PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (68)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Blockade of Chronic Type I Interferon Signaling to Control Persistent LCMV Infection 
Science (New York, N.Y.)  2013;340(6129):202-207.
Type I interferons (IFN-I) are critical for antiviral immunity; however, chronic IFN-I signaling is associated with hyperimmune activation and disease progression in persistent infections. We demonstrated in mice that blockade of IFN-I signaling diminished chronic immune activation and immune suppression, restored lymphoid tissue architecture, and increased immune parameters associated with control of virus replication, ultimately facilitating clearance of the persistent infection. The accelerated control of persistent infection induced by blocking IFN-I signaling required CD4 T cells and was associated with enhanced IFN-γ production. Thus, we demonstrated that interfering with chronic IFN-I signaling during persistent infection redirects the immune environment to enable control of infection.
doi:10.1126/science.1235208
PMCID: PMC3704950  PMID: 23580528
2.  Benefits of putaminal GDNF infusion in Parkinson disease are maintained after GDNF cessation 
Neurology  2013;81(13):1176-1178.
We previously reported clinical improvement, increase in putamen [18F]-dopa uptake on PET imaging, and neuropathologic evidence of sprouting of dopaminergic fibers following chronic intraputaminal delivery of glial cell line–derived neurotrophic factor (GDNF) in idiopathic Parkinson disease (PD).1–3 We now provide clinical and PET evidence of persistent efficacy lasting for at least 3 years following cessation of GDNF infusion in a patient with PD. This is a single-case observational study, providing Class IV evidence.
doi:10.1212/WNL.0b013e3182a55ea5
PMCID: PMC3795600  PMID: 23946313
3.  Genome-Wide DNA Methylation Analysis Predicts an Epigenetic Switch for GATA Factor Expression in Endometriosis 
PLoS Genetics  2014;10(3):e1004158.
Endometriosis is a gynecological disease defined by the extrauterine growth of endometrial-like cells that cause chronic pain and infertility. The disease is limited to primates that exhibit spontaneous decidualization, and diseased cells are characterized by significant defects in the steroid-dependent genetic pathways that typify this process. Altered DNA methylation may underlie these defects, but few regions with differential methylation have been implicated in the disease. We mapped genome-wide differences in DNA methylation between healthy human endometrial and endometriotic stromal cells and correlated this with gene expression using an interaction analysis strategy. We identified 42,248 differentially methylated CpGs in endometriosis compared to healthy cells. These extensive differences were not unidirectional, but were focused intragenically and at sites distal to classic CpG islands where methylation status was typically negatively correlated with gene expression. Significant differences in methylation were mapped to 403 genes, which included a disproportionally large number of transcription factors. Furthermore, many of these genes are implicated in the pathology of endometriosis and decidualization. Our results tremendously improve the scope and resolution of differential methylation affecting the HOX gene clusters, nuclear receptor genes, and intriguingly the GATA family of transcription factors. Functional analysis of the GATA family revealed that GATA2 regulates key genes necessary for the hormone-driven differentiation of healthy stromal cells, but is hypermethylated and repressed in endometriotic cells. GATA6, which is hypomethylated and abundant in endometriotic cells, potently blocked hormone sensitivity, repressed GATA2, and induced markers of endometriosis when expressed in healthy endometrial cells. The unique epigenetic fingerprint in endometriosis suggests DNA methylation is an integral component of the disease, and identifies a novel role for the GATA family as key regulators of uterine physiology–aberrant DNA methylation in endometriotic cells correlates with a shift in GATA isoform expression that facilitates progesterone resistance and disease progression.
