Search tips
Search criteria

Results 1-25 (275)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  YY1 inhibits differentiation and function of regulatory T cells by blocking Foxp3 expression and activity 
Nature Communications  2016;7:10789.
Regulatory T (Treg) cells are essential for maintenance of immune homeostasis. Foxp3 is the key transcription factor for Treg-cell differentiation and function; however, molecular mechanisms for its negative regulation are poorly understood. Here we show that YY1 expression is lower in Treg cells than Tconv cells, and its overexpression causes a marked reduction of Foxp3 expression and abrogation of suppressive function of Treg cells. YY1 is increased in Treg cells under inflammatory conditions with concomitant decrease of suppressor activity in dextran sulfate-induced colitis model. YY1 inhibits Smad3/4 binding to and chromatin remodelling of the Foxp3 locus. In addition, YY1 interrupts Foxp3-dependent target gene expression by physically interacting with Foxp3 and by directly binding to the Foxp3 target genes. Thus, YY1 inhibits differentiation and function of Treg cells by blocking Foxp3.
Treg control the magnitude of immune responses, but how these cells are controlled is less understood. Here the authors show that a transcriptional repressor YY1 inhibits Foxp3, the master regulator of Treg, by repressing its transcription, and by directly interacting with Foxp3 and its target gene promoters.
PMCID: PMC4762897  PMID: 26892542
2.  IRAK-M promotes alternative macrophage activation and fibroproliferation in bleomycin-induced lung injury 
Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease characterized by inflammation and the development of excessive extracellular matrix deposition. Currently, there are only limited therapeutic intervenes to offer patients diagnosed with pulmonary fibrosis. While previous studies focused on structural cells in promoting fibrosis, our study assessed the contribution of macrophages. Recently, toll-like receptor (TLR) signaling has been identified as a regulator of pulmonary fibrosis. Interleukin-1 receptor-associated kinase-M (IRAK-M), a MyD88-dependent inhibitor of TLR signaling, suppresses deleterious inflammation, but may paradoxically promote fibrogenesis. Mice deficient in IRAK-M (IRAK-M−/−) were protected against bleomycin-induced fibrosis and displayed diminished collagen deposition in association with reduced production of interleukin (IL)-13 compared to wild type (WT) control mice. Bone marrow (BM) chimera experiments indicated that IRAK-M expression by BM derived cells, rather than structural cells, promoted fibrosis. After bleomycin, WT macrophages displayed an alternatively activated phenotype, whereas IRAK-M−/− macrophages displayed higher expression of classically activated macrophage markers. Using an in vitro co-culture system, macrophages isolated from in vivo bleomycin-challenged WT, but not IRAK-M−/−, mice promoted increased collagen and α-smooth muscle actin expression from lung fibroblasts in an IL-13-dependent fashion. Finally, IRAK-M expression is upregulated in peripheral blood cells from IPF patients and correlated with markers of alternative macrophage activation. These data indicate expression of IRAK-M skews lung macrophages towards an alternatively activated profibrotic phenotype, which promotes collagen production leading to the progression of experimental pulmonary fibrosis.
PMCID: PMC4384172  PMID: 25595781
3.  T Cell Receptor Mediated Calcium Entry Requires Alternatively Spliced Cav1.1 Channels 
PLoS ONE  2016;11(1):e0147379.
The process of calcium entry in T cells is a multichannel and multi-step process. We have studied the requirement for L-type calcium channels (Cav1.1) α1S subunits during calcium entry after TCR stimulation. High expression levels of Cav1.1 channels were detected in activated T cells. Sequencing and cloning of Cav1.1 channel cDNA from T cells revealed that a single splice variant is expressed. This variant lacks exon 29, which encodes the linker region adjacent to the voltage sensor, but contains five new N-terminal exons that substitute for exons 1 and 2, which are found in the Cav1.1 muscle counterpart. Overexpression studies using cloned T cell Cav1.1 in 293HEK cells (that lack TCR) suggest that the gating of these channels was altered. Knockdown of Cav1.1 channels in T cells abrogated calcium entry after TCR stimulation, suggesting that Cav1.1 channels are controlled by TCR signaling.
PMCID: PMC4729531  PMID: 26815481
4.  Production of IL-10 by CD4+ regulatory T cells during the resolution of infection promotes the maturation of memory CD8+ T cells 
Nature immunology  2015;16(8):871-879.
