Search tips
Search criteria

Results 1-25 (71)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Polypropylene Surgical Mesh Coated with Extracellular Matrix Mitigates the Host Foreign Body Response 
Surgical mesh devices composed of synthetic materials are commonly used for ventral hernia repair. These materials provide robust mechanical strength and are quickly incorporated into host tissue; factors which contribute to reduced hernia recurrence rates. However, such mesh devices cause a foreign body response with the associated complications of fibrosis and patient discomfort. In contrast, surgical mesh devices composed of naturally occurring extracellular matrix (ECM) are associated with constructive tissue remodeling, but lack the mechanical strength of synthetic materials. A method for applying a porcine dermal ECM hydrogel coating to a polypropylene mesh is described herein with the associated effects upon the host tissue response and biaxial mechanical behavior. Uncoated and ECM coated heavy-weight BARD™ Mesh were compared to the light-weight ULTRAPRO™ and BARD™ Soft Mesh devices in a rat partial thickness abdominal defect overlay model. The ECM coated mesh attenuated the pro-inflammatory response compared to all other devices, with a reduced cell accumulation and fewer foreign body giant cells. The ECM coating degraded by 35 days, and was replaced with loose connective tissue compared to the dense collagenous tissue associated with the uncoated polypropylene mesh device. Biaxial mechanical characterization showed that all of the mesh devices were of similar isotropic stiffness. Upon explantation, the light-weight mesh devices were more compliant than the coated or uncoated heavy-weight devices. The present study shows that an ECM coating alters the default host response to a polypropylene mesh, but not the mechanical properties in an acute in vivo abdominal repair model.
PMCID: PMC3808505  PMID: 23873846
Extracellular Matrix (ECM); polypropylene; surgical mesh; coated surgical mesh; foreign body response
2.  Does bilingual experience affect early visual perceptual development? 
Frontiers in Psychology  2014;5:1429.
Visual attention and perception develop rapidly during the first few months after birth, and these behaviors are critical components in the development of language and cognitive abilities. Here we ask how early bilingual experiences might lead to differences in visual attention and perception. Experiments 1–3 investigated the looking behavior of monolingual and bilingual infants when presented with social (Experiment 1), mixed (Experiment 2), or non-social (Experiment 3) stimuli. In each of these experiments, infants' dwell times (DT) and number of fixations to areas of interest (AOIs) were analyzed, giving a sense of where the infants looked. To examine how the infants looked at the stimuli in a more global sense, Experiment 4 combined and analyzed the saccade data collected in Experiments 1–3. There were no significant differences between monolingual and bilingual infants' DTs, AOI fixations, or saccade characteristics (specifically, frequency, and amplitude) in any of the experiments. These results suggest that monolingual and bilingual infants process their visual environments similarly, supporting the idea that the substantial cognitive differences between monolinguals and bilinguals in early childhood are more related to active vocabulary production than perception of the environment.
PMCID: PMC4263081  PMID: 25566116
bilingualism; language; cognition; perception; infancy; development
3.  Amino acid-mediated impacts of elevated carbon dioxide and simulated root herbivory on aphids are neutralized by increased air temperatures 
Journal of Experimental Botany  2014;66(2):613-623.
Multiple abiotic factors can combine to alter crop quality and rates of herbivore attack. Aphids benefit from elevated CO2 and root damage, but these effects are neutralized by increased temperatures.
Changes in host plant quality, including foliar amino acid concentrations, resulting from global climate change and attack from multiple herbivores, have the potential to modify the pest status of insect herbivores. This study investigated how mechanically simulated root herbivory of lucerne (Medicago sativa) before and after aphid infestation affected the pea aphid (Acyrthosiphon pisum) under elevated temperature (eT) and carbon dioxide concentrations (eCO2). eT increased plant height and biomass, and eCO2 decreased root C:N. Foliar amino acid concentrations and aphid numbers increased in response to eCO2, but only at ambient temperatures, demonstrating the ability of eT to negate the effects of eCO2. Root damage reduced aboveground biomass, height, and root %N, and increased root %C and C:N, most probably via decreased biological nitrogen fixation. Total foliar amino acid concentrations and aphid colonization success were higher in plants with roots cut early (before aphid arrival) than those with roots cut late (after aphid arrival); however, this effect was counteracted by eT. These results demonstrate the importance of amino acid concentrations for aphids and identify individual amino acids as being potential factors underpinning aphid responses to eT, eCO2, and root damage in lucerne. Incorporating trophic complexity and multiple climatic factors into plant–herbivore studies enables greater insight into how plants and insects will interact in the future, with implications for sustainable pest control and future crop security.
