PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-22 (22)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Response of CFTR-Deficient Mice to Long-Term chronic Pseudomonas aeruginosa Infection and PTX3 Therapy 
The Journal of Infectious Diseases  2012;208(1):130-138.
Background. In cystic fibrosis (CF) patients, chronic lung infection and inflammation due to Pseudomonas aeruginosa contribute to the decline of lung function. The increased prevalence of multidrug resistance among bacteria and the adverse effects of antiinflammatory agents highlight the need for alternative therapeutic approaches that should be tested in a relevant animal model.
Methods. Gut-corrected CF and non-CF mice were chronically infected with a multidrug-resistant P. aeruginosa strain and treated with the long pentraxin PTX3. Body weight, bacterial count, inflammation, and lung pathology were evaluated after 12 days. PTX3 localization in CF sputum specimens was analyzed by immunofluorescence.
Results. Chronic P. aeruginosa infection developed similarly in CF and non-CF mice but differed in terms of the inflammatory response. Leukocyte recruitment in the airways, cytokine levels, and chemokine levels were significantly higher in CF mice, compared with non-CF mice. PTX3 treatment, which facilitates phagocytosis of pathogens, reduced P. aeruginosa colonization and restored airway inflammation in CF mice to levels observed in non-CF mice. The presence of PTX3 in CF sputum, in leukocytes, or bound to P. aeruginosa macrocolonies, as well as previous data on PTX3 polymorphisms in colonized CF patients, confirm the relevance of this molecule.
Conclusions. These findings represent a step forward in demonstrating the therapeutic potential of PTX3 in CF.
doi:10.1093/infdis/jis636
PMCID: PMC4055833  PMID: 23087427
Respiratory Tract Infections; Pseudomonas Infection; inflammation; Mouse Model; Cystic Fibrosis; PTX3
2.  Gene and Protein Expression in Response to Different Growth Temperatures and Oxygen Availability in Burkholderia thailandensis 
PLoS ONE  2014;9(3):e93009.
Burkholderia thailandensis, although normally avirulent for mammals, can infect macrophages in vitro and has occasionally been reported to cause pneumonia in humans. It is therefore used as a model organism for the human pathogen B. pseudomallei, to which it is closely related phylogenetically. We characterized the B. thailandensis clinical isolate CDC2721121 (BtCDC272) at the genome level and studied its response to environmental cues associated with human host colonization, namely, temperature and oxygen limitation. Effects of the different growth conditions on BtCDC272 were studied through whole genome transcription studies and analysis of proteins associated with the bacterial cell surface. We found that growth at 37°C, compared to 28°C, negatively affected cell motility and flagella production through a mechanism involving regulation of the flagellin-encoding fliC gene at the mRNA stability level. Growth in oxygen-limiting conditions, in contrast, stimulated various processes linked to virulence, such as lipopolysaccharide production and expression of genes encoding protein secretion systems. Consistent with these observations, BtCDC272 grown in oxygen limitation was more resistant to phagocytosis and strongly induced the production of inflammatory cytokines from murine macrophages. Our results suggest that, while temperature sensing is important for regulation of B. thailandensis cell motility, oxygen limitation has a deeper impact on its physiology and constitutes a crucial environmental signal for the production of virulence factors.
doi:10.1371/journal.pone.0093009
PMCID: PMC3966863  PMID: 24671187
3.  Long Pentraxin 3/TSG-6 Interaction: a Biological Rheostat for Fibroblast Growth Factor 2-Mediated Angiogenesis 
Objective
Angiogenesis is regulated by the balance between pro- and anti-angiogenic factors and by extracellular matrix protein interactions. Fibroblast growth factor-2 (FGF2) is a major pro-angiogenic inducer inhibited by the interaction with the soluble pattern recognition receptor long pentraxin 3 (PTX3). PTX3 is locally co-expressed with its ligand TSG-6, a secreted glycoprotein that co-operates with PTX3 in extracellular matrix assembly. Here, we characterized the effect of TSG-6 on PTX3/FGF2 interaction and FGF2-mediated angiogenesis.