Memory CD8+ T cells are critical for host defense upon reexposure to intracellular pathogens. We found that interleukin 10 (IL-10) derived from CD4+ regulatory T cells (Treg cells) was necessary for the maturation of memory CD8+ T cells following acute infection with lymphocytic choriomeningitis virus (LCMV). Treg cell–derived IL-10 was most important during the resolution phase, calming inflammation and the activation state of dendritic cells. Adoptive transfer of IL-10-sufficient Treg cells during the resolution phase ‘restored’ the maturation of memory CD8+ T cells in IL-10-deficient mice. Our data indicate that Treg cell–derived IL-10 is needed to insulate CD8+ T cells from inflammatory signals, and reveal that the resolution phase of infection is a critical period that influences the quality and function of developing memory CD8+ T cells.
PMCID: PMC4713030  PMID: 26147684
5.  Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA 
Cell  2014;159(7):1563-1577.
The mechanism by which cells undergo death determines whether dying cells trigger inflammatory responses or remain immunologically silent. Mitochondria play a central role in the induction of cell death, as well as in immune signaling pathways. Here, we identify of a mechanism by which mitochondria and downstream pro-apoptotic caspases regulate the activation of antiviral immunity. In the absence of active caspases, mitochondrial outer membrane permeabilization by Bax and Bak results in the expression of type I interferons (IFNs). This induction is mediated by mitochondrial DNA-dependent activation of the cGAS/STING pathway and results in the establishment of a potent state of viral resistance. Our results show that mitochondria have the capacity to simultaneously expose a cell-intrinsic inducer of the IFN response, and to inactivate this response in a caspase-dependent manner. This mechanism provides a dual control, which determines whether mitochondria initiate an immunologically silent or a pro-inflammatory type of cell death.
PMCID: PMC4272443  PMID: 25525875
6.  Producing GM-CSF: a unique T helper subset? 
Cell Research  2014;24(12):1379-1380.
GM-CSF-producing helper T cells have previously been identified to serve a nonredundant function in the initiation of autoimmune inflammation. An article by Sheng et al. recently published by Cell Research now suggests that the differentiation program of GM-CSF-producing cells from naïve CD4+ T cells is distinct from that of Th1 and Th17 cells, and is regulated by the IL-7-STAT5 axis.
PMCID: PMC4260353  PMID: 25412663
8.  Detecting “different”: Pyrin senses modified GTPases 
Cell Research  2014;24(11):1286-1287.
Pathogenic bacteria secrete effector proteins that target host cell Rho GTPases to manipulate the actin cytoskeleton. A recent study in Nature identifies the Pyrin inflammasome as a sensor of this pathogenic process.
PMCID: PMC4220150  PMID: 25091449
9.  Inflammasome Activation by Campylobacter jejuni 
The Gram-negative pathogen Campylobacter jejuni is the most common cause of bacterial foodborne disease worldwide. The mechanisms that lead to bacterial invasion of eukaryotic cells and massive intestinal inflammation are still unknown. Here we report that C. jejuni infection of mouse macrophages induces up-regulation of pro-IL-1β transcript and secretion of IL-1β without eliciting cell death. Immunoblotting indicated cleavage of caspase-1 and IL-1β in infected cells. In bone-marrow-derived macrophages from different knock-out mice, IL-1β secretion was found to require NLRP3, ASC, and caspase-1/11, but not NLRC4. In contrast to NLRP3 activation by ATP, C. jejuni activation did not require priming of these macrophages. C. jejuni also activated the NLRP3 inflammasome in human macrophages as indicated by the presence of ASC foci and FLICA-positive cells. Analysis of a vast array of C. jejunimutants with defects in capsule formation, LOS biosynthesis, chemotaxis, flagella synthesis and flagellin (-like) secretion, T6SS needle protein or cytolethal distending toxin revealed a direct correlation between the number of intracellular bacteria and NLRP3 inflammasome activation. The C. jejuni invasion related activation of the NLRP3 inflammasome without cytotoxicity and even in non-primed cells extends the known repertoire of bacterial inflammasome activation and likely contributes to C. jejuni-induced intestinal inflammation.
PMCID: PMC4201959  PMID: 25267974
NLRP3; C. jejuni; Inflammation; Macrophages; Human; Mice; Invasion; Inflammasome
10.  Inflammasomes and intestinal homeostasis: regulating and connecting infection, inflammation and the microbiota 
International Immunology  2014;26(9):495-499.
