyinosinic:polycytidylic acid [poly(I:C)], mice treated with live virus, and control mice.
Measurements and Main Results: Transgenic VEGF stimulated angiogenesis, edema, inflammation, and mucin accumulation. Each of these was abrogated by poly(I:C). These inhibitory effects were dose dependent, noted when poly(I:C) was administered before and after transgene activation, and mediated by a Toll-like receptor-3–independent and RIG-like helicase (RLH)– and type I IFN receptor–dependent pathway. VEGF stimulated the expression of VEGF receptor-1 and poly(I:C) inhibited this stimulation. Poly(I:C) also inhibited the ability of VEGF to activate extracellular signal–regulated kinase-1, Akt, focal adhesion kinase, and endothelial nitric oxide synthase, and aeroallergen-induced adaptive helper T-cell type 2 inflammation. Influenza and respiratory syncytial virus also inhibited VEGF-induced angiogenesis.
Conclusions: These studies demonstrate that poly(I:C) and respiratory viruses inhibit VEGF-induced tissue responses and adaptive helper T-cell type 2 inflammation and highlight the importance of a RLH- and type I IFN receptor–dependent pathway(s) in these regulatory events. They define a novel link between VEGF and antiviral and RLH innate immune responses and a novel pathway that regulates pulmonary VEGF activity.
doi:10.1164/rccm.201008-1276OC
PMCID: PMC3114061  PMID: 21278304
RIG-like helicase; mitochondrial antiviral signaling molecule; influenza virus; chronic obstructive pulmonary disease
12.  The surfactant protein C mutation A116D alters cellular processing, stress tolerance, surfactant lipid composition, and immune cell activation 
Background
Surfactant protein C (SP-C) is important for the function of pulmonary surfactant. Heterozygous mutations in SFTPC, the gene encoding SP-C, cause sporadic and familial interstitial lung disease (ILD) in children and adults. Mutations mapping to the BRICHOS domain located within the SP-C proprotein result in perinuclear aggregation of the proprotein. In this study, we investigated the effects of the mutation A116D in the BRICHOS domain of SP-C on cellular homeostasis. We also evaluated the ability of drugs currently used in ILD therapy to counteract these effects.
Methods
SP-CA116D was expressed in MLE-12 alveolar epithelial cells. We assessed in vitro the consequences for cellular homeostasis, immune response and effects of azathioprine, hydroxychloroquine, methylprednisolone and cyclophosphamide.
Results
Stable expression of SP-CA116D in MLE-12 alveolar epithelial cells resulted in increased intracellular accumulation of proSP-C processing intermediates. SP-CA116D expression further led to reduced cell viability and increased levels of the chaperones Hsp90, Hsp70, calreticulin and calnexin. Lipid analysis revealed decreased intracellular levels of phosphatidylcholine (PC) and increased lyso-PC levels. Treatment with methylprednisolone or hydroxychloroquine partially restored these lipid alterations. Furthermore, SP-CA116D cells secreted soluble factors into the medium that modulated surface expression of CCR2 or CXCR1 receptors on CD4+ lymphocytes and neutrophils, suggesting a direct paracrine effect of SP-CA116D on neighboring cells in the alveolar space.
Conclusions
We show that the A116D mutation leads to impaired processing of proSP-C in alveolar epithelial cells, alters cell viability and lipid composition, and also activates cells of the immune system. In addition, we show that some of the effects of the mutation on cellular homeostasis can be antagonized by application of pharmaceuticals commonly applied in ILD therapy. Our findings shed new light on the pathomechanisms underlying SP-C deficiency associated ILD and provide insight into the mechanisms by which drugs currently used in ILD therapy act.
doi:10.1186/1471-2466-12-15
PMCID: PMC3376036  PMID: 22458263
13.  The Chitinase-Like Protein YKL-40 Modulates Cystic Fibrosis Lung Disease 
PLoS ONE  2011;6(9):e24399.
