PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Requirements regarding dose rate and exposure time for killing of tumour cells in beta particle radionuclide therapy 
Purpose
The purpose of this study was to identify combinations of dose rate and exposure time that have the potential to provide curative treatment with targeted radionuclide therapy applying low dose rate beta irradiation.
Methods
Five tumour cell lines, U-373MG and U-118MG gliomas, HT-29 colon carcinoma, A-431 cervical squamous carcinoma and SKBR-3 breast cancer, were used. An experimental model with 105 tumour cells in each sample was irradiated with low dose rate beta particles. The criterion for successful treatment was absence of recovery of cells during a follow-up period of 3 months. The initial dose rates were in the range 0.1–0.8 Gy/h, and the cells were continuously exposed for 1, 3 or 7 days. These combinations covered dose rates and doses achievable in targeted radionuclide therapy.
Results
Continuous irradiation with dose rates of 0.2–0.3 and 0.4–0.6 Gy/h for 7 and 3 days, respectively, could kill all cells in each tumour cell sample. These treatments gave total radiation doses of 30–40 Gy. However, when exposed for just 24 h with about 0.8 Gy/h, only the SKBR-3 cells were successfully treated; all the other cell types recovered. There were large cell type-dependent variations in the growth delay patterns for the cultures that recovered. The U-118MG cells were most resistant and the U-373MG and SKBR-3 cells most sensitive to the treatments. The HT-29 and A-431 cells were intermediate.
Conclusion
The results serve as a guideline for the combinations of dose rate and exposure time necessary to kill tumour cells when applying low dose rate beta irradiation. The shift from recovery to “cure” fell within a narrow range of dose rate and exposure time combinations.
doi:10.1007/s00259-006-0109-3
PMCID: PMC1998878  PMID: 16718515
Low dose rate; Nuclear medicine; Radionuclide; Radiation effects; Tumour therapy
2.  Application of the multicellular tumour spheroid model to screen PET tracers for analysis of early response of chemotherapy in breast cancer 
Introduction
Positron emission tomography (PET) is suggested for early monitoring of treatment response, assuming that effective anticancer treatment induces metabolic changes that precede morphology alterations and changes in growth. The aim of this study was to introduce multicellular tumour spheroids (MTS) to study the effect of anticancer drugs and suggest an appropriate PET tracer for further studies.
Methods
MTS of the breast cancer cell line MCF7 were exposed to doxorubicin, paclitaxel, docetaxel, tamoxifen or imatinib for 7 days for growth pattern studies and for 3 or 5 days for PET tracer studies. The effect on growth was computed using the semi-automated size determination method (SASDM). The effect on the uptake of PET tracers [18F]3'-deoxy-3'-fluorothymidine (FLT), [1-11C]acetate (ACE), [11C]choline (CHO), [11C]methionine (MET), and 2-[18F]fluoro-2-deoxyglucose (FDG) was calculated in form of uptake/viable volume of the MTS at the end of the drug exposures, and finally the uptake was related to effects on growth rate.
Results
The drugs paclitaxel, docetaxel and doxorubicin gave severe growth inhibition, which correlated well with inhibition of the FLT uptake. FLT had, compared with ACE, CHO, MET and FDG, higher sensitivity in monitoring the therapy effects.
Conclusion
SASDM provides an effective, user-friendly, time-saving and accurate method to record the growth pattern of the MTS, and also to calculate the effect of the drug on PET tracer uptake. This study demonstrate the use of MTS and SASDM in combination with PET tracers as a promising approach to probe and select PET tracer for treatment monitoring of anticancer drugs and that can hopefully be applied for optimisation in breast cancer treatment.
doi:10.1186/bcr1747
PMCID: PMC2206720  PMID: 17659092

Results 1-2 (2)