PMCID: PMC4286407  PMID: 25403916
Aboveground–belowground interactions; aphid; climate change; legume; root herbivore; simulated herbivory.
4.  Reciprocal feeding facilitation between above- and below-ground herbivores 
Biology Letters  2013;9(5):20130341.
Interspecific interactions between insect herbivores predominantly involve asymmetric competition. By contrast, facilitation, whereby herbivory by one insect benefits another via induced plant susceptibility, is uncommon. Positive reciprocal interactions between insect herbivores are even rarer. Here, we reveal a novel case of reciprocal feeding facilitation between above-ground aphids (Amphorophora idaei) and root-feeding vine weevil larvae (Otiorhynchus sulcatus), attacking red raspberry (Rubus idaeus). Using two raspberry cultivars with varying resistance to these herbivores, we further demonstrate that feeding facilitation occurred regardless of host plant resistance. This positive reciprocal interaction operates via an, as yet, unreported mechanism. Specifically, the aphid induces compensatory growth, possibly as a prelude to greater resistance/tolerance, whereas the root herbivore causes the plant to abandon this strategy. Both herbivores may ultimately benefit from this facilitative interaction.
PMCID: PMC3971671  PMID: 23883576
interspecific competition; plant–insect interactions; Otiorhynchus sulcatus; Amphorophora idaei
5.  Sex-related preferences for real and doll’s faces versus real and toy objects in young infants and adults 
Findings of previous studies demonstrate sex-related preferences for toys in 6-month-old infants: Boys prefer non-social or mechanical toys such as cars, while girls prefer social toys such as dolls. Here, we explored the innate versus learned nature of this sex-related preferences using multiple pictures of doll and real faces (of men and women) as well as pictures of toy and real objects (cars and stoves). Forty-eight 4- and 5-month-old infants (24 girls) and 48 young adults (24 women) saw six trials of all relevant pairs of faces and objects, with each trial containing a different exemplar of a stimulus type. The infant results showed no sex-related preferences; infants preferred faces of men and women, regardless of whether they were real or doll’s faces. Similarly, adults did not show sex-related preferences for social versus non-social stimuli, but, unlike infants, they preferred faces of the opposite sex over objects. These results challenge claims of an innate basis for sex-related preferences for toy and real stimuli preferences (Connellan et al., 2000) and suggest that sex-related preferences result from maturational and social development, which continues into adulthood.
PMCID: PMC3766397  PMID: 23933180
6.  Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering 
Biomaterials  2013;34(28):6760-6772.
Approximately 285 million people worldwide suffer from diabetes, with insulin supplementation as the most common treatment measure. Regenerative medicine approaches such as a bioengineered pancreas has been proposed as potential therapeutic alternatives. A bioengineered pancreas will benefit from the development of a bioscaffold that supports and enhances cellular function and tissue development. Perfusion-decellularized organs are a likely candidate for use in such scaffolds since they mimic compositional, architectural and biomechanical nature of a native organ. In this study, we investigate perfusion-decellularization of whole pancreas and the feasibility to recellularize the whole pancreas scaffold with pancreatic cell types. Our result demonstrates that perfusion-decellularization of whole pancreas effectively removes cellular and nuclear material while retaining intricate three-dimensional microarchitecture with perfusable vasculature and ductal network and crucial extracellular matrix (ECM) components. To mimic pancreatic cell composition, we recellularized the whole pancreas scaffold with acinar and beta cell lines and cultured up to 5 days. Our result shows successful cellular engraftment within the decellularized pancreas, and the resulting graft gave rise to strong up-regulation of insulin gene expression. These findings support biological utility of whole pancreas ECM as a biomaterials scaffold for supporting and enhancing pancreatic cell functionality and represent a step toward bioengineered pancreas using regenerative medicine approaches.