Inflammasomes control intestinal homeostasis
Inflammasomes are large cytosolic protein complexes that detect infection and stress-associated signals and promote immediate inflammatory responses. In the intestine, activation of the inflammasome leads to an inflammatory response that is important for controlling enteric infections but can also result in pathological tissue damage. Recent studies have suggested that the inflammasome also regulates intestinal homeostasis through its effects on the intestinal microbiota. Notably, many conflicting studies have been published regarding the effect of inflammasome deficiencies on intestinal homeostasis. Here, we attempt to reconcile these contrasting data by highlighting the many ways that the inflammasome contributes to intestinal homeostasis and pathology and exploring the potential role of alterations in the microbiota in these conflicting studies.
PMCID: PMC4200027  PMID: 24948595
IBD; infection; inflammasome; intestine; microbiota
11.  Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease 
Cell  2014;158(5):1000-1010.
Specific members of the intestinal microbiota dramatically affect inflammatory bowel disease (IBD) in mice. In humans, however, identifying bacteria that preferentially affect disease susceptibility and severity remains a major challenge. Here, we used flow cytometry-based bacterial cell sorting and 16S sequencing to characterize taxa-specific coating of the intestinal microbiota with immunoglobulin A (IgA−SEQ) and show that high IgA−coating uniquely identifies colitogenic intestinal bacteria in a mouse model of microbiota-driven colitis. We then used IgA−SEQ and extensive anaerobic culturing of fecal bacteria from IBD patients to create personalized disease-associated gut microbiota culture collections with pre-defined levels of IgA coating. Using these collections, we found that intestinal bacteria selected on the basis of high coating with IgA conferred dramatic susceptibility to colitis in germ-free mice. Thus, our studies suggest that IgA−coating identifies inflammatory commensals that preferentially drive intestinal disease. Targeted elimination of such bacteria may reduce, reverse, or even prevent disease development.
PMCID: PMC4174347  PMID: 25171403
12.  Dynamic signaling by T follicular helper cells during germinal center B cell selection 
Science (New York, N.Y.)  2014;345(6200):1058-1062.
T follicular helper (TFH) cells select high-affinity, antibody-producing B cells for clonal expansion in germinal centers (GCs), but the nature of their interaction is not well defined. Using intravital imaging, we found that selection is mediated by large but transient contacts between TFH and GC B cells presenting the highest levels of cognate peptide bound to major histocompatibility complex II. These interactions elicited transient and sustained increases in TFH intracellular free calcium (Ca2+) that were associated with TFH cell coexpression of the cytokines interleukin-4 and -21. However, increased intracellular Ca2+ did not arrest TFH cell migration. Instead, TFH cells remained motile and continually scanned the surface of many GC B cells, forming short-lived contacts that induced selection through further repeated transient elevations in intracellular Ca2+.
PMCID: PMC4519234  PMID: 25170154
13.  Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations 
Nature  2015;517(7534):381-385.
Despite antiretroviral therapy (ART), HIV-1 persists in a stable latent reservoir1, 2, primarily in resting memory CD4+ T cells3, 4. This reservoir presents a major barrier to the cure of HIV-1 infection. To purge the reservoir, pharmacological reactivation of latent HIV-1 has been proposed5 and tested both in vitro and in vivo6–8. A key remaining question is whether virus-specific immune mechanisms including cytolytic T lymphocytes (CTL) can clear infected cells in ART-treated patients after latency is reversed. Here we show that there is a striking all or none pattern for CTL escape mutations in HIV-1 Gag epitopes. Unless ART is started early, the vast majority (>98%) of latent viruses carry CTL escape mutations that render infected cells insensitive to CTLs directed at common epitopes. To solve this problem, we identified CTLs that could recognize epitopes from latent HIV-1 that were unmutated in every chronically infected patient tested. Upon stimulation, these CTLs eliminated target cells infected with autologous virus derived from the latent reservoir, both in vitro and in patient-derived humanized mice. The predominance of CTL-resistant viruses in the latent reservoir poses a major challenge to viral eradication. Our results demonstrate that chronically infected patients retain a broad spectrum viral-specific CTL response and that appropriate boosting of this response may be required for the elimination of the latent reservoir.
PMCID: PMC4406054  PMID: 25561180
14.  Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation 
Nature  2015;523(7559):221-225.
