PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  The serodominant secreted effector protein of Salmonella, SseB, is a strong CD4 antigen containing an immunodominant epitope presented by diverse HLA class II alleles 
Immunology  2014;143(3):438-446.
Detailed characterization of the protective T-cell response in salmonellosis is a pressing unmet need in light of the global burden of human Salmonella infections and the likely contribution of CD4 T cells to immunity against this intracellular infection. In previous studies screening patient sera against antigen arrays, SseB was noteworthy as a serodominant target of adaptive immunity, inducing significantly raised antibody responses in HIV-seronegative compared with seropositive patients. SseB is a secreted protein, part of the Espa superfamily, localized to the bacterial surface and forming part of the translocon of the type III secretion system (T3SS) encoded by Salmonella pathogenicity island 2. We demonstrate here that SseB is also a target of CD4 T-cell immunity, generating a substantial response after experimental infection in human volunteers, with around 0·1% of the peripheral repertoire responding to it. HLA-DR/peptide binding studies indicate that this protein encompasses a number of peptides with ability to bind to several different HLA-DR alleles. Of these, peptide 11 (p11) was shown in priming of both HLA-DR1 and HLA-DR4 transgenic mice to contain an immunodominant CD4 epitope. Analysis of responses in human donors showed immunity focused on p11 and another epitope in peptide 2. The high frequency of SseB-reactive CD4 T cells and the broad applicability to diverse HLA genotypes coupled with previous observations of serodominance and protective vaccination in mouse challenge experiments, make SseB a plausible candidate for next-generation Salmonella vaccines.
doi:10.1111/imm.12327
PMCID: PMC4212957  PMID: 24891088
CD4 epitope; HLA-DR transgenic; Salmonella; SseB; type 3 secretion system
3.  Increased HLA-E expression in white matter lesions in multiple sclerosis 
Immunology  2012;137(4):317-325.
The molecular mechanisms underpinning central nervous system damage in multiple sclerosis (MS) are complex and it is widely accepted that there is an autoimmune component. Both adaptive and innate immune effector mechanisms are believed to contribute to tissue disease aetiology. HLA-E is a non-classical MHC class Ib molecule that acts as the ligand for the NKG2A inhibitory receptor present on natural killer (NK) and CD8+ cells. Peptide binding and stabilization of HLA-E is often considered to signal infection or cell stress. Here we examine the up-regulation of HLA-E in MS brain tissue. Expression is significantly increased in white matter lesions in the brain of MS patients compared with white matter of neurologically healthy controls. Furthermore, using quantitative immunohistochemistry and confocal microscopy, we show increased HLA-E protein expression in endothelial cells of active MS lesions. Non-inflammatory chronic lesions express significantly less HLA-E protein, comparable to levels found in white matter from controls. Increased HLA-E protein levels were associated with higher scores of inflammation. These results suggest the potential for an effect in central nervous system pathogenesis from HLA-E modulation in stressed tissue. Co-localization with infiltrating CD8+ cells implicates a possible role for HLA-E-restricted regulatory CD8+ cells, as has been proposed in other autoimmune diseases.
doi:10.1111/imm.12012
PMCID: PMC3530087  PMID: 23039207
autoimmunity; major histocompatibility complex; human leucocyte antigen; multiple sclerosis
4.  The serodominant secreted effector protein of Salmonella, SseB, is a strong CD4 antigen containing an immunodominant epitope presented by diverse HLA class II alleles 
Immunology  2014;143(3):438-446.
Detailed characterization of the protective T-cell response in salmonellosis is a pressing unmet need in light of the global burden of human Salmonella infections and the likely contribution of CD4 T cells to immunity against this intracellular infection. In previous studies screening patient sera against antigen arrays, SseB was noteworthy as a serodominant target of adaptive immunity, inducing significantly raised antibody responses in HIV-seronegative compared with seropositive patients. SseB is a secreted protein, part of the Espa superfamily, localized to the bacterial surface and forming part of the translocon of the type III secretion system (T3SS) encoded by Salmonella pathogenicity island 2. We demonstrate here that SseB is also a target of CD4 T-cell immunity, generating a substantial response after experimental infection in human volunteers, with around 0·1% of the peripheral repertoire responding to it. HLA-DR/peptide binding studies indicate that this protein encompasses a number of peptides with ability to bind to several different HLA-DR alleles. Of these, peptide 11 (p11) was shown in priming of both HLA-DR1 and HLA-DR4 transgenic mice to contain an immunodominant CD4 epitope. Analysis of responses in human donors showed immunity focused on p11 and another epitope in peptide 2. The high frequency of SseB-reactive CD4 T cells and the broad applicability to diverse HLA genotypes coupled with previous observations of serodominance and protective vaccination in mouse challenge experiments, make SseB a plausible candidate for next-generation Salmonella vaccines.