Methods and Results
Solid phase binding and surface plasmon resonance assays show that TSG-6 and FGF2 bind the PTX3 N-terminal domain with similar affinity. Accordingly, TSG-6 prevents FGF2/PTX3 interaction and suppresses the inhibition exerted by PTX3 on heparan sulfate proteoglycan/FGF2/FGF receptor complex formation and on FGF2-dependent angiogenesis in vitro and in vivo. Also, endogenous PTX3 exerts an inhibitory effect on vascularization induced by FGF2 in a murine s.c. Matrigel plug assay, the inhibition being abolished in Ptx3-null mice or by TSG-6 treatment in wild-type animals.
Conclusions
TSG-6 reverts the inhibitory effects exerted by PTX3 on FGF2-mediated angiogenesis through competition of FGF2/PTX3 interaction. This may provide a novel mechanism to control angiogenesis in those pathological settings characterized by the co-expression of TSG-6 and PTX3, in which the relative levels of these proteins may fine-tune the angiogenic activity of FGF2.
doi:10.1161/ATVBAHA.111.243998
PMCID: PMC3551298  PMID: 22267482
angiogenesis; endothelium; FGF2; pentraxin; TSG-6
4.  Decoys and Regulatory “Receptors” of the IL-1/Toll-Like Receptor Superfamily 
Members of the IL-1 family play a key role in innate and adaptive immunity and in the pathogenesis of diverse diseases. Members of IL-1R like receptor (ILR) family include signaling molecules and negative regulators. The latter include decoy receptors (IL-1RII; IL-18BP) and “receptors” with regulatory function (TIR8/SIGIRR; IL-1RAcPb; DIGIRR). Structural considerations suggest that also TIGIRR-1 and IL-1RAPL may have regulatory function. The presence of multiple pathways of negative regulation of members of the IL-1/IL-1R family emphasizes the need for a tight control of members of this fundamental system.
doi:10.3389/fimmu.2013.00180
PMCID: PMC3705552  PMID: 23847621
cytokine; interleukin-1; inflammation; decoy receptor
5.  Ligands and Receptors of the Interleukin-1 Family in Immunity and Disease 
doi:10.3389/fimmu.2013.00396
PMCID: PMC3834610  PMID: 24312101
interleukin-1; decoy receptor; inflammation; innate immunity; adaptive immunity; autoinflammatory diseases
6.  Influence of Pentraxin 3 (PTX3) Genetic Variants on Myocardial Infarction Risk and PTX3 Plasma Levels 
PLoS ONE  2012;7(12):e53030.
PTX3 is a long pentraxin of the innate immune system produced by different cell types (mononuclear phagocytes, dendritic cells, fibroblasts and endothelial cells) at the inflammatory site. It appears to have a cardiovascular protective function by acting on the immune-inflammatory balance in the cardiovascular system. PTX3 plasma concentration is an independent predictor of mortality in patients with acute myocardial infarction (AMI) but the influence of PTX3 genetic variants on PTX3 plasma concentration has been investigated very little and there is no information on the association between PTX3 variations and AMI. Subjects of European origin (3245, 1751 AMI survivors and 1494 controls) were genotyped for three common PTX3 polymorphisms (SNPs) (rs2305619, rs3816527, rs1840680). Genotype and allele frequencies of the three SNPs and the haplotype frequencies were compared for the two groups. None of the genotypes, alleles or haplotypes were significantly associated with the risk of AMI. However, analysis adjusted for age and sex indicated that the three PTX3 SNPs and the corresponding haplotypes were significantly associated with different PTX3 plasma levels. There was also a significant association between PTX3 plasma concentrations and the risk of all-cause mortality at three years in AMI patients (OR 1.10, 95% CI: 1.01–1.20, p = 0.02). Our study showed that PTX3 plasma levels are influenced by three PTX3 polymorphisms. Genetically determined high PTX3 levels do not influence the risk of AMI, suggesting that the PTX3 concentration itself is unlikely to be even a modest causal factor for AMI. Analysis also confirmed that PTX3 is a prognostic marker after AMI.
doi:10.1371/journal.pone.0053030
PMCID: PMC3532160  PMID: 23285251
7.  AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch 
Nature immunology  2011;13(2):144-151.