Inflammation is a beneficial host response to infection but can contribute to inflammatory disease if unregulated. The TH17 lineage of T helper (TH) cells can cause severe human inflammatory diseases. These cells exhibit both instability (they can cease to express their signature cytokine, IL-17A)1 and plasticity (they can start expressing cytokines typical of other lineages)1,2 upon in vitro re-stimulation. However, technical limitations have prevented the transcriptional profiling of pre- and post-conversion TH17 cells ex vivo during immune responses. Thus, it is unknown whether TH17 cell plasticity merely reflects change in expression of a few cytokines, or if TH17 cells physiologically undergo global genetic reprogramming driving their conversion from one T helper cell type to another, a process known as transdifferentiation3,4. Furthermore, although TH17 cell instability/plasticity has been associated with pathogenicity1,2,5, it is unknown whether this could present a therapeutic opportunity, whereby formerly pathogenic TH17 cells could adopt an anti-inflammatory fate. Here we used two new fate-mapping mouse models to track TH17 cells during immune responses to show that CD4+ T cells that formerly expressed IL-17A go on to acquire an anti-inflammatory phenotype. The transdifferentiation of TH17 into regulatory T cells was illustrated by a change in their signature transcriptional profile and the acquisition of potent regulatory capacity. Comparisons of the transcriptional profiles of pre- and postconversion TH17 cells also revealed a role for canonical TGF-β signalling and consequently for the aryl hydrocarbon receptor (AhR) in conversion. Thus, TH17 cells transdifferentiate into regulatory cells, and contribute to the resolution of inflammation. Our data suggest that TH17 cell instability and plasticity is a therapeutic opportunity for inflammatory diseases.
PMCID: PMC4498984  PMID: 25924064
15.  Executioner Caspase-3 and 7 Deficiency Reduces Myocyte Number in the Developing Mouse Heart 
PLoS ONE  2015;10(6):e0131411.
Executioner caspase-3 and -7 are proteases promoting cell death but non-apoptotic roles are being discovered. The heart expresses caspases only during development, suggesting they contribute to the organ maturation process. Therefore, we aimed at identifying novel functions of caspases in heart development. We induced simultaneous deletion of executioner caspase-3 and -7 in the mouse myocardium and studied its effects. Caspase knockout hearts are hypoplastic at birth, reaching normal weight progressively through myocyte hypertrophy. To identify the molecular pathways involved in these effects, we used microarray-based transcriptomics and multiplexed quantitative proteomics to compare wild type and executioner caspase-deficient myocardium at different developmental stages. Transcriptomics showed reduced expression of genes promoting DNA replication and cell cycle progression in the neonatal caspase-deficient heart suggesting reduced myocyte proliferation, and expression of non-cardiac isoforms of structural proteins in the adult null myocardium. Proteomics showed reduced abundance of proteins involved in oxidative phosphorylation accompanied by increased abundance of glycolytic enzymes underscoring retarded metabolic maturation of the caspase-null myocardium. Correlation between mRNA expression and protein abundance of relevant genes was confirmed, but transcriptomics and proteomics indentified complementary molecular pathways influenced by caspases in the developing heart. Forced expression of wild type or proteolytically inactive caspases in cultured cardiomyocytes induced expression of genes promoting cell division. The results reveal that executioner caspases can modulate heart’s cellularity and maturation during development, contributing novel information about caspase biology and heart development.
PMCID: PMC4487935  PMID: 26121671
16.  The lock-washer: a reconciliation of the RIG-I activation models 
Cell Research  2014;24(6):645-646.
RIG-I belongs to a type of intracellular pattern recognition receptors involved in the recognition of viral RNA by the innate immune system. A report by Peisley et al. published in Nature provides the crystal structure of human RIG-I revealing a tetrameric architecture of the RIG-I 2-CARD domain bound by three K63-linked ubiquitin chains, uncovering its activation mechanism for downstream signaling.
PMCID: PMC4042178  PMID: 24797430
17.  FLUshing in the bathroom 
The Journal of Experimental Medicine  2014;211(12):2328-2329.
PMCID: PMC4235632  PMID: 25403806
18.  Murine autoimmune cholangitis requires two hits: Cytotoxic KLRG1+ CD8 effector cells and defective T regulatory cells 
Journal of autoimmunity  2014;50:123-134.
