PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Evaluation of Thiel cadaveric model for MRI-guided stereotactic procedures in neurosurgery 
Surgical Neurology International  2014;5(Suppl 8):S404-S409.
Background:
Magnetic resonance imaging (MRI)-guided deep brain stimulation (DBS) and high frequency focused ultrasound (FUS) is an emerging modality to treat several neurological disorders of the brain. Developing reliable models to train and assess future neurosurgeons is paramount to ensure safety and adequate training of neurosurgeons of the future.
Methods:
We evaluated the use of Thiel cadaveric model to practice MRI-guided DBS implantation and high frequency MRI-guided FUS in the human brain. We performed three training sessions for DBS and five sonications using high frequency MRI-guided FUS in five consecutive cadavers to assess the suitability of this model to use in training for stereotactic functional procedures.
Results:
We found the brains of these cadavers preserved in an excellent anatomical condition up to 15 months after embalmment and they were excellent model to use, MRI-guided DBS implantation and FUS produced the desired lesions accurately and precisely in these cadaveric brains.
Conclusion:
Thiel cadavers provided a very good model to perform these procedures and a potential model to train and assess neurosurgeons of the future.
doi:10.4103/2152-7806.140199
PMCID: PMC4173306  PMID: 25289170
Assessment; deep brain stimulation; focused ultrasound; magnetic resonance imaging guided; Thiel embalmment; training
2.  The road to clinical use of high-intensity focused ultrasound for liver cancer: technical and clinical consensus 
Clinical use of high-intensity focused ultrasound (HIFU) under ultrasound or MR guidance as a non-invasive method for treating tumors is rapidly increasing. Tens of thousands of patients have been treated for uterine fibroid, benign prostate hyperplasia, bone metastases, or prostate cancer. Despite the methods' clinical potential, the liver is a particularly challenging organ for HIFU treatment due to the combined effect of respiratory-induced liver motion, partial blocking by the rib cage, and high perfusion/flow. Several technical and clinical solutions have been developed by various groups during the past 15 years to compensate for these problems. A review of current unmet clinical needs is given here, as well as a consensus from a panel of experts about technical and clinical requirements for upcoming pilot and pivotal studies in order to accelerate the development and adoption of focused ultrasound for the treatment of primary and secondary liver cancer.
doi:10.1186/2050-5736-1-13
PMCID: PMC4265946  PMID: 25512859
Ultrasound; Non-invasive surgery; High-intensity ultrasound; Focused ultrasound; Liver cancer
3.  Hybrid gold-iron oxide nanoparticles as a multifunctional platform for biomedical application 
Background
Iron oxide nanoparticles (IONPs) have increasing applications in biomedicine, however fears over long term stability of polymer coated particles have arisen. Gold coating IONPs results in particles of increased stability and robustness. The unique properties of both the iron oxide (magnetic) and gold (surface plasmon resonance) result in a multimodal platform for use as MRI contrast agents and as a nano-heater.
Results
Here we synthesize IONPs of core diameter 30 nm and gold coat using the seeding method with a poly(ethylenimine) intermediate layer. The final particles were coated in poly(ethylene glycol) to ensure biocompatibility and increase retention times in vivo. The particle coating was monitored using FTIR, PCS, UV–vis absorption, TEM, and EDX. The particles appeared to have little cytotoxic effect when incubated with A375M cells. The resultant hybrid nanoparticles (HNPs) possessed a maximal absorbance at 600 nm. After laser irradiation in agar phantom a ΔT of 32°C was achieved after only 90 s exposure (50 μgmL-1). The HNPs appeared to decrease T2 values in line with previously clinically used MRI contrast agent Feridex®.
Conclusions
The data highlights the potential of these HNPs as dual function MRI contrast agents and nano-heaters for therapies such as cellular hyperthermia or thermo-responsive drug delivery.
doi:10.1186/1477-3155-10-27
PMCID: PMC3448509  PMID: 22731703
Magnetic nanoparticles; Gold nano-shells; Magnetic resonance imaging; Surface plasmon resonance; Multifunctional nanoparticles
4.  Interventional robotic systems: Applications and technology state-of-the-art 
Many different robotic systems have been developed for invasive medical procedures. In this article we will focus on robotic systems for image-guided interventions such as biopsy of suspicious lesions, interstitial tumor treatment, or needle placement for spinal blocks and neurolysis. Medical robotics is a young and evolving field and the ultimate role of these systems has yet to be determined. This paper presents four interventional robotics systems designed to work with MRI, CT, fluoroscopy, and ultrasound imaging devices. The details of each system are given along with any phantom, animal, or human trials. The systems include the AcuBot for active needle insertion under CT or fluoroscopy, the B-Rob systems for needle placement using CT or ultrasound, the INNOMOTION for MRI and CT interventions, and the MRBot for MRI procedures. Following these descriptions, the technology issues of image compatibility, registration, patient movement and respiration, force feedback, and control mode are briefly discussed. It is our belief that robotic systems will be an important part of future interventions, but more research and clinical trials are needed. The possibility of performing new clinical procedures that the human cannot achieve remains an ultimate goal for medical robotics. Engineers and physicians should work together to create and validate these systems for the benefits of patients everywhere.
doi:10.1080/13645700600674179
PMCID: PMC3107540  PMID: 16754193
Medical robotics; minimally invasive procedures; interventional robots; image-guided interventions; MR-guided interventions
6.  Engineered Biocompatible Nanoparticles for in Vivo Imaging Applications 
Journal of the American Chemical Society  2010;132(42):15022-15029.
Iron−platinum alloy nanoparticles (FePt NPs) are extremely promising candidates for the next generation of contrast agents for magnetic resonance (MR) diagnostic imaging and MR-guided interventions, including hyperthermic ablation of solid cancers. FePt has high Curie temperature, saturation magnetic moment, magneto-crystalline anisotropy, and chemical stability. We describe the synthesis and characterization of a family of biocompatible FePt NPs suitable for biomedical applications, showing and discussing that FePt NPs can exhibit low cytotoxicity. The importance of engineering the interface of strongly magnetic NPs using a coating allowing free aqueous permeation is demonstrated to be an essential parameter in the design of new generations of diagnostic and therapeutic MRI contrast agents. We report effective cell internalization of FePt NPs and demonstrate that they can be used for cellular imaging and in vivo MRI applications. This opens the way for several future applications of FePt NPs, including regenerative medicine and stem cell therapy in addition to enhanced MR diagnostic imaging.
doi:10.1021/ja106543j
PMCID: PMC2962530  PMID: 20919679

Results 1-6 (6)