Innate lymphoid cells (ILC)-22 protect the intestinal mucosa from infections by secreting interleukin-22 (IL-22). They include NKp46+ and Lymphoid Tissues inducer (LTi)-like subsets. Both express the aryl-hydrocarbon receptor (AHR), a sensor for environmental, dietary and endogenous aromatic compounds. We show that AHR-/- mice have a marked ILC22 deficit, resulting in diminished IL-22 secretion and inadequate protection against intestinal bacterial infections. AHR-/- mice also lack post-natally-imprinted cryptopatches (CP) and isolated lymphoid follicles (ILF), but not embryonically-imprinted Peyer's Patches (PP). AHR induces Notch, which is required for NKp46+ILC, while LTi-like ILC, CP and ILF are partially dependent on Notch signaling. These results establish that AHR is essential for ILC22 and post-natal intestinal lymphoid tissues and reveal heterogeneity of ILC22 subsets in their developmental requirements and their impact on the generation of intestinal lymphoid tissues.
doi:10.1038/ni.2187
PMCID: PMC3468413  PMID: 22101730
8.  Non-redundant role of CCRL2 in lung dendritic cell trafficking 
Blood  2010;116(16):2942-2949.
CCRL2 is a heptahelic transmembrane receptor that shows the highest degree of homology with CCR1, an inflammatory chemokine receptor. CCRL2 mRNA was rapidly (30 min) and transiently (2-4 hrs) regulated during dendritic cell (DC) maturation. Protein expression paralleled RNA regulation. In vivo, CCRL2 was expressed by activated DC and macrophages, but not by eosinophils and T cells. CCRL2−/− mice showed normal recruitment of circulating DC into the lung but a defective trafficking of antigen-loaded lung DC to mediastinal lymph nodes. This defect was associated to a reduction in lymph node cellularity and reduced priming of Th2 response. CCRL2−/− mice were protected in a model of OVA-induced airway inflammation with reduced leukocyte recruitment in the BAL (eosinophils and mononuclear cells) and reduced production of the Th2 cytokines IL-4 and IL-5 and chemokines CCL11 and CCL17. The central role of CCRL2 deficiency in DC was supported by the fact that adoptive transfer of CCRL2−/− antigen-loaded DC in wild type animals recapitulated the phenotype observed in knock out mice. These data show a nonredundant role of CCRL2 in lung DC trafficking and propose a role for this receptor in the control of excessive airway inflammatory responses.
doi:10.1182/blood-2009-12-259903
PMCID: PMC3389732  PMID: 20606167
9.  Role of Toll Interleukin-1 Receptor (IL-1R) 8, a Negative Regulator of IL-1R/Toll-Like Receptor Signaling, in Resistance to Acute Pseudomonas aeruginosa Lung Infection 
Infection and Immunity  2012;80(1):100-109.
Toll interleukin-1 receptor (IL-1R) 8 (TIR8), also known as single Ig IL-1 receptor (IL-R)-related molecule, or SIGIRR, is a member of the IL-1R-like family, primarily expressed by epithelial cells. Current evidence suggests that TIR8 plays a nonredundant role as a negative regulator in vivo under different inflammatory conditions that are dependent on IL-R and Toll-like receptor (TLR) activation. In the present study, we examined the role of TIR8 in innate resistance to acute lung infections caused by Pseudomonas aeruginosa, a Gram-negative pathogen responsible for life-threatening infections in immunocompromised individuals and cystic fibrosis patients. We show that Tir8 deficiency in mice was associated with increased susceptibility to acute P. aeruginosa infection, in terms of mortality and bacterial load, and to exacerbated local and systemic production of proinflammatory cytokines (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], IL-1β, and IL-6) and chemokines (CXCL1, CXCL2, and CCL2). It has been reported that host defense against P. aeruginosa acute lung infection can be improved by blocking IL-1 since exaggerated IL-1β production may be harmful for the host in this infection. In agreement with these data, IL-1RI deficiency rescues the phenotype observed in Tir8-deficient mice: in Tir8−/− IL-1RI−/− double knockout mice we observed higher survival rates, enhanced bacterial clearance, and reduced levels of local and systemic cytokine and chemokine levels than in Tir8-deficient mice. These results suggest that TIR8 has a nonredundant effect in modulating the inflammation caused by P. aeruginosa, in particular, by negatively regulating IL-1RI signaling, which plays a major role in the pathogenesis of this infectious disease.