doi:10.1111/imm.12327
PMCID: PMC4212957  PMID: 24891088
CD4 epitope; HLA-DR transgenic; Salmonella; SseB; type 3 secretion system
5.  Anthrax Lethal Factor as an Immune Target in Humans and Transgenic Mice and the Impact of HLA Polymorphism on CD4+ T Cell Immunity 
PLoS Pathogens  2014;10(5):e1004085.
Bacillus anthracis produces a binary toxin composed of protective antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). Most studies have concentrated on induction of toxin-specific antibodies as the correlate of protective immunity, in contrast to which understanding of cellular immunity to these toxins and its impact on infection is limited. We characterized CD4+ T cell immunity to LF in a panel of humanized HLA-DR and DQ transgenic mice and in naturally exposed patients. As the variation in antigen presentation governed by HLA polymorphism has a major impact on protective immunity to specific epitopes, we examined relative binding affinities of LF peptides to purified HLA class II molecules, identifying those regions likely to be of broad applicability to human immune studies through their ability to bind multiple alleles. Transgenics differing only in their expression of human HLA class II alleles showed a marked hierarchy of immunity to LF. Immunogenicity in HLA transgenics was primarily restricted to epitopes from domains II and IV of LF and promiscuous, dominant epitopes, common to all HLA types, were identified in domain II. The relevance of this model was further demonstrated by the fact that a number of the immunodominant epitopes identified in mice were recognized by T cells from humans previously infected with cutaneous anthrax and from vaccinated individuals. The ability of the identified epitopes to confer protective immunity was demonstrated by lethal anthrax challenge of HLA transgenic mice immunized with a peptide subunit vaccine comprising the immunodominant epitopes that we identified.
Author Summary
Anthrax is of concern with respect to human exposure in endemic regions, concerns about bioterrorism and the considerable global burden of livestock infections. The immunology of this disease remains poorly understood. Vaccination has been based on B. anthracis filtrates or attenuated spore-based vaccines, with more recent trials of next-generation recombinant vaccines. Approaches generally require extensive vaccination regimens and there have been concerns about immunogenicity and adverse reactions. An ongoing need remains for rationally designed, effective and safe anthrax vaccines. The importance of T cell stimulating vaccines is inceasingly recognized. An essential step is an understanding of immunodominant epitopes and their relevance across the diverse HLA immune response genes of human populations. We characterized CD4 T cell immunity to anthrax Lethal Factor (LF), using HLA transgenic mice, as well as testing candidate peptide epitopes for binding to a wide range of HLA alleles. We identified anthrax epitopes, noteworthy in that they elicit exceptionally strong immunity with promiscuous binding across multiple HLA alleles and isotypes. T cell responses in humans exposed to LF through either natural anthrax infection or vaccination were also examined. Epitopes identified as candidates were used to protect HLA transgenic mice from anthrax challenge.
doi:10.1371/journal.ppat.1004085
PMCID: PMC4006929  PMID: 24788397
6.  Increased HLA-E expression in white matter lesions in multiple sclerosis 
Immunology  2012;137(4):317-325.
The molecular mechanisms underpinning central nervous system damage in multiple sclerosis (MS) are complex and it is widely accepted that there is an autoimmune component. Both adaptive and innate immune effector mechanisms are believed to contribute to tissue disease aetiology. HLA-E is a non-classical MHC class Ib molecule that acts as the ligand for the NKG2A inhibitory receptor present on natural killer (NK) and CD8+ cells. Peptide binding and stabilization of HLA-E is often considered to signal infection or cell stress. Here we examine the up-regulation of HLA-E in MS brain tissue. Expression is significantly increased in white matter lesions in the brain of MS patients compared with white matter of neurologically healthy controls. Furthermore, using quantitative immunohistochemistry and confocal microscopy, we show increased HLA-E protein expression in endothelial cells of active MS lesions. Non-inflammatory chronic lesions express significantly less HLA-E protein, comparable to levels found in white matter from controls. Increased HLA-E protein levels were associated with higher scores of inflammation. These results suggest the potential for an effect in central nervous system pathogenesis from HLA-E modulation in stressed tissue. Co-localization with infiltrating CD8+ cells implicates a possible role for HLA-E-restricted regulatory CD8+ cells, as has been proposed in other autoimmune diseases.
