Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Recent developments in imaging of pancreatic neuroendocrine tumors 
Pancreatic neuroendocrine tumors (PNETs) are very rare, accounting for 1-2% of all pancreatic neoplasms. They are classified into functioning and non-functioning and their behavior varies widely from benign to highly malignant. For their investigation, a variety of anatomical and functional imaging methods are available. Anatomical methods include computed tomography (CT), magnetic resonance imaging, and ultrasonography. Functional methods include scintigraphy and positron emission tomography (PET). A combination of anatomical and morphological methods results in the so-called hybrid imaging, such as PET/CT. We herein discuss the currently available imaging modalities for the investigation of PNETs and, more specifically, their applications in tumor detection and staging as well as in choice of therapy, imaging follow up and prediction of response, with emphasis on the recent developments.
PMCID: PMC4367208  PMID: 25830417
Anatomical imaging; functional imaging; pancreatic neoplasms
2.  Can Na18F PET/CT Be Used to Study Bone Remodeling in the Tibia When Patients Are Being Treated with a Taylor Spatial Frame? 
The Scientific World Journal  2014;2014:249326.
Monitoring and quantifying bone remodeling are of interest, for example, in correction osteotomies, delayed fracture healing pseudarthrosis, bone lengthening, and other instances. Seven patients who had operations to attach an Ilizarov-derived Taylor Spatial Frame to the tibia gave informed consent. Each patient was examined by Na18F PET/CT twice, at approximately six weeks and three months after the operation. A validated software tool was used for the following processing steps. The first and second CT volumes were aligned in 3D and the respective PET volumes were aligned accordingly. In the first PET volume spherical volumes of interest (VOIs) were delineated for the crural fracture and normal bone and transferred to the second PET volume for SUVmax evaluation. This method potentially provides clinical insight into questions such as, when has the bone remodeling progressed well enough to safely remove the TSF? and when is intervention required, in a timelier manner than current methods? For example, in two patients who completed treatment, the SUVmax between the first and second PET/CT examination decreased by 42% and 13%, respectively. Further studies in a larger patient population are needed to verify these preliminary results by correlating regional Na18F PET measurements to clinical and radiological findings.
PMCID: PMC3977467  PMID: 24778581
3.  Low tube voltage CT for improved detection of pancreatic cancer: detection threshold for small, simulated lesions 
BMC Medical Imaging  2012;12:20.
Pancreatic ductal adenocarcinoma is associated with dismal prognosis. The detection of small pancreatic tumors which are still resectable is still a challenging problem.
The aim of this study was to investigate the effect of decreasing the tube voltage from 120 to 80 kV on the detection of pancreatic tumors.
Three scanning protocols was used; one using the standard tube voltage (120 kV) and current (160 mA) and two using 80 kV but with different tube currents (500 and 675 mA) to achieve equivalent dose (15 mGy) and noise (15 HU) as that of the standard protocol.
Tumors were simulated into collected CT phantom images. The attenuation in normal parenchyma at 120 kV was set at 130 HU, as measured previously in clinical examinations, and the tumor attenuation was assumed to differ 20 HU and was set at 110HU. By scanning and measuring of iodine solution with different concentrations the corresponding tumor and parenchyma attenuation at 80 kV was found to be 185 and 219 HU, respectively.
To objectively evaluate the differences between the three protocols, a multi-reader multi-case receiver operating characteristic study was conducted, using three readers and 100 cases, each containing 0–3 lesions.
The highest reader averaged figure-of-merit (FOM) was achieved for 80 kV and 675 mA (FOM = 0,850), and the lowest for 120 kV (FOM = 0,709). There was a significant difference between the three protocols (p < 0,0001), when making an analysis of variance (ANOVA). Post-hoc analysis (students t-test) shows that there was a significant difference between 120 and 80 kV, but not between the two levels of tube currents at 80 kV.
We conclude that when decreasing the tube voltage there is a significant improvement in tumor conspicuity.
PMCID: PMC3414789  PMID: 22828284
Pancreatic adenocarcinoma; CT; Low tube voltage; Phantom
4.  PET-Guided Surgery — High Correlation between Positron Emission Tomography with 11C-5-Hydroxytryptophane (5-HTP) and Surgical Findings in Abdominal Neuroendocrine Tumours 
Cancers  2012;4(1):100-112.