doi:10.1128/IAI.05695-11
PMCID: PMC3255652  PMID: 22025515
10.  Pattern Recognition by Pentraxins 
Pentraxins are a family of evolutionarily conserved pattern-recognition proteins that are made up of five identical subunits. Based on the primary structure of the subunit, the pentraxins are divided into two groups: short pentraxins and long pentraxins. C-reactive protein (CRP) and serum amyloid P-component (SAP) are the two short pentraxins. The prototype protein of the long pentraxin group is pentraxin 3 (PTX3). CRP and SAP are produced primarily in the liver while PTX3 is produced in a variety of tissues during inflammation. The main functions of short pentraxins are to recognize a variety of pathogenic agents and then to either eliminate them or neutralize their harmful effects by utilizing the complement pathways and macrophages in the host. CRP binds to modified low-density lipoproteins, bacterial polysaccharides, apoptotic cells, and nuclear materials. By virtue of these recognition functions, CRP participates in the resolution of cardiovascular, infectious, and autoimmune diseases. SAP recognizes carbohydrates, nuclear substances, and amyloid fibrils and thus participates in the resolution of infectious diseases, autoimmunity, and amyloidosis. PTX3 interacts with several ligands, including growth factors, extracellular matrix component and selected pathogens, playing a role in complement activation and facilitating pathogen recognition by phagocytes. In addition, data in gene-targeted mice show that PTX3 is essential in female fertility, participating in the assembly of the cumulus oophorus extra-cellular matrix. PTX3 is therefore a nonredundant component of the humoral arm of innate immunity as well as a tuner of inflammation. Thus, in conjunction with the other components of innate immunity, the pentraxins use their pattern-recognition property for the benefit of the host.
PMCID: PMC3367411  PMID: 19799114
11.  TIR8/SIGIRR is an Interleukin-1 Receptor/Toll Like Receptor Family Member with Regulatory Functions in Inflammation and Immunity 
Interleukin-1R like receptors (ILRs) and Toll Like Receptors (TLRs) are key receptors of innate immunity, inflammation, and orientation of the adaptive response. They belong to a superfamily characterized by the presence of a conserved intracellular domain, the Toll/IL-1R (TIR) domain, which is involved in the activation of a signaling cascade leading to activation of transcription factors associated to inflammation. The activation of inflammatory responses and immunity by ILRs or TLRs signaling is potentially detrimental for the host in acute and chronic conditions and is tightly regulated at different levels by receptor antagonists, decoy receptors or signaling molecules, and miRNAs. Recent evidence suggests that the ILRs family member TIR8 (also known as SIGIRR) is a regulatory protein acting intracellularly to inhibit ILRs and TLRs signaling. In particular, current evidence suggests that TIR8/SIGIRR dampens TLRs-mediated activation and inhibits signaling receptor complexes of IL-1 family members associated with Th1 (IL-18), Th2 (IL-33), and Th17 (IL-1) differentiation. Studies with Tir8/Sigirr-deficient mice showed that the ability to dampen signaling from ILRs and TLRs family members makes TIR8/SIGIRR a key regulator of inflammation. Here, we summarize our current understanding of the structure and function of TIR8/SIGIRR, focusing on its role in different pathological conditions, ranging from infectious and sterile inflammation, to autoimmunity and cancer-related inflammation.
