PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (165)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Diverse Francisella tularensis Strains and Oropharyngeal Tularemia, Turkey 
Emerging Infectious Diseases  2015;21(1):173-175.
doi:10.3201/eid2101.141087
PMCID: PMC4285279  PMID: 25531237
Francisella tularensis; tularemia; Turkey; SNP; canSNP; clinical sample; bacteria
2.  Community-integrated omics links dominance of a microbial generalist to fine-tuned resource usage 
Nature Communications  2014;5:5603.
Microbial communities are complex and dynamic systems that are primarily structured according to their members’ ecological niches. To investigate how niche breadth (generalist versus specialist lifestyle strategies) relates to ecological success, we develop and apply an integrative workflow for the multi-omic analysis of oleaginous mixed microbial communities from a biological wastewater treatment plant. Time- and space-resolved coupled metabolomic and taxonomic analyses demonstrate that the community-wide lipid accumulation phenotype is associated with the dominance of the generalist bacterium Candidatus Microthrix spp. By integrating population-level genomic reconstructions (reflecting fundamental niches) with transcriptomic and proteomic data (realised niches), we identify finely tuned gene expression governing resource usage by Candidatus Microthrix parvicella over time. Moreover, our results indicate that the fluctuating environmental conditions constrain the accumulation of genetic variation in Candidatus Microthrix parvicella likely due to fitness trade-offs. Based on our observations, niche breadth has to be considered as an important factor for understanding the evolutionary processes governing (microbial) population sizes and structures in situ.
Within microbial communities, microorganisms adopt different lifestyle strategies to use the available resources. Here, the authors use an integrated ‘multi-omic’ approach to study niche breadth (generalist versus specialist lifestyles) in oleaginous microbial assemblages from an anoxic wastewater treatment tank.
doi:10.1038/ncomms6603
PMCID: PMC4263124  PMID: 25424998
3.  Insights to Genetic Characterization Tools for Epidemiological Tracking of Francisella tularensis in Sweden 
PLoS ONE  2014;9(11):e112167.
Tularaemia, caused by the bacterium Francisella tularensis, is endemic in Sweden and is poorly understood. The aim of this study was to evaluate the effectiveness of three different genetic typing systems to link a genetic type to the source and place of tularemia infection in Sweden. Canonical single nucleotide polymorphisms (canSNPs), MLVA including five variable number of tandem repeat loci and PmeI-PFGE were tested on 127 F. tularensis positive specimens collected from Swedish case-patients. All three typing methods identified two major genetic groups with near-perfect agreement. Higher genetic resolution was obtained with canSNP and MLVA compared to PFGE; F. tularensis samples were first assigned into ten phylogroups based on canSNPs followed by 33 unique MLVA types. Phylogroups were geographically analysed to reveal complex phylogeographic patterns in Sweden. The extensive phylogenetic diversity found within individual counties posed a challenge to linking specific genetic types with specific geographic locations. Despite this, a single phylogroup (B.22), defined by a SNP marker specific to a lone Swedish sequenced strain, did link genetic type with a likely geographic place. This result suggests that SNP markers, highly specific to a particular reference genome, may be found most frequently among samples recovered from the same location where the reference genome originated. This insight compels us to consider whole-genome sequencing (WGS) as the appropriate tool for effectively linking specific genetic type to geography. Comparing the WGS of an unknown sample to WGS databases of archived Swedish strains maximizes the likelihood of revealing those rare geographically informative SNPs.
doi:10.1371/journal.pone.0112167
PMCID: PMC4234373  PMID: 25401326
4.  Genomic Epidemiology of the Haitian Cholera Outbreak: a Single Introduction Followed by Rapid, Extensive, and Continued Spread Characterized the Onset of the Epidemic 
mBio  2014;5(6):e01721-14.
ABSTRACT
For centuries, cholera has been one of the most feared diseases. The causative agent Vibrio cholerae is a waterborne Gram-negative enteric pathogen eliciting a severe watery diarrheal disease. In October 2010, the seventh pandemic reached Haiti, a country that had not experienced cholera for more than a century. By using whole-genome sequence typing and mapping strategies of 116 serotype O1 strains from global sources, including 44 Haitian genomes, we present a detailed reconstructed evolutionary history of the seventh pandemic with a focus on the Haitian outbreak. We catalogued subtle genomic alterations at the nucleotide level in the genome core and architectural rearrangements from whole-genome map comparisons. Isolates closely related to the Haitian isolates caused several recent outbreaks in southern Asia. This study provides evidence for a single-source introduction of cholera from Nepal into Haiti followed by rapid, extensive, and continued clonal expansion. The phylogeographic patterns in both southern Asia and Haiti argue for the rapid dissemination of V. cholerae across the landscape necessitating real-time surveillance efforts to complement the whole-genome epidemiological analysis. As eradication efforts move forward, phylogeographic knowledge will be important for identifying persistent sources and monitoring success at regional levels. The results of molecular and epidemiological analyses of this outbreak suggest that an indigenous Haitian source of V. cholerae is unlikely and that an indigenous source has not contributed to the genomic evolution of this clade.