Author Summary
Women develop endometriosis when endometrial tissue with altered sensitivity to ovarian hormones grows outside the uterus. The persistent survival of these cells results in chronic pelvic pain and infertility. Although the origin of the disease remains a mystery, it only occurs in women and menstruating primates, suggesting that the unique evolution behind primate uterine development and menstruation are linked to the disease. Epigenetic defects affecting the uterine physiological response to ovarian hormones are also involved in endometriosis, and several genes implicated in disease progression are differentially methylated. Here we compared DNA methylation with gene expression in endometriosis using large-scale arrays. By comparing healthy and diseased cells treated with or without hormones to mimic part of the menstrual cycle, we uncovered many differentially methylated genes with defective expression in endometriosis that also regulate the hormone-dependent aspects of menstruation. In addition to expanding our understanding of how methylation affects endometriosis many fold, this also led us to propose an epigenetic switch that permits GATA6 expression in endometriosis instead of GATA2, and this switch promotes the aberrant expression of many of the genes seen in endometriosis. Our work provides novel unifying insight into the cause and development of endometriosis.
doi:10.1371/journal.pgen.1004158
PMCID: PMC3945170  PMID: 24603652
4.  Serotonergic mechanisms responsible for levodopa-induced dyskinesias in Parkinson’s disease patients 
The Journal of Clinical Investigation  2014;124(3):1340-1349.
Levodopa-induced dyskinesias (LIDs) are the most common and disabling adverse motor effect of therapy in Parkinson’s disease (PD) patients. In this study, we investigated serotonergic mechanisms in LIDs development in PD patients using 11C-DASB PET to evaluate serotonin terminal function and 11C-raclopride PET to evaluate dopamine release. PD patients with LIDs showed relative preservation of serotonergic terminals throughout their disease. Identical levodopa doses induced markedly higher striatal synaptic dopamine concentrations in PD patients with LIDs compared with PD patients with stable responses to levodopa. Oral administration of the serotonin receptor type 1A agonist buspirone prior to levodopa reduced levodopa-evoked striatal synaptic dopamine increases and attenuated LIDs. PD patients with LIDs that exhibited greater decreases in synaptic dopamine after buspirone pretreatment had higher levels of serotonergic terminal functional integrity. Buspirone-associated modulation of dopamine levels was greater in PD patients with mild LIDs compared with those with more severe LIDs. These findings indicate that striatal serotonergic terminals contribute to LIDs pathophysiology via aberrant processing of exogenous levodopa and release of dopamine as false neurotransmitter in the denervated striatum of PD patients with LIDs. Our results also support the development of selective serotonin receptor type 1A agonists for use as antidyskinetic agents in PD.
doi:10.1172/JCI71640
PMCID: PMC3934188  PMID: 24531549
5.  Imaging markers for Alzheimer disease 
Neurology  2013;81(5):487-500.
Revised diagnostic criteria for Alzheimer disease (AD) acknowledge a key role of imaging biomarkers for early diagnosis. Diagnostic accuracy depends on which marker (i.e., amyloid imaging, 18F-fluorodeoxyglucose [FDG]-PET, SPECT, MRI) as well as how it is measured (“metric”: visual, manual, semiautomated, or automated segmentation/computation). We evaluated diagnostic accuracy of marker vs metric in separating AD from healthy and prognostic accuracy to predict progression in mild cognitive impairment. The outcome measure was positive (negative) likelihood ratio, LR+ (LR−), defined as the ratio between the probability of positive (negative) test outcome in patients and the probability of positive (negative) test outcome in healthy controls. Diagnostic LR+ of markers was between 4.4 and 9.4 and LR− between 0.25 and 0.08, whereas prognostic LR+ and LR− were between 1.7 and 7.5, and 0.50 and 0.11, respectively. Within metrics, LRs varied up to 100-fold: LR+ from approximately 1 to 100; LR− from approximately 1.00 to 0.01. Markers accounted for 11% and 18% of diagnostic and prognostic variance of LR+ and 16% and 24% of LR−. Across all markers, metrics accounted for an equal or larger amount of variance than markers: 13% and 62% of diagnostic and prognostic variance of LR+, and 29% and 18% of LR−. Within markers, the largest proportion of diagnostic LR+ and LR− variability was within 18F-FDG-PET and MRI metrics, respectively. Diagnostic and prognostic accuracy of imaging AD biomarkers is at least as dependent on how the biomarker is measured as on the biomarker itself. Standard operating procedures are key to biomarker use in the clinical routine and drug trials.
doi:10.1212/WNL.0b013e31829d86e8
PMCID: PMC3776529  PMID: 23897875
6.  Inflammation makes T cells sensitive 
Immunity  2013;38(1):5-7.