PMCID: PMC3748589  PMID: 23787110
Whole organ decellularization; Extracellular matrix scaffold; Tissue and organ engineering; Pancreatic β-cells
7.  Relationship of Adipokines with Immune Response and Lung Function in Obese Asthmatic and Non-Asthmatic Women 
Obesity is a risk factor for asthma. Studies in mice suggest that the adipokines leptin and adiponectin affect asthmatic responses. The purpose of this study was to determine if adipokines associated with obesity are (1) altered in obese women with asthma compared to controls and (2) associated with increased cytokines and chemokines involved in allergic inflammation.
We performed a cross-sectional study of asthmatic and non-asthmatic obese premenopausal women. Participants answered questionnaires and performed lung function tests. Serum and peripheral blood mononuclear cells (PBMCs) were collected for analysis of cytokines and adipokines.
A total of 22 asthmatic (mean body mass index 40.0 ± 5.1 kg/m) and 20 non-asthmatic women (mean body mass index 41.3 ± 5.6 kg/m2) participated. We found no difference in serum adipokine concentrations between asthmatics and non-asthmatics. Serum adiponectin correlated positively with PBMC eotaxin (rs = 0.55, p = .0003) and RANTES (regulated upon activation, normal T-cell expressed, and secreted) (rs = 0.36, p = .03), whereas serum leptin correlated negatively with PBMC eotaxin (rs = −0.34, p = .04). There was a negative correlation between serum adiponectin and PBMC interferon-γ (rs = −0.41, p = .01).
Perturbations of adipokines that occur in obesity were correlated with decreased cytokine production typically associated with allergic responses in PBMC of obese premenopausal women. This study suggests that although obese asthmatics may have elements of Th2-mediated inflammation, adipokine derangements in obesity are associated with Th1 rather than Th2 bias. Obesity has complex effects on allergic inflammation and is likely to be important modifier of the pathogenesis of airway disease in asthma.
PMCID: PMC4133269  PMID: 21942353
asthma; inflammation; obesity; Th1/Th2
8.  Novel H7N9 Influenza Virus Shows Low Infectious Dose, High Growth Rate, and Efficient Contact Transmission in the Guinea Pig Model 
Journal of Virology  2014;88(3):1502-1512.
The zoonotic outbreak of H7N9 subtype avian influenza virus that occurred in eastern China in the spring of 2013 resulted in 135 confirmed human cases, 44 of which were lethal. Sequencing of the viral genome revealed a number of molecular signatures associated with virulence or transmission in mammals. We report here that, in the guinea pig model, a human isolate of novel H7N9 influenza virus, A/Anhui/1/2013 (An/13), is highly dissimilar to an H7N1 avian isolate and instead behaves similarly to a human seasonal strain in several respects. An/13 was found to have a low 50% infectious dose, grow to high titers in the upper respiratory tract, and transmit efficiently among cocaged guinea pigs. The pH of fusion of the hemagglutinin (HA) and the binding of virus to fixed guinea pig tissues were also examined. The An/13 HA displayed a relatively elevated pH of fusion characteristic of many avian strains, and An/13 resembled avian viruses in terms of attachment to tissues. One important difference was seen between An/13 and both the H3N2 human and the H7N1 avian viruses: when inoculated intranasally at a high dose, only the An/13 virus led to productive infection of the lower respiratory tract of guinea pigs. In sum, An/13 was found to retain fusion and attachment properties of an avian influenza virus but displayed robust growth and contact transmission in the guinea pig model atypical of avian strains and indicative of mammalian adaptation.
PMCID: PMC3911619  PMID: 24227867
9.  Molecular signatures of antibody responses derived from a systems biological study of 5 human vaccines 
Nature immunology  2013;15(2):195-204.