IMPORTANCE
In this genomic epidemiology study, we have applied high-resolution whole-genome-based sequence typing methodologies on a comprehensive set of genome sequences that have become available in the aftermath of the Haitian cholera epidemic. These sequence resources enabled us to reassess the degree of genomic heterogeneity within the Vibrio cholerae O1 serotype and to refine boundaries and evolutionary relationships. The established phylogenomic framework showed how outbreak isolates fit into the global phylogeographic patterns compared to a comprehensive globally and temporally diverse strain collection and provides strong molecular evidence that points to a nonindigenous source of the 2010 Haitian cholera outbreak and refines epidemiological standards used in outbreak investigations for outbreak inclusion/exclusion following the concept of genomic epidemiology. The generated phylogenomic data have major public health relevance in translating sequence-based information to assist in future diagnostic, epidemiological, surveillance, and forensic studies of cholera.
doi:10.1128/mBio.01721-14
PMCID: PMC4222100  PMID: 25370488
5.  MetaGeniE: Characterizing Human Clinical Samples Using Deep Metagenomic Sequencing 
PLoS ONE  2014;9(11):e110915.
With the decreasing cost of next-generation sequencing, deep sequencing of clinical samples provides unique opportunities to understand host-associated microbial communities. Among the primary challenges of clinical metagenomic sequencing is the rapid filtering of human reads to survey for pathogens with high specificity and sensitivity. Metagenomes are inherently variable due to different microbes in the samples and their relative abundance, the size and architecture of genomes, and factors such as target DNA amounts in tissue samples (i.e. human DNA versus pathogen DNA concentration). This variation in metagenomes typically manifests in sequencing datasets as low pathogen abundance, a high number of host reads, and the presence of close relatives and complex microbial communities. In addition to these challenges posed by the composition of metagenomes, high numbers of reads generated from high-throughput deep sequencing pose immense computational challenges. Accurate identification of pathogens is confounded by individual reads mapping to multiple different reference genomes due to gene similarity in different taxa present in the community or close relatives in the reference database. Available global and local sequence aligners also vary in sensitivity, specificity, and speed of detection. The efficiency of detection of pathogens in clinical samples is largely dependent on the desired taxonomic resolution of the organisms. We have developed an efficient strategy that identifies “all against all” relationships between sequencing reads and reference genomes. Our approach allows for scaling to large reference databases and then genome reconstruction by aggregating global and local alignments, thus allowing genetic characterization of pathogens at higher taxonomic resolution. These results were consistent with strain level SNP genotyping and bacterial identification from laboratory culture.
doi:10.1371/journal.pone.0110915
PMCID: PMC4218713  PMID: 25365329
6.  Medical therapy reduces microbiota diversity and evenness in surgically recalcitrant chronic rhinosinusitis 
Background
Chronic rhinosinusitis is a highly prevalent and heterogeneous condition frequently treated with antibiotics and corticosteroid therapy. However, the effect of medical therapy on sinus microbiota remains unknown.
Methods
We enrolled CRS participants (n = 6) with patent maxillary antrostomies and active mucosal inflammation, who had not received antibiotics or corticosteroids in the previous eight weeks. A pre- and post-treatment maxillary sinus swab was collected, from which DNA was extracted, pyrosequenced, and analyzed using Naïve Bayesian Classifier and ecological analyses.
Results
Four participants showed significant improvement in endoscopic appearance. The shifts in microbiota in response to therapy were highly individualized. There was no single common microbiota profile among participants with similar clinical outcomes, but overall there was significant decrease in microbiota diversity (t(5) = 2.05, p = 0.10) and evenness (t(5) = 2.28, p = 0.07) after treatment.