The chitinase-like protein YKL-40 was found to be increased in patients with severe asthma and chronic obstructive pulmonary disease (COPD), two disease conditions featuring neutrophilic infiltrates. Based on these studies and a previous report indicating that neutrophils secrete YKL-40, we hypothesized that YKL-40 plays a key role in cystic fibrosis (CF) lung disease, a prototypic neutrophilic disease. The aim of this study was (i) to analyze YKL-40 levels in human and murine CF lung disease and (ii) to investigate whether YKL-40 single-nucleotide polymorphisms (SNPs) modulate CF lung disease severity. YKL-40 protein levels were quantified in serum and sputum supernatants from CF patients and control individuals. Levels of the murine homologue BRP-39 were analyzed in airway fluids from CF-like βENaC-Tg mice. YKL-40SNPs were analyzed in CF patients. YKL-40 levels were increased in sputum supernatants and in serum from CF patients compared to healthy control individuals. Within CF patients, YKL-40 levels were higher in sputum than in serum. BRP-39 levels were increased in airways fluids from βENaC-Tg mice compared to wild-type littermates. In both CF patients and βENaC-Tg mice, YKL-40/BRP-39 airway levels correlated with the severity of pulmonary obstruction. Two YKL-40 SNPs (rs871799 and rs880633) were found to modulate age-adjusted lung function in CF patients. YKL-40/BRP-39 levelsare increased in human and murine CF airway fluids, correlate with pulmonary function and modulate CF lung disease severity genetically. These findings suggest YKL-40 as a potential biomarker in CF lung disease.
doi:10.1371/journal.pone.0024399
PMCID: PMC3176766  PMID: 21949714
14.  Current Concepts of Hyperinflammation in Chronic Granulomatous Disease 
Chronic granulomatous disease (CGD) is the most common inherited disorder of phagocytic functions, caused by genetic defects in the leukocyte nicotinamide dinucleotide phosphate (NADPH) oxidase. Consequently, CGD phagocytes are impaired in destroying phagocytosed microorganisms, rendering the patients susceptible to bacterial and fungal infections. Besides this immunodeficiency, CGD patients suffer from various autoinflammatory symptoms, such as granuloma formation in the skin or urinary tract and Crohn-like colitis. Owing to improved antimicrobial treatment strategies, the majority of CGD patients reaches adulthood, yet the autoinflammatory manifestations become more prominent by lack of causative treatment options. The underlying pathomechanisms driving hyperinflammatory reactions in CGD are poorly understood, but recent studies implicate reduced neutrophil apoptosis and efferocytosis, dysbalanced innate immune receptors, altered T-cell surface redox levels, induction of Th17 cells, the enzyme indolamine-2,3-dioxygenase (IDO), impaired Nrf2 activity, and inflammasome activation. Here we discuss immunological mechanisms of hyperinflammation and their potential therapeutic implications in CGD.
doi:10.1155/2012/252460
PMCID: PMC3144705  PMID: 21808651
15.  Acellular Pertussis Booster in Adolescents Induces Th1 and Memory CD8+ T Cell Immune Response 
PLoS ONE  2011;6(3):e17271.
In a number of countries, whole cell pertussis vaccines (wcP) were replaced by acellular vaccines (aP) due to an improved reactogenicity profile. Pertussis immunization leads to specific antibody production with the help of CD4+ T cells. In earlier studies in infants and young children, wcP vaccines selectively induced a Th1 dominated immune response, whereas aP vaccines led to a Th2 biased response. To obtain data on Th1 or Th2 dominance of the immune response in adolescents receiving an aP booster immunization after a wcP or aP primary immunization, we analyzed the concentration of Th1 (IL-2, TNF-α, INF-γ) and Th2 (IL-4, IL-5, IL-10) cytokines in supernatants of lymphocyte cultures specifically stimulated with pertussis antigens. We also investigated the presence of cytotoxic T cell responses against the facultative intracellular bacterium Bordetella pertussis by quantifying pertussis-specific CD8+ T cell activation following the aP booster immunization. Here we show that the adolescent aP booster vaccination predominantly leads to a Th1 immune response based on IFNgamma secretion upon stimulation with pertussis antigen, irrespective of a prior whole cell or acellular primary vaccination. The vaccination also induces an increase in peripheral CD8+CD69+ activated pertussis-specific memory T cells four weeks after vaccination. The Th1 bias of this immune response could play a role for the decreased local reactogenicity of this adolescent aP booster immunization when compared to the preceding childhood acellular pertussis booster. Pertussis-specific CD8+ memory T cells may contribute to protection against clinical pertussis.