Many vaccines induce protective immunity via antibodies. Recent studies have used systems biological approaches to determine signatures that predict vaccine immunity in humans, but whether there is a ‘universal signature’ that can predict antibody responses to any vaccine, is unknown. Here we performed systems analyses of immune responses to the meningococcal polysaccharide and conjugate vaccines in healthy adults, in the broader context of our previous studies with the yellow fever and two influenza vaccines. To achieve this, we performed a large-scale network integration of public human blood transcriptomes, and systems-scale databases in specific biological contexts, and deduced a set of blood transcription modules. These modules revealed distinct transcriptional signatures of antibody responses to different classes of vaccines providing key insights into primary viral, protein recall and anti-polysaccharide responses. These results illuminate the early transcriptional programs orchestrating vaccine immunity in humans, and demonstrate the power of integrative network modeling.
PMCID: PMC3946932  PMID: 24336226
10.  Simulating the role of visual selective attention during the development of perceptual completion 
Developmental science  2012;15(6):739-752.
We recently proposed a multi-channel, image-filtering model for simulating the development of visual selective attention in young infants (Schlesinger, Amso & Johnson, 2007). The model not only captures the performance of 3-month-olds on a visual search task, but also implicates two cortical regions that may play a role in the development of visual selective attention. In the current simulation study, we used the same model to simulate 3-month-olds’ performance on a second measure, the perceptual unity task. Two parameters in the model – corresponding to areas in the occipital and parietal cortices – were systematically varied while the gaze patterns produced by the model were recorded and subsequently analyzed. Three key findings emerged from the simulation study. First, the model successfully replicated the performance of 3-month-olds on the unity perception task. Second, the model also helps to explain the improved performance of 2-month-olds when the size of the occluder in the unity perception task is reduced. Third, in contrast to our previous simulation results, variation in only one of the two cortical regions simulated (i.e. recurrent activity in posterior parietal cortex) resulted in a performance pattern that matched 3-month-olds. These findings provide additional support for our hypothesis that the development of perceptual completion in early infancy is promoted by progressive improvements in visual selective attention and oculomotor skill.
PMCID: PMC4101467  PMID: 23106728
11.  Memory constraints on infants’ cross-situational statistical learning 
Cognition  2013;127(3):375-382.
Infants are able to map linguistic labels to referents in the world by tracking co-occurrence probabilities across learning events, a behavior often termed cross-situational statistical learning. This study builds upon existing research by examining infants’ developing ability to aggregate and retrieve word-referent pairings over time. 16- and 20-month-old infants (N = 32) were presented with a cross-situational statistical learning task in which half of the object-label pairings were presented in immediate succession (massed) and half were distributed across time (interleaved). Results revealed striking developmental differences in word mapping performance; infants in both age groups were able to learn pairings presented in immediate succession, but only 20-month-old infants were able to correctly infer pairings distributed over time. This work reveals significant constraints on infants’ ability to aggregate and retrieve object-label pairings across time and challenges theories of cross-situational statistical learning that rest on retrieval processes as successful and automatic.
PMCID: PMC4099971  PMID: 23545387
Cross-situational learning; Statistical learning; Word mapping; Language development; Memory development
12.  Sound support: Intermodal information facilitates infants’ perception of an occluded trajectory 
Infant behavior & development  2011;35(1):174-178.
In a visual occlusion task, 4-month-olds were given a dynamic sound cue (following the trajectory of an object), or a static cue (sound remained stationary). Infants’ oculomotor anticipations were greater in the Dynamic condition, suggesting that representations of visual occlusion were supported by auditory information.
PMCID: PMC4085162  PMID: 22030100
Multimodal; Infancy; Object trajectory; Eye tracking; Intermodal; Perception
13.  Trajectory Perception and Object Continuity: Effects of Shape and Color Change on 4-Month-Olds’ Perception of Object Identity 
Developmental psychology  2012;49(6):1021-1026.