Primary biliary cirrhosis (PBC) is an enigmatic disease mediated by autoimmune destruction of cholangiocytes in hepatic bile ducts. The early immunological events leading to PBC are poorly understood; clinical signs of disease occur very late in the pathological process. We have used our unique murine model of PBC in dominant-negative TGF-β receptor type II transgenic mice to delineate critical early immunopathological pathways, and previously showed that dnTGFbRII CD8 T cells transfer biliary disease. Herein we report significantly increased numbers of hepatic dnTGFβRII terminally differentiated (KLRG1+) CD8 T cells, a CD8 subset previously shown to be enriched in antigen specific cells during hepatic immune response to viral infections. We performed bone marrow chimera studies to assess whether dnTGFbRII CD8 mediated disease was cell intrinsic or extrinsic. Unexpectedly, mixed (dnTGFβRII and B6) bone marrow chimeric (BMC) mice were protected from biliary disease compared to dnTGFβRII single bone marrow chimerics. To define the protective B6 cell subset, we performed adoptive transfer studies, which showed that co-transfer of B6 Tregs prevented dnTGFbRII CD8 T cell mediated cholangitis. Treg mediated disease protection was associated with significantly decreased numbers of hepatic KLRG1+ CD8 T cells. In contrast, co-transfer of dnTGFβRII Tregs offered no protection, and dnTGFβRII Treg cells were functionally defective in suppressing effector CD8 T cells in vitro compared to wild type B6 Tregs. In vitro cholangiocyte cytotoxicity assays demonstrated significantly increased numbers of cytotoxic hepatic dnTGFβRII KLRG1+ CD8 cells compared to B6. Protection from disease by B6 Tregs was associated with elimination of hepatic dnTGFβRII CD8 mediated cholangiocyte cytotoxicity. These results emphasize that autoimmune cholangitis requires defects in both the T effector and regulatory compartments, and that an intrinsic T cell effector defect is not sufficient to mediate autoimmune biliary disease in the setting of intact immune regulation. These results have important implications for understanding the early pathogenesis of human PBC.
PMCID: PMC4098881  PMID: 24556277
KLRG1+ CD8 cells; Primary biliary cirrhosis; T regulatory cells
19.  NOD2 regulates CXCR3-dependent CD8+ T cell accumulation in intestinal tissues with acute injury 
Polymorphisms in NOD2 confer risk for Crohn’s disease (CD), characterized by intestinal inflammation. How NOD2 regulates both inflammatory and regulatory intestinal T cells, which are critical to intestinal immune homeostasis, is not well-understood. Anti-CD3 monoclonal antibody (mAb) administration is used as therapy in human autoimmune diseases, as well as a model of transient intestinal injury. The stages of T cell activation, intestinal injury, and subsequent T tolerance are dependent on migration of T cells into the small intestinal (SI) lamina propria. Upon anti-CD3 mAb treatment of mice, we found that NOD2 was required for optimal small intestinal IL-10 production, in particular from CD8+ T cells. This requirement was associated with a critical role for NOD2 in SI CD8+ T cell accumulation and induction of the CXCR3 ligands CXCL9 and CXCL10, which regulate T cell migration. NOD2 was required in both the hematopoietic and non-hematopoietic compartments for optimal expression of CXCR3 ligands in intestinal tissues. NOD2 synergized with IFN-γ to induce CXCL9 and CXCL10 secretion in dendritic cells, macrophages and intestinal stromal cells in vitro. Consistent with the in vitro studies, during anti-CD3 mAb treatment in vivo, CXCR3 blockade, CD8+ T cell depletion or IFN-γ neutralization each inhibited SI CD8+ T cell recruitment, and reduced chemokine expression and IL-10 expression. Thus NOD2 synergizes with IFN-γ to promote CXCL9 and CXCL10 expression, thereby amplifying CXCR3-dependent SI CD8+ T cell migration during T cell activation, which in turn contributes to induction of both inflammatory and regulatory T cell outcomes in the intestinal environment.
PMCID: PMC4064676  PMID: 24591373
NOD2; IL-10; trafficking; chemokines; Crohn’s disease; piroxicam; colitis
20.  Macrophages sense and kill bacteria through carbon monoxide–dependent inflammasome activation 
The Journal of Clinical Investigation  2014;124(11):4926-4940.