doi:10.1371/journal.pone.0017271
PMCID: PMC3050840  PMID: 21408149
16.  A non-BRICHOS surfactant protein c mutation disrupts epithelial cell function and intercellular signaling 
BMC Cell Biology  2010;11:88.
Background
Heterozygous mutations of SFTPC, the gene encoding surfactant protein C (SP-C), cause sporadic and familial interstitial lung disease (ILD) in children and adults. The most frequent SFTPC mutation in ILD patients leads to a threonine for isoleucine substitution at position 73 (I73T) of the SP-C preprotein (proSP-C), however little is known about the cellular consequences of SP-CI73T expression.
Results
To address this, we stably expressed SP-CI73T in cultured MLE-12 alveolar epithelial cells. This resulted in increased intracellular accumulation of proSP-C processing intermediates, which matched proSP-C species recovered in bronchial lavage fluid from patients with this mutation. Exposure of SP-CI73T cells to drugs currently used empirically in ILD therapy, cyclophosphamide, azathioprine, hydroxychloroquine or methylprednisolone, enhanced expression of the chaperones HSP90, HSP70, calreticulin and calnexin. SP-CI73T mutants had decreased intracellular phosphatidylcholine level (PC) and increased lyso-PC level without appreciable changes of other phospholipids. Treatment with methylprednisolone or hydroxychloroquine partially restored these lipid alterations. Furthermore, SP-CI73T cells secreted into the medium soluble factors that modulated surface expression of CCR2 or CXCR1 receptors on CD4+ lymphocytes and neutrophils, suggesting a direct paracrine influence of SP-CI73T on neighboring cells in the alveolar space.
Conclusion
We show that I73T mutation leads to impaired processing of proSP-C in alveolar type II cells, alters their stress tolerance and surfactant lipid composition, and activates cells of the immune system. In addition, we show that some of the mentioned cellular aspects behind the disease can be modulated by application of pharmaceutical drugs commonly applied in the ILD therapy.
doi:10.1186/1471-2121-11-88
PMCID: PMC2994813  PMID: 21092132
17.  Expression, regulation and clinical significance of soluble and membrane CD14 receptors in pediatric inflammatory lung diseases 
Respiratory Research  2010;11(1):32.
Background
Inflammatory lung diseases are a major morbidity factor in children. Therefore, novel strategies for early detection of inflammatory lung diseases are of high interest. Bacterial lipopolysaccharide (LPS) is recognized via Toll-like receptors and CD14. CD14 exists as a soluble (sCD14) and membrane-associated (mCD14) protein, present on the surface of leukocytes. Previous studies suggest sCD14 as potential marker for inflammatory diseases, but their potential role in pediatric lung diseases remained elusive. Therefore, we examined the expression, regulation and significance of sCD14 and mCD14 in pediatric lung diseases.
Methods
sCD14 levels were quantified in serum and bronchoalveolar lavage fluid (BALF) of children with infective (pneumonia, cystic fibrosis, CF) and non-infective (asthma) inflammatory lung diseases and healthy control subjects by ELISA. Membrane CD14 expression levels on monocytes in peripheral blood and on alveolar macrophages in BALF were quantified by flow cytometry. In vitro studies were performed to investigate which factors regulate sCD14 release and mCD14 expression.