doi:10.3389/fimmu.2012.00322
PMCID: PMC3482685  PMID: 23112799
cytokine; interleukin-1; toll like receptors; inflammation; infection; inflammation-associated cancer
12.  The “sweet” side of a long pentraxin: how glycosylation affects PTX3 functions in innate immunity and inflammation 
Innate immunity represents the first line of defense against pathogens and plays key roles in activation and orientation of the adaptive immune response. The innate immune system comprises both a cellular and a humoral arm. Components of the humoral arm include soluble pattern recognition molecules (PRMs) that recognize pathogen-associated molecular patterns and initiate the immune response in coordination with the cellular arm, therefore acting as functional ancestors of antibodies. The long pentraxin PTX3 is a prototypic soluble PRM that is produced at sites of infection and inflammation by both somatic and immune cells. Gene targeting of this evolutionarily conserved protein has revealed a non-redundant role in resistance to selected pathogens. Moreover, PTX3 exerts important functions at the crossroad between innate immunity, inflammation, and female fertility. The human PTX3 protein contains a single N-glycosylation site that is fully occupied by complex type oligosaccharides, mainly fucosylated and sialylated biantennary glycans. Glycosylation has been implicated in a number of PTX3 activities, including neutralization of influenza viruses, modulation of the complement system, and attenuation of leukocyte recruitment. Therefore, this post translational modification might act as a fine tuner of PTX3 functions in native immunity and inflammation. Here we review the studies on PTX3, with emphasis on the glycan-dependent mechanisms underlying pathogen recognition and crosstalk with other components of the innate immune system.
doi:10.3389/fimmu.2012.00407
PMCID: PMC3539679  PMID: 23316195
pathogen recognition; inflammation; glycosylation; pentraxins; PTX3
13.  Pathogen Recognition by the Long Pentraxin PTX3 
Innate immunity represents the first line of defence against pathogens and plays key roles in activation and orientation of the adaptive immune response. The innate immune system comprises both a cellular and a humoral arm. Components of the humoral arm include soluble pattern recognition molecules (PRMs) that recognise pathogen-associated molecular patterns (PAMPs) and initiate the immune response in coordination with the cellular arm, therefore acting as functional ancestors of antibodies. The long pentraxin PTX3 is a prototypic soluble PRM that is produced at sites of infection and inflammation by both somatic and immune cells. Gene targeting of this evolutionarily conserved protein has revealed a nonredundant role in resistance to selected pathogens. Moreover, PTX3 exerts important functions at the cross-road between innate immunity, inflammation, and female fertility. Here, we review the studies on PTX3, with emphasis on pathogen recognition and cross-talk with other components of the innate immune system.
doi:10.1155/2011/830421
PMCID: PMC3118294  PMID: 21716666
14.  Evidence for a DC-specific inhibitory mechanism that depends on MyD88 and SIGIRR 
Dendritic cells (DCs) are an essential link between the innate and adaptive immune response. In order to become effective antigen presenting cells DCs need to undergo maturation, during which they up-regulate co-stimulatory molecules and produce cytokines. There is great interest in utilising DCs in vaccination regimes. Over recent years, Toll-like receptor (TLR) signalling has been recognised to be one of the major inducers of DC maturation. This study describes a mutant version of the TLR adaptor molecule MyD88 (termed MyD88lpr) as a novel adjuvant for vaccination regimes. MyD88lpr specifically activates DCs by disrupting a DC intrinsic inhibitory mechanism, which is dependent on SIGIRR. Moreover, MyD88lpr was able to induce an IgG2a dominated response to a co-expressed antigen, suggesting Th1 immunity. However, when used as a vaccine adjuvant for Influenza Nucleoprotein there was no significant difference in the lung viral titres during the infection. This study describes MyD88lpr as a potential adjuvant for vaccinations, which would be able to target DCs specifically.
doi:10.1111/j.1365-3083.2010.02392.x
PMCID: PMC2878274  PMID: 20500691
Toll-like receptors; SIGIRR; inflammation
15.  Lack of the Long Pentraxin PTX3 Promotes Autoimmune Lung Disease but not Glomerulonephritis in Murine Systemic Lupus Erythematosus 
PLoS ONE  2011;6(5):e20118.