Conclusions
Our findings strongly correlate with earlier studies that examined the impact of antibiotics on human microbiota. We observed that post-treatment, participants frequently became colonized by taxa that are less susceptible to the prescribed antibiotics. Our findings highlight the challenge in seeking generalizable diagnostic and therapeutic options in CRS, particularly regarding microbiological response and outcomes.
doi:10.1002/alr.21195
PMCID: PMC4007209  PMID: 23843343
Bacteriology; Chronic Rhinosinusitis; Medical Therapy of Chronic Rhinosinusitis; Steroid therapy; Eosinophilic rhinitis and nasal polyposis; Sinusitis; Rhinosinusitis; Sinus microbiota; Sinus microbiome; Sinus microbiology; 16S rRNA gene; 16S rRNA gene-based pyrosequencing; Antibiotics; Antimicrobial; Corticosteroids; Chronic Rhinosinusitis; Maximum medical therapy
7.  Genotyping of Burkholderia mallei from an Outbreak of Glanders in Bahrain Suggests Multiple Introduction Events 
Background
Glanders, caused by the gram-negative bacterium Burkholderia mallei, is a highly infectious zoonotic disease of solipeds causing severe disease in animals and men. Although eradicated from many Western countries, it recently emerged in Asia, the Middle-East, Africa, and South America. Due to its rareness, little is known about outbreak dynamics of the disease and its epidemiology.
Methodology/Principal Findings
We investigated a recent outbreak of glanders in Bahrain by applying high resolution genotyping (multiple locus variable number of tandem repeats, MLVA) and comparative whole genome sequencing to B. mallei isolated from infected horses and a camel. These results were compared to samples obtained from an outbreak in the United Arab Emirates in 2004, and further placed into a broader phylogeographic context based on previously published B. mallei data. The samples from the outbreak in Bahrain separated into two distinct clusters, suggesting a complex epidemiological background and evidence for the involvement of multiple B. mallei strains. Additionally, the samples from Bahrain were more closely related to B. mallei isolated from horses in the United Arab Emirates in 2004 than other B. mallei which is suggestive of repeated importation to the region from similar geographic sources.
Conclusion/Significance
High-resolution genotyping and comparative whole genome analysis revealed the same phylogenetic patterns among our samples. The close relationship of the Dubai/UAE B. mallei populations to each other may be indicative of a similar geographic origin that has yet to be identified for the infecting strains. The recent emergence of glanders in combination with worldwide horse trading might pose a new risk for human infections.
Author Summary
Glanders is a disease of antiquity, recognized as a malady of equines by Hippocrates and Aristotle. The causative agent, Burkholderia mallei, is currently feared as a potential biological weapon and has been used as such in the American Civil War and both World Wars to cripple equine military components. In the more economically developed countries, glanders has been eradicated through large scale culling. As a result, our understanding of transmission dynamics and networks is limited. However, regions of endemicity still exist in Asia, the Middle-East, Africa, and South America where it infects solipeds and camels. These areas provide reservoirs for re-introduction of glanders into countries previously listed as glanders-free. Here, we demonstrate the utility of high-resolution genotyping and whole genome sequence analysis in the investigation of a recent outbreak of glanders in horses and camels in Bahrain, a previously declared glanders-free country. Our analyses demonstrate that not one, but two strains likely caused this outbreak, and that these strains probably came from a similar geographic region via importation of infected animals. Even with careful monitoring, the global trade of animals from glanders-endemic regions can re-introduce and possibly re-establish this disease in animal populations of countries that have previously eradicated it.
doi:10.1371/journal.pntd.0003195
PMCID: PMC4177748  PMID: 25255232
8.  TaqMan Real-Time PCR Assays for Single-Nucleotide Polymorphisms Which Identify Francisella tularensis and Its Subspecies and Subpopulations 
PLoS ONE  2014;9(9):e107964.