Results
sCD14 serum levels were specifically increased in serum of children with pneumonia compared to CF, asthma and control subjects. In vitro, CpG induced the release of sCD14 levels in a protease-independent manner, whereas LPS-mediated mCD14 shedding was prevented by serine protease inhibition.
Conclusions
This study demonstrates for the first time the expression, regulation and clinical significance of soluble and membrane CD14 receptors in pediatric inflammatory lung diseases and suggests sCD14 as potential marker for pneumonia in children.
doi:10.1186/1465-9921-11-32
PMCID: PMC2845564  PMID: 20302606
18.  Incidence and classification of pediatric diffuse parenchymal lung diseases in Germany 
Background
Diffuse parenchymal lung diseases (DPLD) in children represent a rare and heterogeneous group of chronic pulmonary disorders. Despite substantial advances in genetics and pathomechanisms, these often lethal diseases are still under-diagnosed. This is due to the fact that (i) the incidence is low, and (ii) clinical presentation, (iii) disease classification and (iv) specific treatment options are largely unknown.
Methods
Here we systematically assessed the incidence, the presentation, the diagnostic yield and treatments of pediatric DPLD in Germany, using the Surveillance Unit for Rare Paediatric Disorders (ESPED).
Results
The incidence of DPLD was 1.32 new cases per 1 million of children per year. The majority of these children were diagnosed within the first year of life. Overall survival was 87%. Using centralized data entry and stratification tools, the patients were categorized into an advanced classification system based on diagnostic algorithms, including clinical presentations, genetics and/or histology. Combining molecular and clinical information, this survey provides an etiological overview and specific diagnostic recommendations for children with DPLD.
Conclusions
Standardized surveys and systematic classifications are valuable tools for the clinical handling of children with DPLD and aim to improve the disease understanding and the prognosis of these rare detrimental lung diseases.
doi:10.1186/1750-1172-4-26
PMCID: PMC2800105  PMID: 20003372
19.  Chitin Regulation of Immune Responses: An Old Molecule With New Roles 
Current opinion in immunology  2008;20(6):684-689.
Chitin, the second most abundant polysaccharide in nature, is commonly found in lower organisms such as fungi, crustaceans and insects, but not in mammals. Although the non-specific anti-viral and anti-tumor activities of chitin/chitin derivatives were described two decades ago, the immunological effects of chitin have been only recently been addressed. Recent studies demonstrated that chitin has complex and size-dependent effects on innate and adaptive immune responses including the ability to recruit and activate innate immune cells and induce cytokine and chemokine production via a variety of cell surface receptors including macrophage mannose receptor, toll-like receptor 2 (TLR-2), and Dectin-1. They also demonstrated adjuvant effects of chitin in allergen-induced Type 1 or Type 2 inflammation and provided insights into the important roles of chitinases and chitinase-like proteins (C/CLP) in pulmonary inflammation. The status of the field and areas of controversy are highlighted.
doi:10.1016/j.coi.2008.10.002
PMCID: PMC2605627  PMID: 18938241
chitin; chitinases; chitinase-like protein; innate and adaptive immunity
20.  Endogenous IL-11 Signaling Is Essential in Th2- and IL-13–Induced Inflammation and Mucus Production 
IL-11 and IL-11 receptor (R)α are induced by Th2 cytokines. However, the role(s) of endogenous IL-11 in antigen-induced Th2 inflammation has not been fully defined. We hypothesized that IL-11, signaling via IL-11Rα, plays an important role in aeroallergen-induced Th2 inflammation and mucus metaplasia. To test this hypothesis, we compared the responses induced by the aeroallergen ovalbumin (OVA) in wild-type (WT) and IL-11Rα–null mutant mice. We also generated and defined the effects of an antagonistic IL-11 mutein on pulmonary Th2 responses. Increased levels of IgE, eosinophilic tissue and bronchoalveolar lavage (BAL) inflammation, IL-13 production, and increased mucus production and secretion were noted in OVA-sensitized and -challenged WT mice. These responses were at least partially IL-11 dependent because each was decreased in mice with null mutations of IL-11Rα. Importantly, the administration of the IL-11 mutein to OVA-sensitized mice before aerosol antigen challenge also caused a significant decrease in OVA-induced inflammation, mucus responses, and IL-13 production. Intraperitoneal administration of the mutein to lung-specific IL-13–overexpressing transgenic mice also reduced BAL inflammation and airway mucus elaboration. These studies demonstrate that endogenous IL-11R signaling plays an important role in antigen-induced sensitization, eosinophilic inflammation, and airway mucus production. They also demonstrate that Th2 and IL-13 responses can be regulated by interventions that manipulate IL-11 signaling in the murine lung.