Microbial clearance by eukaryotes relies on complex and coordinated processes that remain poorly understood. The gasotransmitter carbon monoxide (CO) is generated by the stress-responsive enzyme heme oxygenase-1 (HO-1, encoded by Hmox1), which is highly induced in macrophages in response to bacterial infection. HO-1 deficiency results in inadequate pathogen clearance, exaggerated tissue damage, and increased mortality. Here, we determined that macrophage-generated CO promotes ATP production and release by bacteria, which then activates the Nacht, LRR, and PYD domains-containing protein 3 (NALP3) inflammasome, intensifying bacterial killing. Bacterial killing defects in HO-1–deficient murine macrophages were restored by administration of CO. Moreover, increased CO levels enhanced the bacterial clearance capacity of human macrophages and WT murine macrophages. CO-dependent bacterial clearance required the NALP3 inflammasome, as CO did not increase bacterial killing in macrophages isolated from NALP3-deficient or caspase-1–deficient mice. IL-1β cleavage and secretion were impaired in HO-1–deficient macrophages, and CO-dependent processing of IL-1β required the presence of bacteria-derived ATP. We found that bacteria remained viable to generate and release ATP in response to CO. The ATP then bound to macrophage nucleotide P2 receptors, resulting in activation of the NALP3/IL-1β inflammasome to amplify bacterial phagocytosis by macrophages. Taken together, our results indicate that macrophage-derived CO permits efficient and coordinated regulation of the host innate response to invading microbes.
PMCID: PMC4347244  PMID: 25295542
21.  Toll-Like Receptor 3 Is a Potent Negative Regulator of Axonal Growth in Mammals 
Toll is a cell surface receptor with well described roles in the developmental patterning of invertebrates and innate immunity in adult Drosophila. Mammalian toll-like receptors represent a family of Toll orthologs that function in innate immunity by recognizing molecular motifs unique to pathogens or injured tissue. One member in this family of pattern recognition receptors, toll-like receptor 3 (TLR3), recognizes viral double-stranded RNA and host mRNA. We examined the expression and function of TLRs in the nervous system and found that TLR3 is expressed in the mouse central and peripheral nervous systems and is concentrated in the growth cones of neurons. Activation of TLR3 by the synthetic ligand polyinosine:polycytidylic acid (poly I:C) or by mRNA rapidly causes growth cone collapse and irreversibly inhibits neurite extension independent of nuclear factor κB. Mice lacking functional TLR3 were resistant to the neurodegenerative effects of poly I:C. Neonatal mice injected with poly I:C were found to have fewer axons exiting dorsal root ganglia and displayed related sensorimotor deficits. No effect of poly I:C was observed in mice lacking functional TLR3. Together, these findings provide evidence that an innate immune pattern recognition receptor functions autonomously in neurons to regulate axonal growth and advances a novel hypothesis that this class of receptors may contribute to injury and limited CNS regeneration.
PMCID: PMC4313565  PMID: 18032677
Toll-like receptor-3; axon; polyinosine:polycytidylic acid; poly I:C; RNA; CNS; danger theory
22.  Murine Lyme Arthritis Development Mediated by p38 Mitogen-Activated Protein Kinase Activity1 
Borrelia burgdorferi, the Lyme disease agent, causes joint inflammation in an experimental murine model. Inflammation occurs, in part, due to the ability of B. burgdorferi to induce the production of proinflammatory cytokines and a strong CD4+ T helper type 1 response. The mechanisms by which spirochetes induce these responses are not completely known, although transcription factors, such as NF-κB in phagocytic cells, initiate the proinflammatory cytokine burst. We show here that the mitogen-activated protein (MAP) kinase of 38 kDa (p38 MAP kinase) is involved in the proinflammatory cytokine production elicited by B. burgdorferi Ags in phagocytic cells and the development of murine Lyme arthritis. B. burgdorferi Ags activated p38 MAP kinase in vitro, and the use of a specific inhibitor repressed the spirochete-induced production of TNF-α. The infection of mice that are deficient for a specific upstream activator of the kinase, MAP kinase kinase 3, resulted in diminished proinflammatory cytokine production and the development of arthritis, without compromising the ability of CD4+ T cells to respond to borrelial Ags or the production of specific Abs. Overall, these data indicated that the p38 MAP kinase pathway plays an important role in B. burgdorferi-elicited inflammation and point to potential new therapeutic approaches to the treatment of inflammation induced by the spirochete.
PMCID: PMC4309983  PMID: 12055252
23.  Glucocorticoids suppress inflammation via the upregulation of negative regulator IRAK-M 
Nature Communications  2015;6:6062.