Francisella tularensis, the etiologic agent of tularemia and a Class A Select Agent, is divided into three subspecies and multiple subpopulations that differ in virulence and geographic distribution. Given these differences, there is a need to rapidly and accurately determine if a strain is F. tularensis and, if it is, assign it to subspecies and subpopulation. We designed TaqMan real-time PCR genotyping assays using eleven single nucleotide polymorphisms (SNPs) that were potentially specific to closely related groups within the genus Francisella, including numerous subpopulations within F. tularensis species. We performed extensive validation studies to test the specificity of these SNPs to particular populations by screening the assays across a set of 565 genetically and geographically diverse F. tularensis isolates and an additional 21 genetic near-neighbor (outgroup) isolates. All eleven assays correctly determined the genetic groups of all 565 F. tularensis isolates. One assay differentiates F. tularensis, F. novicida, and F. hispaniensis from the more genetically distant F. philomiragia and Francisella-like endosymbionts. Another assay differentiates F. tularensis isolates from near neighbors. The remaining nine assays classify F. tularensis-confirmed isolates into F. tularensis subspecies and subpopulations. The genotyping accuracy of these nine assays diminished when tested on outgroup isolates (i.e. non F. tularensis), therefore a hierarchical approach of assay usage is recommended wherein the F. tularensis-specific assay is used before the nine downstream assays. Among F. tularensis isolates, all eleven assays were highly sensitive, consistently amplifying very low concentrations of DNA. Altogether, these eleven TaqMan real-time PCR assays represent a highly accurate, rapid, and sensitive means of identifying the species, subspecies, and subpopulation of any F. tularensis isolate if used in a step-wise hierarchical scheme. These assays would be very useful in clinical, epidemiological, and/or forensic investigations involving F. tularensis.
doi:10.1371/journal.pone.0107964
PMCID: PMC4169575  PMID: 25238067
9.  Genome Sequence of Bacillus anthracis STI, a Sterne-Like Georgian/Soviet Vaccine Strain 
Genome Announcements  2014;2(5):e00853-14.
The Bacillus anthracis strain STI is a Soviet vaccine strain that lacks the pXO2 plasmid. Previous data indicate that this isolate forms a new branch within the B. anthracis sub-group originally identified as A. Br.008/009.
doi:10.1128/genomeA.00853-14
PMCID: PMC4172265  PMID: 25237016
10.  Highly Sensitive Quantitative PCR for the Detection and Differentiation of Pseudogymnoascus destructans and Other Pseudogymnoascus Species 
White-nose syndrome is a fungal disease that has decimated bat populations across eastern North America. Identification of the etiologic agent, Pseudogymnoascus destructans (formerly Geomyces destructans), in environmental samples is essential to proposed management plans. A major challenge is the presence of closely related species, which are ubiquitous in many soils and cave sediments and often present in high abundance. We present a dual-probe real-time quantitative PCR assay capable of detecting and differentiating P. destructans from closely related fungi in environmental samples from North America. The assay, based on a single nucleotide polymorphism (SNP) specific to P. destructans, is capable of rapid low-level detection from various sampling media, including sediment, fecal samples, wing biopsy specimens, and skin swabs. This method is a highly sensitive, high-throughput method for identifying P. destructans, other Pseudogymnoascus spp., and Geomyces spp. in the environment, providing a fundamental component of research and risk assessment for addressing this disease, as well as other ecological and mycological work on related fungi.
doi:10.1128/AEM.02897-13
PMCID: PMC3957615  PMID: 24375140
11.  Phylogeography of Bacillus anthracis in the Country of Georgia Shows Evidence of Population Structuring and Is Dissimilar to Other Regional Genotypes 
PLoS ONE  2014;9(7):e102651.
Sequence analyses and subtyping of Bacillus anthracis strains from Georgia reveal a single distinct lineage (Aust94) that is ecologically established. Phylogeographic analysis and comparisons to a global collection reveals a clade that is mostly restricted to Georgia. Within this clade, many groups are found around the country, however at least one subclade is only found in the eastern part. This pattern suggests that dispersal into and out of Georgia has been rare and despite historical dispersion within the country, for at least for one lineage, current spread is limited.
doi:10.1371/journal.pone.0102651
PMCID: PMC4105404  PMID: 25047912
12.  Cryptococcus gattii in North American Pacific Northwest: Whole-Population Genome Analysis Provides Insights into Species Evolution and Dispersal 
mBio  2014;5(4):e01464-14.
ABSTRACT
The emergence of distinct populations of Cryptococcus gattii in the temperate North American Pacific Northwest (PNW) was surprising, as this species was previously thought to be confined to tropical and semitropical regions. Beyond a new habitat niche, the dominant emergent population displayed increased virulence and caused primary pulmonary disease, as opposed to the predominantly neurologic disease seen previously elsewhere. Whole-genome sequencing was performed on 118 C. gattii isolates, including the PNW subtypes and the global diversity of molecular type VGII, to better ascertain the natural source and genomic adaptations leading to the emergence of infection in the PNW. Overall, the VGII population was highly diverse, demonstrating large numbers of mutational and recombinational events; however, the three dominant subtypes from the PNW were of low diversity and were completely clonal. Although strains of VGII were found on at least five continents, all genetic subpopulations were represented or were most closely related to strains from South America. The phylogenetic data are consistent with multiple dispersal events from South America to North America and elsewhere. Numerous gene content differences were identified between the emergent clones and other VGII lineages, including genes potentially related to habitat adaptation, virulence, and pathology. Evidence was also found for possible gene introgression from Cryptococcus neoformans var. grubii that is rarely seen in global C. gattii but that was present in all PNW populations. These findings provide greater understanding of C. gattii evolution in North America and support extensive evolution in, and dispersal from, South America.