doi:10.1165/rcmb.2008-0053OC
PMCID: PMC2586049  PMID: 18617680
IL-11; mutein; airway inflammation; mucus; IL-13
21.  Role of breast regression protein 39 (BRP-39)/chitinase 3-like-1 in Th2 and IL-13–induced tissue responses and apoptosis 
The Journal of Experimental Medicine  2009;206(5):1149-1166.
Mouse breast regression protein 39 (BRP-39; Chi3l1) and its human homologue YKL-40 are chitinase-like proteins that lack chitinase activity. Although YKL-40 is expressed in exaggerated quantities and correlates with disease activity in asthma and many other disorders, the biological properties of BRP-39/YKL-40 have only been rudimentarily defined. We describe the generation and characterization of BRP-39−/− mice, YKL-40 transgenic mice, and mice that lack BRP-39 and produce YKL-40 only in their pulmonary epithelium. Studies of these mice demonstrated that BRP-39−/− animals have markedly diminished antigen-induced Th2 responses and that epithelial YKL-40 rescues the Th2 responses in these animals. The ability of interleukin13 to induce tissue inflammation and fibrosis was also markedly diminished in the absence of BRP-39. Mechanistic investigations demonstrated that BRP-39 and YKL-40 play an essential role in antigen sensitization and immunoglobulin E induction, stimulate dendritic cell accumulation and activation, and induce alternative macrophage activation. These proteins also inhibit inflammatory cell apoptosis/cell death while inhibiting Fas expression, activating protein kinase B/AKT, and inducing Faim 3. These studies establish novel regulatory roles for BRP-39/YKL-40 in the initiation and effector phases of Th2 inflammation and remodeling and suggest that these proteins are therapeutic targets in Th2- and macrophage-mediated disorders.
doi:10.1084/jem.20081271
PMCID: PMC2715037  PMID: 19414556
22.  TLR-2 AND IL-17A IN CHITIN-INDUCED MACROPHAGE ACTIVATION AND ACUTE INFLAMMATION 
Chitin, is a ubiquitous polysaccharide in fungi, insects and parasites. To test the hypothesis that chitin is an important immune modulator, we characterized the ability of chitin fragments to regulate murine macrophage cytokine production in vitro and induce acute inflammation in vivo. Here we show that chitin is a size-dependent stimulator of macrophage interleukin (IL)-17A production and IL-17A receptor (R) expression and demonstrate that these responses are Toll-like Receptor (TLR)-2 and MyD88-dependent. We further demonstrate that IL-17A pathway activation is an essential event in the stimulation of some but not all chitin-stimulated cytokines and that chitin utilizes a TLR-2, MyD88- and IL-17A-dependent mechanism(s) to induce acute inflammation. These studies demonstrate that chitin is a size-dependent pathogen-associated molecular pattern (PAMP) that activates TLR-2 and MyD88 in a novel IL-17A / IL-17AR-based innate immunity pathway.
PMCID: PMC2577310  PMID: 18768886
Monocytes/Macrophages; Cytokines; Inflammation; Lung; Rodent
23.  Deleted in Malignant Brain Tumors 1 (DMBT1) is present in hyaline membranes and modulates surface tension of surfactant 
Respiratory Research  2007;8(1):69.