Inflammatory cytokines shape CD8+[J1] T cell responses. In this issue of Immunity Richer et al. and Raue et al. demonstrate that inflammatory cytokines dynamically fine-tune antigen sensitivity of CD8+ T cells to potently detect and better eliminate infected cells.
doi:10.1016/j.immuni.2013.01.001
PMCID: PMC3619688  PMID: 23352218
7.  Caveolin-1 Orchestrates TCR Synaptic Polarity, Signal Specificity, and Function in CD8 T Cells 
Journal of immunology (Baltimore, Md. : 1950)  2011;187(6):10.4049/jimmunol.1101447.
TCR engagement triggers the polarized recruitment of membrane, actin, and transducer assemblies within the T cell–APC contact that amplify and specify signaling cascades and Teffector activity. We report that caveolin-1, a scaffold that regulates polarity and signaling in nonlymphoid cells, is required for optimal TCR-induced actin polymerization, synaptic membrane raft polarity, and function in CD8, but not CD4, T cells. In CD8+ T cells, caveolin-1 ablation selectively impaired TCR-induced NFAT-dependent NFATc1 and cytokine gene expression, whereas caveolin-1 re-expression promoted NFATc1 gene expression. Alternatively, caveolin-1 ablation did not affect TCR-induced NF-κB–dependent Iκbα expression. Cav-1−/− mice did not efficiently promote CD8 immunity to lymphocytic choriomeningitis virus, nor did cav-1−/− OT-1+ CD8+ T cells efficiently respond to Listeria mono-cytogenes-OVA after transfer into wild-type hosts. Therefore, caveolin-1 is a T cell-intrinsic orchestrator of TCR-mediated membrane polarity and signal specificity selectively employed by CD8 T cells to customize TCR responsiveness.
doi:10.4049/jimmunol.1101447
PMCID: PMC3881976  PMID: 21849673
8.  Ventral striatal dopamine synthesis capacity is associated with individual differences in behavioral disinhibition 
Pathological gambling, alongside addictive and antisocial disorders, forms part of a broad psychopathological spectrum of externalizing disorders, which share an underlying genetic vulnerability. The shared externalizing propensity is a highly heritable, continuously varying trait. Disinhibitory personality traits such as impulsivity and novelty seeking (NS) function as indicators of this broad shared externalizing tendency, which may reflect, at the neurobiological level, variation in the reactivity of dopaminergic (DAergic) brain reward systems centered on the ventral striatum (VS). Here, we examined whether individual differences in ventral striatal dopamine (DA) synthesis capacity were associated with individual variation in disinhibitory personality traits. Twelve healthy male volunteers underwent 6-[18F]Fluoro-L-DOPA (FDOPA) positron emission tomography (PET) scanning to measure striatal DA synthesis capacity, and completed a measure of disinhibited personality (NS). We found that levels of ventral, but not dorsal, striatal DA synthesis capacity were significantly correlated with inter-individual variation in disinhibitory personality traits, particularly a propensity for financial extravagance and irresponsibility. Our results are consistent with preclinical models of behavioral disinhibition and addiction proneness, and provide novel insights into the neurobiology of personality based vulnerability to pathological gambling and other externalizing disorders.
doi:10.3389/fnbeh.2014.00086
PMCID: PMC3954060  PMID: 24672449
addiction; dopamine; externalizing; impulsivity; positron emission tomography; pathological gambling; reward; ventral striatum
9.  Serotonergic loss in motor circuitries correlates with severity of action-postural tremor in PD 
Neurology  2013;80(20):1850-1855.
Objective:
The underlying pathophysiology of tremor in Parkinson disease (PD) is unclear; however, it is known that tremor does not appear to be as responsive to dopaminergic medication as bradykinesia or rigidity. It is suggested that serotonergic dysfunction could have a role in tremor development.
Methods:
Using 11C-DASB PET, a marker of serotonin transporter binding, and clinical observations, we have investigated function of serotonergic terminals in 12 patients with tremor-predominant and 12 with akinetic-rigid PD. Findings were compared with those of 12 healthy controls.
Results:
Reductions of 11C-DASB in caudate, putamen, and raphe nuclei significantly correlated with tremor severity on posture and action, but not with resting tremor. The tremor-predominant group also showed reductions of 11C-DASB in other regions involved in motor circuitry, including the thalamus and Brodmann areas 4 and 10.