IMPORTANCE
Cryptococcus gattii emerged in the temperate North American Pacific Northwest (PNW) in the late 1990s. Beyond a new environmental niche, these emergent populations displayed increased virulence and resulted in a different pattern of clinical disease. In particular, severe pulmonary infections predominated in contrast to presentation with neurologic disease as seen previously elsewhere. We employed population-level whole-genome sequencing and analysis to explore the genetic relationships and gene content of the PNW C. gattii populations. We provide evidence that the PNW strains originated from South America and identified numerous genes potentially related to habitat adaptation, virulence expression, and clinical presentation. Characterization of these genetic features may lead to improved diagnostics and therapies for such fungal infections. The data indicate that there were multiple recent introductions of C. gattii into the PNW. Public health vigilance is warranted for emergence in regions where C. gattii is not thought to be endemic.
doi:10.1128/mBio.01464-14
PMCID: PMC4161256  PMID: 25028429
13.  Burkholderia pseudomallei Isolates from Sarawak, Malaysian Borneo, Are Predominantly Susceptible to Aminoglycosides and Macrolides 
Melioidosis is a potentially fatal disease caused by the saprophytic bacterium Burkholderia pseudomallei. Resistance to gentamicin is generally a hallmark of B. pseudomallei, and gentamicin is a selective agent in media used for diagnosis of melioidosis. In this study, we determined the prevalence and mechanism of gentamicin susceptibility found in B. pseudomallei isolates from Sarawak, Malaysian Borneo. We performed multilocus sequence typing and antibiotic susceptibility testing on 44 B. pseudomallei clinical isolates from melioidosis patients in Sarawak district hospitals. Whole-genome sequencing was used to identify the mechanism of gentamicin susceptibility. A novel allelic-specific PCR was designed to differentiate gentamicin-sensitive isolates from wild-type B. pseudomallei. A reversion assay was performed to confirm the involvement of this mechanism in gentamicin susceptibility. A substantial proportion (86%) of B. pseudomallei clinical isolates in Sarawak, Malaysian Borneo, were found to be susceptible to the aminoglycoside gentamicin, a rare occurrence in other regions where B. pseudomallei is endemic. Gentamicin sensitivity was restricted to genetically related strains belonging to sequence type 881 or its single-locus variant, sequence type 997. Whole-genome sequencing identified a novel nonsynonymous mutation within amrB, encoding an essential component of the AmrAB-OprA multidrug efflux pump. We confirmed the role of this mutation in conferring aminoglycoside and macrolide sensitivity by reversion of this mutation to the wild-type sequence. Our study demonstrates that alternative B. pseudomallei selective media without gentamicin are needed for accurate melioidosis laboratory diagnosis in Sarawak. This finding may also have implications for environmental sampling of other locations to test for B. pseudomallei endemicity.
doi:10.1128/AAC.01842-13
PMCID: PMC3910780  PMID: 24145517
14.  Diversity of Francisella tularensis Subsp. holarctica Lineages, China 
Emerging Infectious Diseases  2014;20(7):1191-1194.
We analyzed 10 isolates of Francisella tularensis subspecies holarctica from China and assigned them to known clades by using canonical single-nucleotide polymorphisms. We found 4 diverse subtypes, including 3 from the most basal lineage, biovar japonica. This result indicates unprecedented levels of diversity from a single region and suggests new models for emergence.
doi:10.3201/eid2007.130931
PMCID: PMC4073844  PMID: 24963721
Francisella tularensis subsp. holarctica; phylogeography; SNP; canSNP; China; bacteria; tularemia; lineage
15.  Real-time PCR assays for genotyping of Cryptococcus gattii in North America 
BMC Microbiology  2014;14:125.
Background
Cryptococcus gattii has been the cause of an ongoing outbreak starting in 1999 on Vancouver Island, British Columbia and spreading to mainland Canada and the US Pacific Northwest. In the course of the outbreak, C. gattii has been identified outside of its previously documented climate, habitat, and host disease. Genotyping of C. gattii is essential to understand the ecological and geographical expansion of this emerging pathogen.