Background
Deleted in Malignant Brain Tumors 1 (DMBT1) is a secreted scavenger receptor cysteine-rich protein that binds various bacteria and is thought to participate in innate pulmonary host defense. We hypothesized that pulmonary DMBT1 could contribute to respiratory distress syndrome in neonates by modulating surfactant function.
Methods
DMBT1 expression was studied by immunohistochemistry and mRNA in situ hybridization in post-mortem lungs of preterm and full-term neonates with pulmonary hyaline membranes. The effect of human recombinant DMBT1 on the function of bovine and porcine surfactant was measured by a capillary surfactometer. DMBT1-levels in tracheal aspirates of ventilated preterm and term infants were determined by ELISA.
Results
Pulmonary DMBT1 was localized in hyaline membranes during respiratory distress syndrome. In vitro addition of human recombinant DMBT1 to the surfactants increased surface tension in a dose-dependent manner. The DMBT1-mediated effect was reverted by the addition of calcium depending on the surfactant preparation.
Conclusion
Our data showed pulmonary DMBT1 expression in hyaline membranes during respiratory distress syndrome and demonstrated that DMBT1 increases lung surface tension in vitro. This raises the possibility that DMBT1 could antagonize surfactant supplementation in respiratory distress syndrome and could represent a candidate target molecule for therapeutic intervention in neonatal lung disease.
doi:10.1186/1465-9921-8-69
PMCID: PMC2164949  PMID: 17908325
24.  A role for MCP-1/CCR2 in interstitial lung disease in children 
Respiratory Research  2005;6(1):93.
Background
Interstitial lung diseases (ILD) are chronic inflammatory disorders leading to pulmonary fibrosis. Monocyte chemotactic protein 1 (MCP-1) promotes collagen synthesis and deletion of the MCP-1 receptor CCR2 protects from pulmonary fibrosis in ILD mouse models. We hypothesized that pulmonary MCP-1 and CCR2+ T cells accumulate in pediatric ILD and are related to disease severity.
Methods
Bronchoalveolar lavage fluid was obtained from 25 children with ILD and 10 healthy children. Levels of pulmonary MCP-1 and Th1/Th2-associated cytokines were quantified at the protein and the mRNA levels. Pulmonary CCR2+, CCR4+, CCR3+, CCR5+ and CXCR3+ T cells were quantified by flow-cytometry.
Results
CCR2+ T cells and MCP-1 levels were significantly elevated in children with ILD and correlated with forced vital capacity, total lung capacity and ILD disease severity scores. Children with lung fibrosis had significantly higher MCP-1 levels and CCR2+ T cells in bronchoalveolar lavage fluid compared to non-fibrotic children.
Conclusion
The results indicate that pulmonary CCR2+ T cells and MCP-1 contribute to the pathogenesis of pediatric ILD and might provide a novel target for therapeutic strategies.
doi:10.1186/1465-9921-6-93
PMCID: PMC1199626  PMID: 16095529
Chemokines; MCP-1; CCR2; Bronchoalveolar Lavage; Children; Interstitial Lung Diseases
25.  Interstitial lung disease in children – genetic background and associated phenotypes 
Respiratory Research  2005;6(1):32.
Interstitial lung disease in children represents a group of rare chronic respiratory disorders. There is growing evidence that mutations in the surfactant protein C gene play a role in the pathogenesis of certain forms of pediatric interstitial lung disease. Recently, mutations in the ABCA3 transporter were found as an underlying cause of fatal respiratory failure in neonates without surfactant protein B deficiency. Especially in familiar cases or in children of consanguineous parents, genetic diagnosis provides an useful tool to identify the underlying etiology of interstitial lung disease. The aim of this review is to summarize and to describe in detail the clinical features of hereditary interstitial lung disease in children. The knowledge of gene variants and associated phenotypes is crucial to identify relevant patients in clinical practice.
doi:10.1186/1465-9921-6-32
PMCID: PMC1090616  PMID: 15819986
interstitial lung disease; children; surfactant-protein C; ABCA3; mutations

Results 1-25 (25)