Glucocorticoids are among the most commonly used anti-inflammatory agents. Despite the enormous efforts in elucidating the glucocorticoid-mediated anti-inflammatory actions, how glucocorticoids tightly control overactive inflammatory response is not fully understood. Here we show that glucocorticoids suppress bacteria-induced inflammation by enhancing IRAK-M, a central negative regulator of Toll-like receptor signalling. The ability of glucocorticoids to suppress pulmonary inflammation induced by non-typeable Haemophilus influenzae is significantly attenuated in IRAK-M-deficient mice. Glucocorticoids improve the survival rate after a lethal non-typeable Haemophilus influenzae infection in wild-type mice, but not in IRAK-M-deficient mice. Moreover, we show that glucocorticoids and non-typeable Haemophilus influenzae synergistically upregulate IRAK-M expression via mutually and synergistically enhancing p65 and glucocorticoid receptor binding to the IRAK-M promoter. Together, our studies unveil a mechanism by which glucocorticoids tightly control the inflammatory response and host defense via the induction of IRAK-M and may lead to further development of anti-inflammatory therapeutic strategies.
Glucocorticoids strongly suppress inflammation. Here the authors show that this suppression is mediated by induction of the negative inflammatory regulator IRAK-M, and demonstrate its important role in host defense against the pneumonia-causative bacterium, non-typeable Haemophilus influenzae.
PMCID: PMC4309435  PMID: 25585690
24.  IL-9 Regulates Allergen-Specific Th1 Responses in Allergic Contact Dermatitis 
The cytokine IL-9, derived primarily from T-helper (Th)-9 lymphocytes, promotes expansion of the Th2 subset and is implicated in the mechanisms of allergic asthma. We hypothesize that IL-9 also plays a role in human allergic contact dermatitis (ACD). To investigate this hypothesis, skin biopsy specimens of positive patch test sites from non-atopic patients were assayed using qPCR and immunohistochemistry. Along with Th2 associated cytokines, IFN-γ, IL-4, and IL-17A, expression of IL-9, and PU.1, a Th9-associated transcription factor, were elevated when compared to paired normal skin. Immunohistochemistry on ACD skin biopsies identified PU.1+CD3+, and PU.1+CD4+ cells, consistent with Th9 lymphocytes, in the inflammatory infiltrate. PBMC from nickel-allergic patients, but not non-allergic controls, show significant IL-9 production in response to nickel. Blocking studies with monoclonal antibodies to HLA-DR (but not HLA-A, B, C) or chloroquine significantly reduced this nickel-specific IL-9 production. Additionally, blockade of IL-9 or IL-4 enhanced allergen-specific IFN-γ production. A contact hypersensitivity model using IL-9−/− mice, shows enhanced Th1 lymphocyte immune responses, when compared to WT mice, consistent with our human in vitro data. This study demonstrates that IL-9, through its direct effects on Th1 and ability to promote IL-4 secretion, has a regulatory role for Th1 lymphocytes in ACD.
PMCID: PMC4303591  PMID: 24487305
25.  CD45 ligation expands Tregs by promoting interactions with DCs 
The Journal of Clinical Investigation  2014;124(10):4603-4613.
Regulatory T cells (Tregs), which express CD4 and FOXP3, are critical for modulating the immune response and promoting immune tolerance. Consequently, methods to expand Tregs for therapeutic use are of great interest. While transfer of Tregs after massive ex vivo expansion can be achieved, in vivo expansion of Tregs would be more practical. Here, we demonstrate that targeting the CD45 tyrosine phosphatase with a tolerogenic anti-CD45RB mAb acutely increases Treg numbers in WT mice, even in absence of exogenous antigen. Treg expansion occurred through substantial augmentation of homeostatic proliferation in the preexisting Treg population. Moreover, anti-CD45RB specifically increased Treg proliferation in response to cognate antigen. Compared with conventional T cells, Tregs differentially regulate their conjugation with DCs. Therefore, we determined whether CD45 ligation could alter interactions between Tregs and DCs. Live imaging showed that CD45 ligation specifically reduced Treg motility in an integrin-dependent manner, resulting in enhanced interactions between Tregs and DCs in vivo. Increased conjugate formation, in turn, augmented nuclear translocation of nuclear factor of activated T cells (NFAT) and Treg proliferation. Together, these results demonstrate that Treg peripheral homeostasis can be specifically modulated in vivo to promote Treg expansion and tolerance by increasing conjugation between Tregs and DCs.
PMCID: PMC4191025  PMID: 25202978

Results 1-25 (275)