The long pentraxin PTX3 has multiple roles in innate immunity. For example, PTX3 regulates C1q binding to pathogens and dead cells and regulates their uptake by phagocytes. It also inhibits P-selectin-mediated recruitment of leukocytes. Both of these mechanisms are known to be involved in autoimmunity and autoimmune tissue injury, e.g. in systemic lupus erythematosus, but a contribution of PTX3 is hypothetical. To evaluate a potential immunoregulatory role of PTX3 in autoimmunity we crossed Ptx3-deficient mice with Fas-deficient (lpr) C57BL/6 (B6) mice with mild lupus-like autoimmunity. PTX3 was found to be increasingly expressed in kidneys and lungs of B6lpr along disease progression. Lack of PTX3 impaired the phagocytic uptake of apoptotic T cells into peritoneal macrophages and selectively expanded CD4/CD8 double negative T cells while other immune cell subsets and lupus autoantibody production remained unaffected. Lack of PTX3 also aggravated autoimmune lung disease, i.e. peribronchial and perivascular CD3+ T cell and macrophage infiltrates of B6lpr mice. In contrast, histomorphological and functional parameters of lupus nephritis remained unaffected by the Ptx3 genotype. Together, PTX3 specifically suppresses autoimmune lung disease that is associated with systemic lupus erythematosus. Vice versa, loss-of-function mutations in the Ptx3 gene might represent a genetic risk factor for pulmonary (but not renal) manifestations of systemic lupus or other autoimmune diseases.
doi:10.1371/journal.pone.0020118
PMCID: PMC3103530  PMID: 21637713
16.  Toll-Like Receptor Signaling and SIGIRR in Renal Fibrosis upon Unilateral Ureteral Obstruction 
PLoS ONE  2011;6(4):e19204.
Innate immune activation via IL-1R or Toll-like receptors (TLR) contibutes to acute kidney injury but its role in tissue remodeling during chronic kidney disease is unclear. SIGIRR is an inhibitor of TLR-induced cytokine and chemokine expression in intrarenal immune cells, therefore, we hypothesized that Sigirr-deficiency would aggravate postobstructive renal fibrosis. The expression of TLRs as well as endogenous TLR agonists increased within six days after UUO in obstructed compared to unobstructed kidneys while SIGIRR itself was downregulated by day 10. However, lack of SIGIRR did not affect the intrarenal mRNA expression of proinflammatory and profibrotic mediators as well as the numbers of intrarenal macrophages and T cells or morphometric markers of tubular atrophy and interstitial fibrosis. Because SIGIRR is known to block TLR/IL-1R signaling at the level of the intracellular adaptor molecule MyD88 UUO experiments were also performed in mice deficient for either MyD88, TLR2 or TLR9. After UUO there was no significant change of tubular interstitial damage and interstitial fibrosis in neither of these mice compared to wildtype counterparts. Additional in-vitro studies with CD90+ renal fibroblasts revealed that TLR agonists induce the expression of IL-6 and MCP-1/CCL2 but not of TGF-β, collagen-1α or smooth muscle actin. Together, postobstructive renal interstitial fibrosis and tubular atrophy develop independent of SIGIRR, TLR2, TLR9, and MyD88. These data argue against a significant role of these molecules in renal fibrosis.
doi:10.1371/journal.pone.0019204
PMCID: PMC3081345  PMID: 21544241
17.  The tumor microenvironment of colorectal cancer: stromal TLR-4 expression as a potential prognostic marker 
Background
Colorectal cancer can be efficiently treated when found at early stages, thus the search for novel markers is of paramount importance. Since inflammation is associated with cancer progression and angiogenesis, we investigated expression of cytokines like IL-6 and other mediators that play a key role in the innate immune system, in particular toll like receptor 4 (TLR4), in the microenvironment of lesions from different stages of colon disease progression, from ulcerative colitis to adenoma and adenocarcinoma to find useful markers.
Methods
The presence of inflammatory cells and expression of key cytokines involved in the inflammation process were quantified by immunohistochemistry in specific tissue compartments (epithelial, stromal, endothelial) by immunohistochemistry. A murine azoxymethane/dextran sulfate model in which Tir8, a negative regulator of the inflammatory response, was ablated was used to confirm the clinical observations. 116 Archival tissue samples from patients with different stages of colorectal disease: 13 cases of ulcerative colitis (UC), 34 tubular or tubulo-villous adenomas (AD), and 53 infiltrating adenocarcinomas. 16 specimens of healthy mucosa surgically removed with the cancerous tissue were used as a control.