Previous work has demonstrated that infants use object trajectory continuity as a cue to the constant identity of an object, but results are equivocal regarding the role of object features, with some work suggesting that a change in the appearance of an object does not cue a change in identity. In an experiment involving 72 participants, we investigated the effects of changing object shape and color, singly and in combination, on 4-month-olds’ perception of object continuity. A change in the shape of an object while it passed behind an occluder had no effect on perception of continuity, whereas a change in shape and color led to perception of discontinuity, and a change in color led to no clear percept regarding continuity or discontinuity. These results are discussed in terms of a perceptual learning model of development of object identity.
PMCID: PMC4085165  PMID: 22799585
trajectory; object identity; shape; color; occlusion
14.  Detecting “Infant-directedness” in Face and Voice 
Developmental science  2014;17(4):621-627.
Five- and 3-month-old infants’ perception of infant-directed (ID) faces and the role of speech in perceiving faces were examined. Infants’ eye movements were recorded as they viewed a series of two side-by-side talking faces, one infant-directed and one adult-directed (AD), while listening to ID speech, AD speech, or in silence. Infants showed consistently greater dwell time on ID faces vs. AD faces, and this ID face preference was consistent across all three sound conditions. ID speech resulted in higher looking overall, but it did not increase looking at the ID face per se. Together, these findings demonstrate that infants’ preferences for ID speech extend to ID faces.
PMCID: PMC4069237  PMID: 24576091
face perception; infant-directedness; infant-directed speech
15.  Targeting Cell Division Cycle 25 Homolog B To Regulate Influenza Virus Replication 
Journal of Virology  2013;87(24):13775-13784.
Influenza virus is a worldwide global health concern causing seasonal morbidity mortality and economic burden. Chemotherapeutics is available; however, rapid emergence of drug-resistant influenza virus strains has reduced its efficacy. Thus, there is a need to discover novel antiviral agents. In this study, RNA interference (RNAi) was used to screen host genes required for influenza virus replication. One pro-influenza virus host gene identified was dual-specificity phosphatase cell division cycle 25 B (CDC25B). RNAi screening of CDC25B resulted in reduced influenza A virus replication, and a CDC25B small-molecule inhibitor (NSC95397) inhibited influenza A virus replication in a dose-dependent fashion. Viral RNA synthesis was reduced by NSC95397 in favor of increased beta interferon (IFN-β) expression, and NSC95397 was found to interfere with nuclear localization and chromatin association of NS1, an influenza virus protein. As NS1 has been shown to be chromatin associated and to suppress host transcription, it is likely that CDC25B supports NS1 nuclear function to hijack host transcription machinery in favor of viral RNA synthesis, a process that is blocked by NSC95397. Importantly, NSC95397 treatment protects mice against lethal influenza virus challenge. The findings establish CDC25B as a pro-influenza A virus host factor that may be targeted as a novel influenza A therapeutic strategy.
PMCID: PMC3838213  PMID: 24109234
16.  Prediction-learning in infants as a mechanism for gaze control during object exploration 
We are pursuing the hypothesis that visual exploration and learning in young infants is achieved by producing gaze-sample sequences that are sequentially predictable. Our recent analysis of infants’ gaze patterns during image free-viewing (Schlesinger and Amso, 2013) provides support for this idea. In particular, this work demonstrates that infants’ gaze samples are more easily learnable than those produced by adults, as well as those produced by three artificial-observer models. In the current study, we extend these findings to a well-studied object-perception task, by investigating 3-month-olds’ gaze patterns as they view a moving, partially occluded object. We first use infants’ gaze data from this task to produce a set of corresponding center-of-gaze (COG) sequences. Next, we generate two simulated sets of COG samples, from image-saliency and random-gaze models, respectively. Finally, we generate learnability estimates for the three sets of COG samples by presenting each as a training set to an SRN. There are two key findings. First, as predicted, infants’ COG samples from the occluded-object task are learned by a pool of simple recurrent networks faster than the samples produced by the yoked, artificial-observer models. Second, we also find that resetting activity in the recurrent layer increases the network’s prediction errors, which further implicates the presence of temporal structure in infants’ COG sequences. We conclude by relating our findings to the role of image-saliency and prediction-learning during the development of object perception.