Positron emission tomography (PET) with 11C-labeled 5-hydroxytryptophane (5-HTP) is a sensitive technique to visualize neuroendocrine tumours (NETs), due to high intracellular uptake of amine-precursors like L-dihydroxyphenylalanine (L-DOPA) and 5-HTP. NETs are often small and difficult to localize in spite of overt clinical symptoms due to hormonal excess. In our study, 38 consecutive NET patients underwent 11C-5-HTP-PET and morphological imaging by CT within 12 weeks prior to surgery. Surgical, histopathological and 5-HTP PET findings were correlated. 11C-5-HTP-PET corresponded to the surgical findings in 31 cases, was false negative in six, and true negative in one case resulting in 83.8% sensitivity and 100% specificity. Positive predicted value was 100%. In 11 patients 11C-5-HTP-PET was the only imaging method applied to localize the tumour. Thus, we could demonstrate that functional imaging by 11C-5-HTP-PET in many cases adds vital preoperative diagnostic information and in more than every fourth patient was the only imaging method that will guide the surgeon in finding the NET-lesion. Although the present results demonstrates that 11C-5-HTP may be used as an universal NET tracer, the sensitivity to visualize benign insulinomas and non functioning pancreatic NETs was lower.
PMCID: PMC3712674  PMID: 24213229
neuroendocrine tumour; positron emission tomography; hydroxytryptophane; insulinoma; surgery
5.  Imaging of Adrenal Masses with Emphasis on Adrenocortical Tumors 
Theranostics  2012;2(5):516-522.
Because of the more widespread and frequent use of cross-sectional techniques, mainly computed tomography (CT), an increasing number of adrenal tumors are detected as incidental findings (“incidentalomas”). These incidentaloma patients are much more frequent than those undergoing imaging because of symptoms related to adrenal disease. CT and magnetic resonance imaging (MRI) are in most patients sufficient for characterization and follow-up of the incidentaloma. In a minor portion of patients, biochemical screening reveals a functional tumor and further diagnostic work-up and therapy need to be performed according to the type of hormonal overproduction. In oncological patients, especially when the morphological imaging criteria indicate an adrenal metastasis, biopsy of the lesion should be considered after pheochromocytoma is ruled out biochemically. In the minority of patients in whom CT and MRI fail to characterize the tumor and when time is of essence, functional imaging mainly by positron emission tomography (PET) is available using various tracers. The most used PET tracer, [18F]fluoro-deoxy-glucose (18FDG), is able to differentiate benign from malignant adrenal tumors in many patients. 11C-metomidate (11C-MTO) is a more specialized PET tracer that binds to the 11-beta-hydroxylase enzyme in the adrenal cortex and thus makes it possible to differ adrenal tumors (benign adrenocortical adenoma and adrenocortical cancer) from those of non-adrenocortical origin.
PMCID: PMC3364557  PMID: 22737189
Adrenal; Incidentaloma; Adenoma; Adrenocortical cancer; Positron emission tomography; FDG; Metomidate; Computed tomography; Magnetic resonance imaging.
6.  Lessons on Tumour Response: Imaging during Therapy with 177Lu-DOTA-octreotate. A Case Report on a Patient with a Large Volume of Poorly Differentiated Neuroendocrine Carcinoma 
Theranostics  2012;2(5):459-471.
Favourable outcomes of peptide receptor radiotherapy (PRRT) of neuroendocrine tumours have been reported during the last years. Still, there are uncertainties on the radionuclides to be used, the treatment planning, and the indication in patients with a high proliferation rate.
This case report describes a patient with a high tumour burden of poorly differentiated neuroendocrine carcinoma of unknown primary with a proliferation rate in liver metastases up to 50%, undergoing fractionated treatment with 7 cycles of 177Lu-DOTA-octreotate (7.4 GBq each) after disease progression on two different chemotherapy regiments. Based on initial staging scintigraphy, somatostatin receptor expression was very high.
Longitudinal dosimetry studies during therapy indicated ongoing increases in tumour-to-organ ratios that coincided with an objective response.
We conclude that fractionated therapy with 177Lu-DOTA-octreotate should be considered a treatment option also for those patients with large tumours, high proliferation, and high receptor expression.
PMCID: PMC3360199  PMID: 22768026
Neuroendocrine tumour; PRRT; 177Lu-DOTA-octreotate; radionuclide therapy; dosimetry.