doi:10.1111/imm.12012
PMCID: PMC3530087  PMID: 23039207
autoimmunity; major histocompatibility complex; human leucocyte antigen; multiple sclerosis
7.  Innate Immunity in multiple sclerosis white matter lesions: expression of natural cytotoxicity triggering receptor 1 (NCR1) 
Background
Pathogenic or regulatory effects of natural killer (NK) cells are implicated in many autoimmune diseases, but evidence in multiple sclerosis (MS) and its murine models remains equivocal. In an effort to illuminate this, we have here analysed expression of the prototypic NK cell marker, NCR1 (natural cytotoxicity triggering receptor; NKp46; CD335), an activating receptor expressed by virtually all NK cells and therefore considered a pan-marker for NK cells. The only definitive ligand of NCR1 is influenza haemagglutinin, though there are believed to be others. In this study, we investigated whether there were differences in NCR1+ cells in the peripheral blood of MS patients and whether NCR1+ cells are present in white matter lesions.
Results
We first investigated the expression of NCR1 on peripheral blood mononuclear cells and found no significant difference between healthy controls and MS patients. We then investigated mRNA levels in central nervous system (CNS) tissue from MS patients: NCR1 transcripts were increased more than 5 times in active disease lesions. However when we performed immunohistochemical staining of this tissue, few NCR1+ NK cells were identified. Rather, the major part of NCR1 expression was localised to astrocytes, and was considerably more pronounced in MS patients than controls. In order to further validate de novo expression of NCR1 in astrocytes, we used an in vitro staining of the human astrocytoma U251 cell line grown to model whether cell stress could be associated with expression of NCR1. We found up-regulation of NCR1 expression in U251 cells at both the mRNA and protein levels.
Conclusions
The data presented here show very limited expression of NCR1+ NK cells in MS lesions, the majority of NCR1 expression being accounted for by expression on astrocytes. This is compatible with a role of this cell-type and NCR1 ligand/receptor interactions in the innate immune response in the CNS in MS patients. This is the first report of NCR1 expression on astrocytes in MS tissue: it will now be important to unravel the nature of cellular interactions and signalling mediated through innate receptor expression on astrocytes.
doi:10.1186/1742-2094-9-1
PMCID: PMC3269367  PMID: 22212381
Autoimmune diseases; neurodegeneration; natural killer cell; astrocyte; neuroinflammation
8.  Peptide immunotherapy in allergic asthma generates IL-10–dependent immunological tolerance associated with linked epitope suppression 
The Journal of Experimental Medicine  2009;206(7):1535-1547.
Treatment of patients with allergic asthma using low doses of peptides containing T cell epitopes from Fel d 1, the major cat allergen, reduces allergic sensitization and improves surrogate markers of disease. Here, we demonstrate a key immunological mechanism, linked epitope suppression, associated with this therapeutic effect. Treatment with selected epitopes from a single allergen resulted in suppression of responses to other (“linked”) epitopes within the same molecule. This phenomenon was induced after peptide immunotherapy in human asthmatic subjects and in a novel HLA-DR1 transgenic mouse model of asthma. Tracking of allergen-specific T cells using DR1 tetramers determined that suppression was associated with the induction of interleukin (IL)-10+ T cells that were more abundant than T cells specific for the single-treatment peptide and was reversed by anti–IL-10 receptor administration. Resolution of airway pathophysiology in this model was associated with reduced recruitment, proliferation, and effector function of allergen-specific Th2 cells. Our results provide, for the first time, in vivo evidence of linked epitope suppression and IL-10 induction in both human allergic disease and a mouse model designed to closely mimic peptide therapy in humans.
doi:10.1084/jem.20082901
PMCID: PMC2715096  PMID: 19528258

Results 1-8 (8)