PMCID: PMC4033257  PMID: 24904460
object perception; prediction-learning; infant development, eye movements; visual saliency
17.  Elevated Atmospheric CO2 Triggers Compensatory Feeding by Root Herbivores on a C3 but Not a C4 Grass 
PLoS ONE  2014;9(3):e90251.
Predicted increases in atmospheric carbon dioxide (CO2) concentrations often reduce nutritional quality for herbivores by increasing the C∶N ratio of plant tissue. This frequently triggers compensatory feeding by aboveground herbivores, whereby they consume more shoot material in an attempt to meet their nutritional needs. Little, however, is known about how root herbivores respond to such changes. Grasslands are particularly vulnerable to root herbivores, which can collectively exceed the mass of mammals grazing aboveground. Here we provide novel evidence for compensatory feeding by a grass root herbivore, Sericesthis nigrolineata, under elevated atmospheric CO2 (600 µmol mol−1) on a C3 (Microlaena stipoides) but not a C4 (Cymbopogon refractus) grass species. At ambient CO2 (400 µmol mol−1) M. stipoides roots were 44% higher in nitrogen (N) and 7% lower in carbon (C) concentrations than C. refractus, with insects performing better on M. stipoides. Elevated CO2 decreased N and increased C∶N in M. stipoides roots, but had no impact on C. refractus roots. Root-feeders displayed compensatory feeding on M. stipoides at elevated CO2, consuming 118% more tissue than at ambient atmospheric CO2. Despite this, root feeder biomass remained depressed by 24%. These results suggest that compensatory feeding under elevated atmospheric CO2 may make some grass species particularly vulnerable to attack, potentially leading to future shifts in the community composition of grasslands.
PMCID: PMC3961222  PMID: 24651855
18.  Infants’ perception of chasing 
Cognition  2012;126(2):224-233.
Two significant questions in cognitive and developmental science are first, whether objects and events are selected for attention based on their features (featural processing) or the configuration of their features (configural processing), and second, how these modes of processing develop. These questions have been addressed in part with experiments focused on infants’ perception of faces, human body shapes, and biological motion of individual agents. Here, we investigate 4- and 10-month-old infants’ (N = 192) attention to social motions, specifically to chasing—a ubiquitous, ancient, and fitness-relevant mode of interaction. We constructed computer-generated animations of chasing that had three properties: acceleration, high turning rates, and attraction (“heat-seeking”). In the first experiment we showed chasing side-by-side with a control display of inanimate, billiard-ball-like motions. Infants strongly preferred attending to chasing. In the next three studies, we systematically investigated the effect of each property in turn (acceleration, turning, and attraction) by showing a display of that property side-by-side with the control display. Infants preferentially attended to acceleration, and to attraction, but not to turning. If infants preferred chasing for its configuration, then the sum of the effect sizes of individual properties should be smaller than their combined effects. That is not what we found: instead, on three measures of visual behavior, the summed effects of individual properties equaled (or exceeded) that of chasing. Moreover, although attraction drew little attention and turning no attention at all, acceleration drew (nearly) as much attention as chasing. Our results thus provide evidence that infants preferred chasing because of its features, not its configuration.
PMCID: PMC3529835  PMID: 23121710
chasing; animate-inanimate distinction; featural and configural processing
19.  Hydrogels Derived from Central Nervous System Extracellular Matrix 
Biomaterials  2012;34(4):1033-1040.
Biologic scaffolds composed of extracellular matrix (ECM) are commonly used repair devices in preclinical and clinical settings; however the use of these scaffolds for peripheral and central nervous system (CNS) repair has been limited. Biologic scaffolds developed from brain and spinal cord tissue have recently been described, yet the conformation of the harvested ECM limits therapeutic utility. An injectable CNS-ECM derived hydrogel capable of in vivo polymerization and conformation to irregular lesion geometries may aid in tissue reconstruction efforts following complex neurologic trauma. The objectives of the present study were to develop hydrogel forms of brain and spinal cord ECM and compare the resulting biochemical composition, mechanical properties, and neurotrophic potential of a brain derived cell line to a non-CNS-ECM hydrogel, urinary bladder matrix. Results showed distinct differences between compositions of brain ECM, spinal cord ECM, and urinary bladder matrix. The rheologic modulus of spinal cord ECM hydrogel was greater than that of brain ECM and urinary bladder matrix. All ECMs increased the number of cells expressing neurites, but only brain ECM increased neurite length, suggesting a possible tissue-specific effect. All hydrogels promoted three-dimensional uni- or bi-polar neurite outgrowth following 7 days in culture. These results suggest that CNS-ECM hydrogels may provide supportive scaffolding to promote in vivo axonal repair.