7.  Decreased defluorination using the novel beta-cell imaging agent [18F]FE-DTBZ-d4 in pigs examined by PET 
EJNMMI Research  2011;1:33.
Fluorine-18 dihydrotetrabenazine [DTBZ] analogues, which selectively target the vesicular monoamine transporter 2 [VMAT2], have been extensively studied for in vivo quantification of beta cell mass by positron-emission tomography [PET]. This study describes a novel deuterated radioligand [18F]fluoroethyl [FE]-DTBZ-d4, aimed to increase the stability against in vivo defluorination previously observed for [18F]FE-DTBZ.
[18F]FE-DTBZ-d4 was synthesized by alkylation of 9-O-desmethyl-(+)-DTBZ precursor with deuterated [18F]FE bromide ([18F]FCD2CD2Br). Radioligand binding potential [BP] was assessed by an in vitro saturation homogenate binding assay using human endocrine and exocrine pancreatic tissues. In vivo pharmacokinetics and pharmacodynamics [PK/PD] was studied in a porcine model by PET/computed tomography, and the rate of defluorination was quantified by compartmental modeling.
[18F]FE-DTBZ-d4 was produced in reproducible good radiochemical yield in 100 ± 20 min. Radiochemical purity of the formulated product was > 98% for up to 5 h with specific radioactivities that ranged from 192 to 529 GBq/μmol at the end of the synthesis. The in vitro BP for VMAT2 in the islet tissue was 27.0 ± 8.8, and for the exocrine tissue, 1.7 ± 1.0. The rate of in vivo defluorination was decreased significantly (kdefluorination = 0.0016 ± 0.0007 min-1) compared to the non-deuterated analogue (kdefluorination = 0.012 ± 0.002 min-1), resulting in a six fold increase in half-life stability.
[18F]FE-DTBZ-d4 has similar PK and PD properties for VMAT2 imaging as its non-deuterated analogue [18F]FE-DTBZ in addition to gaining significantly increased stability against defluorination. [18F]FE-DTBZ-d4 is a prime candidate for future preclinical and clinical studies on focal clusters of beta cells, such as in intramuscular islet grafts.
PMCID: PMC3284452  PMID: 22214308
beta cell mass; dihydrotetrabenazine; PET; VMAT2
8.  Aglycone specificity of Thermotoga neapolitana β-glucosidase 1A modified by mutagenesis, leading to increased catalytic efficiency in quercetin-3-glucoside hydrolysis 
BMC Biochemistry  2011;12:11.
The thermostable β-glucosidase (TnBgl1A) from Thermotoga neapolitana is a promising biocatalyst for hydrolysis of glucosylated flavonoids and can be coupled to extraction methods using pressurized hot water. Hydrolysis has however been shown to be dependent on the position of the glucosylation on the flavonoid, and e.g. quercetin-3-glucoside (Q3) was hydrolysed slowly. A set of mutants of TnBgl1A were thus created to analyse the influence on the kinetic parameters using the model substrate para-nitrophenyl-β-D-glucopyranoside (pNPGlc), and screened for hydrolysis of Q3.
Structural analysis pinpointed an area in the active site pocket with non-conserved residues between specificity groups in glycoside hydrolase family 1 (GH1). Three residues in this area located on β-strand 5 (F219, N221, and G222) close to sugar binding sub-site +2 were selected for mutagenesis and amplified in a protocol that introduced a few spontaneous mutations. Eight mutants (four triple: F219L/P165L/M278I, N221S/P165L/M278I, G222Q/P165L/M278I, G222Q/V203M/K214R, two double: F219L/K214R, N221S/P342L and two single: G222M and N221S) were produced in E. coli, and purified to apparent homogeneity. Thermostability, measured as Tm by differential scanning calorimetry (101.9°C for wt), was kept in the mutated variants and significant decrease (ΔT of 5 - 10°C) was only observed for the triple mutants. The exchanged residue(s) in the respective mutant resulted in variations in KM and turnover. The KM-value was only changed in variants mutated at position 221 (N221S) and was in all cases monitored as a 2-3 × increase for pNPGlc, while the KM decreased a corresponding extent for Q3.