Results
The differences between healthy tissues and the diverse lesions was characterized by a marked inflammatory-angiogenic reaction, with significantly (P < 0.05) higher numbers of CD68, CD15, and CD31 expressing cells in all diseased tissues that correlated with increasing grade of malignancy. We noted down-regulation of a potential modulator molecule, Hepatocyte Growth Factor, in all diseased tissues (P < 0.05). TLR-4 and IL6 expression in the tumor microenvironment were associated with adenocarcinoma in human samples and in the murine model. We found that adenocarcinoma patients (pT1-4) with higher TLR-4 expression in stromal compartment had a significantly increased risk in disease progression. In those patients with a diagnosis of pT3 (33 cases) colon cancer, those with very high levels of TLR-4 in the tumor stroma relapsed significantly earlier than those with lower expression levels.
Conclusions
These data suggest that high TLR-4 expression in the tumor microenvironment represents a possible marker of disease progression in colon cancer.
doi:10.1186/1479-5876-8-112
PMCID: PMC2997091  PMID: 21059221
18.  Cigarette smoke induces PTX3 expression in pulmonary veins of mice in an IL-1 dependent manner 
Respiratory Research  2010;11(1):134.
Background
Chronic obstructive pulmonary disease (COPD) is associated with abnormal inflammatory responses and structural alterations of the airways, lung parenchyma and pulmonary vasculature. Since Pentraxin-3 (PTX3) is a tuner of inflammatory responses and is produced by endothelial and inflammatory cells upon stimuli such as interleukin-1β (IL-1β), we hypothesized that PTX3 is involved in COPD pathogenesis.
Methods and Results
We evaluated whether cigarette smoke (CS) triggers pulmonary and systemic PTX3 expression in vivo in a murine model of COPD. Using immunohistochemical (IHC) staining, we observed PTX3 expression in endothelial cells of lung venules and veins but not in lung arteries, airways and parenchyma. Moreover, ELISA on lung homogenates and semi-quantitative scoring of IHC-stained sections revealed a significant upregulation of PTX3 upon subacute and chronic CS exposure. Interestingly, PTX3 expression was not enhanced upon subacute CS exposure in IL-1RI KO mice, suggesting that the IL-1 pathway is implicated in CS-induced expression of vascular PTX3. Serum PTX3 levels increased rapidly but transiently after acute CS exposure.
To elucidate the functional role of PTX3 in CS-induced responses, we examined pulmonary inflammation, protease/antiprotease balance, emphysema and body weight changes in WT and Ptx3 KO mice. CS-induced pulmonary inflammation, peribronchial lymphoid aggregates, increase in MMP-12/TIMP-1 mRNA ratio, emphysema and failure to gain weight were not significantly different in Ptx3 KO mice compared to WT mice. In addition, Ptx3 deficiency did not affect the CS-induced alterations in the pulmonary (mRNA and protein) expression of VEGF-A and FGF-2, which are crucial regulators of angiogenesis.
Conclusions
CS increases pulmonary PTX3 expression in an IL-1 dependent manner. However, our results suggest that either PTX3 is not critical in CS-induced pulmonary inflammation, emphysema and body weight changes, or that its role can be fulfilled by other mediators with overlapping activities.
doi:10.1186/1465-9921-11-134
PMCID: PMC2959025  PMID: 20920344
19.  Coregulation in human leukocytes of the long pentraxin PTX3 and TSG-6 
Journal of Leukocyte Biology  2009;86(1):123-132.
Coordinated expression of TSG-6 and PTX3 in myelomonocytic cells and MDDC support the hypothesis that these two proteins may have a role in extracellular matrix remodeling at sites of inflammation.