PMCID: PMC3512573  PMID: 23158935
20.  Oculomotor Exploration of Impossible Figures in Early Infancy 
Previous studies with young infants revealed that young infants can distinguish between displays of possible or impossible figures, which may require detection of inconsistent depth relations among local line junctions that disrupt global object configurations. Here, we used an eye-tracking paradigm to record eye movements in young infants during an object discrimination task with matched pairs of possible and impossible figures. Our goal was to identify differential patterns of oculomotor activity as infants viewed pictures of possible and impossible objects. We predicted that infants would actively attend to specific pictorial depth cues that denote shape (e.g., T-junctions), and in the context of an impossible figure that they would fixate to a greater extent in anomalous regions of the display relative to other parts. By the age of 4 months, infants fixated reliably longer overall on displays of impossible vs. possible cubes, specifically within the critical region where the incompatible lines and irreconcilable depth relations were located, implying an early capacity for selective attention to critical line junction information and integration of local depth cues necessary to perceive object coherence.
PMCID: PMC3640614  PMID: 23646001
visual development; eye tracking; pictorial depth cues; cue integration; impossible objects; 3D coherence; object perception in infancy
21.  Root Damage by Insects Reverses the Effects of Elevated Atmospheric CO2 on Eucalypt Seedlings 
PLoS ONE  2013;8(11):e79479.
Predicted increases in atmospheric carbon dioxide (CO2) are widely anticipated to increase biomass accumulation by accelerating rates of photosynthesis in many plant taxa. Little, however, is known about how soil-borne plant antagonists might modify the effects of elevated CO2 (eCO2), with root-feeding insects being particularly understudied. Root damage by insects often reduces rates of photosynthesis by disrupting root function and imposing water deficits. These insects therefore have considerable potential for modifying plant responses to eCO2. We investigated how root damage by a soil-dwelling insect (Xylotrupes gideon australicus) modified the responses of Eucalyptus globulus to eCO2. eCO2 increased plant height when E. globulus were 14 weeks old and continued to do so at an accelerated rate compared to those grown at ambient CO2 (aCO2). Plants exposed to root-damaging insects showed a rapid decline in growth rates thereafter. In eCO2, shoot and root biomass increased by 46 and 35%, respectively, in insect-free plants but these effects were arrested when soil-dwelling insects were present so that plants were the same size as those grown at aCO2. Specific leaf mass increased by 29% under eCO2, but at eCO2 root damage caused it to decline by 16%, similar to values seen in plants at aCO2 without root damage. Leaf C:N ratio increased by >30% at eCO2 as a consequence of declining leaf N concentrations, but this change was also moderated by soil insects. Soil insects also reduced leaf water content by 9% at eCO2, which potentially arose through impaired water uptake by the roots. We hypothesise that this may have impaired photosynthetic activity to the extent that observed plant responses to eCO2 no longer occurred. In conclusion, soil-dwelling insects could modify plant responses to eCO2 predicted by climate change plant growth models.
PMCID: PMC3832529  PMID: 24260232
22.  Biracial and Monoracial Infant Own-Race Face Perception: An Eye Tracking Study 
Developmental science  2012;15(6):775-782.