Methods
We developed and validated a mismatch amplification mutation assay (MAMA) real-time PCR panel for genotyping C. gattii molecular types VGI-VGIV and VGII subtypes a,b,c. Subtype assays were designed based on whole-genome sequence of 20 C. gattii strains. Publically available multilocus sequence typing (MLST) data from a study of 202 strains was used for the molecular type (VGI-VGIV) assay design. All assays were validated across DNA from 112 strains of diverse international origin and sample types, including animal, environmental and human.
Results
Validation revealed each assay on the panel is 100% sensitive, specific and concordant with MLST. The assay panel can detect down to 0.5 picograms of template DNA.
Conclusions
The (MAMA) real-time PCR panel for C. gattii accurately typed a collection of 112 diverse strains and demonstrated high sensitivity. This is a time and cost efficient method of genotyping C. gattii best suited for application in large-scale epidemiological studies.
doi:10.1186/1471-2180-14-125
PMCID: PMC4032356  PMID: 24886039
Cryptococcus gattii; Genotyping; Real-time PCR; Epidemiology
16.  Genotyping of Coxiella burnetii from domestic ruminants and human in Hungary: indication of various genotypes 
BMC Veterinary Research  2014;10:107.
Background
Information about the genotypic characteristic of Coxiella burnetii from Hungary is lacking. The aim of this study is to describe the genetic diversity of C. burnetii in Hungary and compare genotypes with those found elsewhere. A total of 12 samples: (cattle, n = 6, sheep, n = 5 and human, n = 1) collected from across Hungary were studied by a 10-loci multispacer sequence typing (MST) and 6-loci multiple-locus variable-number of tandem repeat analysis (MLVA). Phylogenetic relationships among MST genotypes show how these Hungarian samples are related to others collected around the world.
Results
Three MST genotypes were identified: sequence type (ST) 20 has also been identified in ruminants from other European countries and the USA, ST28 was previously identified in Kazakhstan, and the proposed ST37 is novel. All MST genotypes yielded different MLVA genotypes and three different MLVA genotypes were identified within ST20 samples alone. Two novel MLVA types 0-9-5-5-6-2 (AG) and 0-8-4-5-6-2 (AF) (Ms23-Ms24-Ms27-Ms28-Ms33-Ms34) were defined in the ovine materials correlated with ST28 and ST37. Samples from different parts of the phylogenetic tree were associated with different hosts, suggesting host-specific adaptations.
Conclusions
Even with the limited number of samples analysed, this study revealed high genetic diversity among C. burnetii in Hungary. Understanding the background genetic diversity will be essential in identifying and controlling outbreaks.
doi:10.1186/1746-6148-10-107
PMCID: PMC4016735  PMID: 24885415
Coxiella burnetii; Q fever; Genotyping; MLVA; MST; Hungary
17.  Francisella tularensis subsp. tularensis Group A.I, United States 
Emerging Infectious Diseases  2014;20(5):861-865.
We used whole-genome analysis and subsequent characterization of geographically diverse strains using new genetic signatures to identify distinct subgroups within Francisella tularensis subsp. tularensis group A.I: A.I.3, A.I.8, and A.I.12. These subgroups exhibit complex phylogeographic patterns within North America. The widest distribution was observed for A.I.12, which suggests an adaptive advantage.
doi:10.3201/eid2005.131559
PMCID: PMC4012810  PMID: 24755401
Francisella tularensis subsp. tularensis; Francisella tularensis; phylogeography; SNP; single-nucleotide polymorphism; subgroup; United States; group A.I; bacteria; geographic distribution; tularemia
18.  The 2010 Cholera Outbreak in Haiti: How Science Solved a Controversy 
PLoS Pathogens  2014;10(4):e1003967.
doi:10.1371/journal.ppat.1003967
PMCID: PMC3974815  PMID: 24699938
19.  The large-scale blast score ratio (LS-BSR) pipeline: a method to rapidly compare genetic content between bacterial genomes 
PeerJ  2014;2:e332.
Background. As whole genome sequence data from bacterial isolates becomes cheaper to generate, computational methods are needed to correlate sequence data with biological observations. Here we present the large-scale BLAST score ratio (LS-BSR) pipeline, which rapidly compares the genetic content of hundreds to thousands of bacterial genomes, and returns a matrix that describes the relatedness of all coding sequences (CDSs) in all genomes surveyed. This matrix can be easily parsed in order to identify genetic relationships between bacterial genomes. Although pipelines have been published that group peptides by sequence similarity, no other software performs the rapid, large-scale, full-genome comparative analyses carried out by LS-BSR.