Turnover was only significantly changed using pNPGlc, and was decreased 2-3 × in variants mutated at position 222, while the single, double and triple mutated variants carrying a mutation at position 221 (N221S) increased turnover up to 3.5 × compared to the wild type. Modelling showed that the mutation at position 221, may alter the position of N291 resulting in increased hydrogen bonding of Q3 (at a position corresponding to the +1 subsite) which may explain the decrease in KM for this substrate.
These results show that residues at the +2 subsite are interesting targets for mutagenesis and mutations at these positions can directly or indirectly affect both KM and turnover. An affinity change, leading to a decreased KM, can be explained by an altered position of N291, while the changes in turnover are more difficult to explain and may be the result of smaller conformational changes in the active site.
PMCID: PMC3056771  PMID: 21345211
9.  Mutational Tuning of Galectin-3 Specificity and Biological Function* 
The Journal of Biological Chemistry  2010;285(45):35079-35091.
Galectins are defined by a conserved β-galactoside binding site that has been linked to many of their important functions in e.g. cell adhesion, signaling, and intracellular trafficking. Weak adjacent sites may enhance or decrease affinity for natural β-galactoside-containing glycoconjugates, but little is known about the biological role of this modulation of affinity (fine specificity). We have now produced 10 mutants of human galectin-3, with changes in these adjacent sites that have altered carbohydrate-binding fine specificity but that retain the basic β-galactoside binding activity as shown by glycan-array binding and a solution-based fluorescence anisotropy assay. Each mutant was also tested in two biological assays to provide a correlation between fine specificity and function. Galectin-3 R186S, which has selectively lost affinity for LacNAc, a disaccharide moiety commonly found on glycoprotein glycans, has lost the ability to activate neutrophil leukocytes and intracellular targeting into vesicles. K176L has increased affinity for β-galactosides substituted with GlcNAcβ1–3, as found in poly-N-acetyllactosaminoglycans, and increased potency to activate neutrophil leukocytes even though it has lost other aspects of galectin-3 fine specificity. G182A has altered carbohydrate-binding fine specificity and altered intracellular targeting into vesicles, a possible link to the intracellular galectin-3-mediated anti-apoptotic effect known to be lost by this mutant. Finally, the mutants have helped to define the differences in fine specificity shown by Xenopus, mouse, and human galectin-3 and, as such, the evidence for adaptive change during evolution.
PMCID: PMC2966122  PMID: 20807768
Carbohydrate Function; Galactose; Mutant; Neutrophil; Trafficking; Galectin; Specificity
11.  Masked volume wise principal component analysis of small adrenocortical tumours in dynamic [11C]-metomidate positron emission tomography 
In previous clinical Positron Emission Tomography (PET) studies novel approaches for application of Principal Component Analysis (PCA) on dynamic PET images such as Masked Volume Wise PCA (MVW-PCA) have been introduced. MVW-PCA was shown to be a feasible multivariate analysis technique, which, without modeling assumptions, could extract and separate organs and tissues with different kinetic behaviors into different principal components (MVW-PCs) and improve the image quality.
In this study, MVW-PCA was applied to 14 dynamic 11C-metomidate-PET (MTO-PET) examinations of 7 patients with small adrenocortical tumours. MTO-PET was performed before and 3 days after starting per oral cortisone treatment. The whole dataset, reconstructed by filtered back projection (FBP) 0–45 minutes after the tracer injection, was used to study the tracer pharmacokinetics.
Early, intermediate and late pharmacokinetic phases could be isolated in this manner. The MVW-PC1 images correlated well to the conventionally summed image data (15–45 minutes) but the image noise in the former was considerably lower. PET measurements performed by defining "hot spot" regions of interest (ROIs) comprising 4 contiguous pixels with the highest radioactivity concentration showed a trend towards higher SUVs when the ROIs were outlined in the MVW-PC1 component than in the summed images. Time activity curves derived from "50% cut-off" ROIs based on an isocontour function whereby the pixels with SUVs between 50 to 100% of the highest radioactivity concentration were delineated, showed a significant decrease of the SUVs in normal adrenal glands and in adrenocortical adenomas after cortisone treatment.
In addition to the clear decrease in image noise and the improved contrast between different structures with MVW-PCA, the results indicate that the definition of ROIs may be more accurate and precise in MVW-PC1 images than in conventional summed images. This might improve the precision of PET measurements, for instance in therapy monitoring as well as for delineation of the tumour in radiation therapy planning.
PMCID: PMC2680831  PMID: 19386097

Results 1-11 (11)