We know early experience plays a crucial role in the development of face processing, but we know little about how infants learn to distinguish faces from different races, especially for non-Caucasian populations. Moreover, it is unknown whether differential processing of different race faces observed in typically-studied monoracial infants extends to biracial infants as well. Thus, we investigated 3-month-old Caucasian, Asian and biracial (Caucasian-Asian) infants’ ability to distinguish Caucasian and Asian faces. Infants completed two within-subject, infant-controlled habituation sequences and test trials as an eye tracker recorded looking times and scanning patterns. Examination of individual differences revealed significant positive correlations between own-race novelty preference and scanning frequency between eye and mouth regions of own-race habituation stimuli for Caucasian and Asian infants, suggesting that facility in own-race face discrimination stems from active inspection of internal facial features in these groups. Biracial infants, however, showed the opposite effect: An “own-race” novelty preference was associated with reduced scanning between eye and mouth regions of “own-race” habituation stimuli, suggesting that biracial infants use a distinct approach to processing frequently encountered faces. Future directions for investigating face processing development in biracial populations are discussed.
PMCID: PMC3490444  PMID: 23106731
infants; face perception; other race effect; intergroup processes
23.  A Hydrogel Derived From Decellularized Dermal Extracellular Matrix 
Biomaterials  2012;33(29):7028-7038.
The ECM of mammalian tissues has been used as a scaffold to facilitate the repair and reconstruction of numerous tissues. Such scaffolds are prepared in many forms including sheets, powders, and hydrogels. ECM hydrogels provide advantages such as injectability, the ability to fill an irregularly shaped space, and the inherent bioactivity of native matrix. However, material properties of ECM hydrogels and the effect of these properties upon cell behavior are neither well understood nor controlled. The objective of this study was to prepare and determine the structure, mechanics, and the cell response in vitro and in vivo of ECM hydrogels prepared from decellularized porcine dermis and urinary bladder tissues. Dermal ECM hydrogels were characterized by a more dense fiber architecture and greater mechanical integrity than urinary bladder ECM hydrogels, and showed a dose dependent increase in mechanical properties with ECM concentration. In vitro, dermal ECM hydrogels supported greater C2C12 myoblast fusion, and less fibroblast infiltration and less fibroblast mediated hydrogel contraction than urinary bladder ECM hydrogels. Both hydrogels were rapidly infiltrated by host cells, primarily macrophages, when implanted in a rat abdominal wall defect. Both ECM hydrogels degraded by 35 days in vivo, but UBM hydrogels degraded more quickly, and with greater amounts of myogenesis than dermal ECM. These results show that ECM hydrogel properties can be varied and partially controlled by the scaffold tissue source, and that these properties can markedly affect cell behavior.
PMCID: PMC3408574  PMID: 22789723
24.  Young infants’ perception of the trajectories of two- and three-dimensional objects 
We investigated oculomotor anticipations in 4-month-old infants as they viewed center-occluded object trajectories. In two experiments, we examined performance in two-dimensional (2D) and three-dimensional (3D) dynamic occlusion displays and in an additional 3D condition with a smiley face as the moving target stimulus. Rates of anticipatory eye movements were not facilitated by 3D displays or by the (presumably) more salient smiley face relative to the 2D condition. However, latencies of anticipations were reduced, implying that 3D visual information may have supported formation of more robust mental representations of the moving object. Results are interpreted in a context of perceptual constraints on developing cognitive capacities during early infancy.
PMCID: PMC3567617  PMID: 22704037
Infant perception; Depth perception; Visual development; Eye movements; Object knowledge
25.  Attentional capture by social stimuli in young infants 
We investigated the possibility that a range of social stimuli capture the attention of 6-month-old infants when in competition with other non-face objects. Infants viewed a series of six-item arrays in which one target item was a face, body part, or animal as their eye movements were recorded. Stimulus arrays were also processed for relative salience of each item in terms of color, luminance, and amount of contour. Targets were rarely the most visually salient items in the arrays, yet infants' first looks toward all three target types were above chance, and dwell times for targets exceeded other stimulus types. Girls looked longer at faces than did boys, but there were no sex differences for other stimuli. These results are interpreted in a context of learning to discriminate between different classes of animate stimuli, perhaps in line with affordances for social interaction, and origins of sex differences in social attention.
PMCID: PMC3744870  PMID: 23966966
face perception; sex differences; infant development; attention; saliency map

Results 1-25 (71)