Results. To demonstrate the utility of the method, the LS-BSR pipeline was tested on 96 Escherichia coli and Shigella genomes; the pipeline ran in 163 min using 16 processors, which is a greater than 7-fold speedup compared to using a single processor. The BSR values for each CDS, which indicate a relative level of relatedness, were then mapped to each genome on an independent core genome single nucleotide polymorphism (SNP) based phylogeny. Comparisons were then used to identify clade specific CDS markers and validate the LS-BSR pipeline based on molecular markers that delineate between classical E. coli pathogenic variant (pathovar) designations. Scalability tests demonstrated that the LS-BSR pipeline can process 1,000 E. coli genomes in 27–57 h, depending upon the alignment method, using 16 processors.
Conclusions. LS-BSR is an open-source, parallel implementation of the BSR algorithm, enabling rapid comparison of the genetic content of large numbers of genomes. The results of the pipeline can be used to identify specific markers between user-defined phylogenetic groups, and to identify the loss and/or acquisition of genetic information between bacterial isolates. Taxa-specific genetic markers can then be translated into clinical diagnostics, or can be used to identify broadly conserved putative therapeutic candidates.
doi:10.7717/peerj.332
PMCID: PMC3976120  PMID: 24749011
Genomics; Bioinformatics; Microbiology; Pathogens; Comparative genomics
20.  Comparative Phylogenomics and Evolution of the Brucellae Reveal a Path to Virulence 
Journal of Bacteriology  2014;196(5):920-930.
Brucella species include important zoonotic pathogens that have a substantial impact on both agriculture and human health throughout the world. Brucellae are thought of as “stealth pathogens” that escape recognition by the host innate immune response, modulate the acquired immune response, and evade intracellular destruction. We analyzed the genome sequences of members of the family Brucellaceae to assess its evolutionary history from likely free-living soil-based progenitors into highly successful intracellular pathogens. Phylogenetic analysis split the genus into two groups: recently identified and early-dividing “atypical” strains and a highly conserved “classical” core clade containing the major pathogenic species. Lateral gene transfer events brought unique genomic regions into Brucella that differentiated them from Ochrobactrum and allowed the stepwise acquisition of virulence factors that include a type IV secretion system, a perosamine-based O antigen, and systems for sequestering metal ions that are absent in progenitors. Subsequent radiation within the core Brucella resulted in lineages that appear to have evolved within their preferred mammalian hosts, restricting their virulence to become stealth pathogens capable of causing long-term chronic infections.
doi:10.1128/JB.01091-13
PMCID: PMC3957692  PMID: 24336939
21.  High prevalence and two dominant host-specific genotypes of Coxiella burnetii in U.S. milk 
BMC Microbiology  2014;14:41.
Background
Coxiella burnetii causes Q fever in humans and Coxiellosis in animals; symptoms range from general malaise to fever, pneumonia, endocarditis and death. Livestock are a significant source of human infection as they shed C. burnetii cells in birth tissues, milk, urine and feces. Although prevalence of C. burnetii is high, few Q fever cases are reported in the U.S. and we have a limited understanding of their connectedness due to difficulties in genotyping. Here, we develop canonical SNP genotyping assays to evaluate spatial and temporal relationships among C. burnetii environmental samples and compare them across studies. Given the genotypic diversity of historical collections, we hypothesized that the current enzootic of Coxiellosis is caused by multiple circulating genotypes. We collected A) 23 milk samples from a single bovine herd, B) 134 commercial bovine and caprine milk samples from across the U.S., and C) 400 bovine and caprine samples from six milk processing plants over three years.
Results
We detected C. burnetii DNA in 96% of samples with no variance over time. We genotyped 88.5% of positive samples; bovine milk contained only a single genotype (ST20) and caprine milk was dominated by a second type (mostly ST8).