The prototypic long PTX3 is a multifunctional protein involved in innate resistance to pathogens and in controlling inflammation. TSG-6 is a hyaluronan-binding protein that is involved in ECM remodeling and has anti-inflammatory and chondroprotective functions. PTX3 and TSG-6 are coregulated by growth differentiation factor-9 in granulosa cells, where they are produced during the periovulatory period and play essential roles in the incorporation of hyaluronan into the ECM during cumulus expansion. The present study was designed to assess whether PTX3 and TSG-6 are coregulated in leukocytes, in particular, in phagocytes and DC. Monocytes, macrophages, and myeloid DC were found to produce high levels of TSG-6 and PTX3 in response to proinflammatory mediators (LPS or cytokines). Unstimulated neutrophil polymorphonuclear granulocytes expressed high levels of TSG-6 mRNA, but not PTX3 transcript, and stored both proteins in granules. In contrast, endothelial cells expressed substantial amounts of PTX3 mRNA and low levels of TSG-6 transcript under the conditions tested. Anti-inflammatory cytokines, such as IL-4, dampened LPS-induced TSG-6 and PTX3 expression. Divergent effects were observed with IL-10, which synergizes with TLR-mediated PTX3 induction but inhibits LPS-induced TSG-6 transcription. Immunohistochemical analysis confirms the colocalization of the two proteins in inflammatory infiltrates and in endothelial cells of inflamed tissues. Thus, here we show that myelomonocytic cells and MoDC are a major source of TSG-6 and that PTX3 and TSG-6 are coregulated under most of the conditions tested. The coordinated expression of PTX3 and TSG-6 may play a role in ECM remodeling at sites of inflammation.
doi:10.1189/jlb.0608345
PMCID: PMC3516831  PMID: 19389798
extracellular matrix; inflammation; acute-phase reactants; dendritic cells; neutrophils
21.  Tir8/Sigirr prevents murine lupus by suppressing the immunostimulatory effects of lupus autoantigens 
The Journal of Experimental Medicine  2008;205(8):1879-1888.
The Sigirr gene (also known as Tir8) encodes for an orphan receptor of the Toll-like receptor (TLR)/interleukin 1 receptor family that inhibits TLR-mediated pathogen recognition in dendritic cells. Here, we show that Sigirr also inhibits the activation of dendritic cells and B cells upon exposure to RNA and DNA lupus autoantigens. To evaluate the functional role of Sigirr in the pathogenesis of systemic lupus erythematosus (SLE), we generated Sigirr-deficient C57BL/6-lpr/lpr mice. These mice developed a progressive lymphoproliferative syndrome followed by severe autoimmune lung disease and lupus nephritis within 6 mo of age as compared with the minor abnormalities observed in C57BL/6-lpr/lpr mice. Lack of Sigirr was associated with enhanced activation of dendritic cells and increased expression of multiple proinflammatory and antiapoptotic mediators. In the absence of Sigirr, CD4 T cell numbers were increased and CD4+CD25+ T cell numbers were reduced. Furthermore, lack of Sigirr enhanced the activation and proliferation of B cells, including the production of autoantibodies against multiple nuclear lupus autoantigens. These data identify Sigirr as a novel SLE susceptibility gene in mice.
doi:10.1084/jem.20072646
PMCID: PMC2525585  PMID: 18644972
22.  The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps 
The long pentraxin (PTX) 3 is produced by macrophages and myeloid dendritic cells in response to Toll-like receptor agonists and represents a nonredundant component of humoral innate immunity against selected pathogens. We report that, unexpectedly, PTX3 is stored in specific granules and undergoes release in response to microbial recognition and inflammatory signals. Released PTX3 can partially localize in neutrophil extracellular traps formed by extruded DNA. Eosinophils and basophils do not contain preformed PTX3. PTX3-deficient neutrophils have defective microbial recognition and phagocytosis, and PTX3 is nonredundant for neutrophil-mediated resistance against Aspergillus fumigatus. Thus, neutrophils serve as a reservoir, ready for rapid release, of the long PTX3, a key component of humoral innate immunity with opsonic activity.
doi:10.1084/jem.20061301
PMCID: PMC2118544  PMID: 17389238

Results 1-22 (22)