Conclusions
The high prevalence and lack of genotypic diversity is consistent with a model of rapid spread and persistence. The segregation of genotypes between host species is indicative of species-specific adaptations or dissemination barriers and may offer insights into the relative lack of human cases and characterizing genotypes.
doi:10.1186/1471-2180-14-41
PMCID: PMC3936997  PMID: 24533573
Coxiella burnetii; Q fever; Environmental detection; Genotyping; Phylogeography; Multispacer typing;  SNP typing; Canonical SNP; CanSNP
22.  Injectional Anthrax in Heroin Users, Europe, 2000–2012 
Emerging Infectious Diseases  2014;20(2):322-323.
doi:10.3201/eid2002.120921
PMCID: PMC3901468  PMID: 24447525
Bacillus anthracis; anthrax; heroin users; single nucleotide polymorphism; Germany; Trans-Eurasian clade; phylogeny; bacteria; Europe; injectional anthrax; humans
23.  Redaction of Sensitive Data in the Publication of Dual Use Research of Concern 
mBio  2013;5(1):e00991-13.
ABSTRACT
The publication of scientific information that derives from dual use research of concern (DURC) poses major problems for journals because it brings into conflict the benefits of free access to data and the need to prevent misuse of that information by others. Recently, a group of authors and a major scientific journal addressed the issue of publishing information on a newly discovered, highly lethal toxin that can be delivered to large populations and for which there are no available countermeasures. The journal addressed this conflict by permitting the redaction of information that is normally considered essential for publication. This action establishes a precedent for redaction of sensitive data that also provides an example of responsible scientific publishing. However, this precedent leaves many questions unanswered and suggests a need for a discussion by all stakeholders of scientific information so as to derive normative standards for the publication of DURC.
doi:10.1128/mBio.00991-13
PMCID: PMC3884058  PMID: 24381302
24.  The Epidemic of Extended-Spectrum-β-Lactamase-Producing Escherichia coli ST131 Is Driven by a Single Highly Pathogenic Subclone, H30-Rx 
mBio  2013;4(6):e00377-13.
ABSTRACT
The Escherichia coli sequence type 131 (ST131) clone is notorious for extraintestinal infections, fluoroquinolone resistance, and extended-spectrum beta-lactamase (ESBL) production, attributable to a CTX-M-15-encoding mobile element. Here, we applied pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing to reconstruct the evolutionary history of the ST131 clone. PFGE-based cluster analyses suggested that both fluoroquinolone resistance and ESBL production had been acquired by multiple ST131 sublineages through independent genetic events. In contrast, the more robust whole-genome-sequence-based phylogenomic analysis revealed that fluoroquinolone resistance was confined almost entirely to a single, rapidly expanding ST131 subclone, designated H30-R. Strikingly, 91% of the CTX-M-15-producing isolates also belonged to a single, well-defined clade nested within H30-R, which was named H30-Rx due to its more extensive resistance. Despite its tight clonal relationship with H30Rx, the CTX-M-15 mobile element was inserted variably in plasmid and chromosomal locations within the H30-Rx genome. Screening of a large collection of recent clinical E. coli isolates both confirmed the global clonal expansion of H30-Rx and revealed its disproportionate association with sepsis (relative risk, 7.5; P < 0.001). Together, these results suggest that the high prevalence of CTX-M-15 production among ST131 isolates is due primarily to the expansion of a single, highly virulent subclone, H30-Rx.
IMPORTANCE
We applied an advanced genomic approach to study the recent evolutionary history of one of the most important Escherichia coli strains in circulation today. This strain, called sequence type 131 (ST131), causes multidrug-resistant bladder, kidney, and bloodstream infections around the world. The rising prevalence of antibiotic resistance in E. coli is making these infections more difficult to treat and is leading to increased mortality. Past studies suggested that many different ST131 strains gained resistance to extended-spectrum cephalosporins independently. In contrast, our research indicates that most extended-spectrum-cephalosporin-resistant ST131 strains belong to a single highly pathogenic subclone, called H30-Rx. The clonal nature of H30-Rx may provide opportunities for vaccine or transmission prevention-based control strategies, which could gain importance as H30-Rx and other extraintestinal pathogenic E. coli subclones become resistant to our best antibiotics.
doi:10.1128/mBio.00377-13
PMCID: PMC3870262  PMID: 24345742
25.  Complete Genome Sequence of the Epidemic and Highly Virulent CTX-M-15-Producing H30-Rx Subclone of Escherichia coli ST131 
Genome Announcements  2013;1(6):e00988-13.
We report the complete genome sequence, including five complete plasmid sequences, of Escherichia coli ST131 isolate JJ1886. The isolate was obtained in 2007 in the United States from a patient with fatal urosepsis and belongs to the virulent, CTX-M-15-producing H30-Rx sublineage.
doi:10.1128/genomeA.00988-13
PMCID: PMC3853059  PMID: 24309736

Results 1-25 (165)