Conclusions:
Our findings support a role for serotonergic dysfunction in motor circuitries in the generation of postural tremor in PD.
doi:10.1212/WNL.0b013e318292a31d
PMCID: PMC3908354  PMID: 23596065
10.  The sterol regulatory element binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity 
Nature immunology  2013;14(5):489-499.
Newly activated CD8+ T cells reprogram their metabolism to meet the extraordinary biosynthetic demands of clonal expansion; however, the signals mediating metabolic reprogramming remain poorly defined. Herein, we demonstrate an essential role for sterol regulatory element binding proteins (SREBPs) in the acquisition of effector cell metabolism. Without SREBP signaling, CD8+ T cells are unable to blast, resulting in markedly attenuated clonal expansion during viral infection. Mechanistic studies indicate that SREBPs are essential to meet the heightened lipid requirements of membrane synthesis during blastogenesis. SREBPs are dispensable for homeostatic proliferation, indicating a context-specific requirement for SREBPs in effector responses. These studies provide insights into the molecular signals underlying metabolic reprogramming of CD8+ T cells during the transition from quiescence to activation.
doi:10.1038/ni.2570
PMCID: PMC3652626  PMID: 23563690
SREBP; LCMV; lipids; CD8+ T cell; metabolism; proliferation
11.  Interfering with type I Interferon 
Cell Cycle  2013;12(18):2919-2920.
doi:10.4161/cc.26175
PMCID: PMC3875659  PMID: 23974094
interferon; virus; chronic; persistent; LCMV; HIV; hepatitis virus; immune activation; inflammation; immunosuppression; therapy
12.  The spectrum of nonmotor symptoms in early Parkinson disease 
Neurology  2013;80(3):276-281.
Objective:
Nonmotor symptoms (NMS) are common in patients with established Parkinson disease (PD) but their frequency in early PD has not been extensively studied. Our aim was to determine the frequency of NMS in a cohort of patients with newly diagnosed PD.
Methods:
A total of 159 patients with early PD and 99 healthy controls participated in this study. NMS were screened for using the Nonmotor Symptom Questionnaire. Other assessments included measures of motor disability (Movement Disorders Society–revised Unified Parkinson's Disease Rating Scale [MDS-UPDRS]), disease severity (Hoehn & Yahr staging), depression (Geriatric Depression Scale), and global cognitive function (Mini-Mental State Examination and Montreal Cognitive Assessment).
Results:
The PD group reported a significantly greater number of NMS compared with controls (8.4 [4.3] vs 2.8 [2.6]). In the PD group, the most commonly experienced NMS were excessive saliva, forgetfulness, urinary urgency, hyposmia, and constipation. Patients with higher MDS-UPDRS III scores and those with the postural instability gait subtype experienced a greater number of NMS.
Conclusion:
NMS are common in early PD and reflect the multisystem nature of the disorder. Even in the earliest stages of PD, NMS may be detrimental to patients' functional status and sense of well-being.
doi:10.1212/WNL.0b013e31827deb74
PMCID: PMC3589180  PMID: 23319473
13.  Laparoscopic cholecystectomy after a quarter century: why do we still convert? 
Surgical endoscopy  2011;26(2):508-513.
Background
Laparoscopic cholecystectomy (LC) is the gold standard procedure for gallbladder removal. However, conversion to open surgery is sometimes needed. The factors underlying a surgeon's decision to convert a laparoscopic case to an open case are complex and poorly understood. With decreasing experience in open cholecystectomy, this procedure is however no longer the “safe” alternative it once was. With such an impending paradigm shift, this study aimed to identify the main reasons for conversion and ultimately to develop guidelines to help reduce the conversion rates.
Methods
Using the National Surgical Quality Improvement Program (NSQIP) database and financial records, the authors retrospectively reviewed 1,193 cholecystectomies performed at their institution from 2002 to 2009 and identified 70 conversions. Two independent surgeons reviewed the operative notes and determined the reasons for conversion. The number of ports at the time and the extent of dissection before conversion were assessed and used to create new conversion categories. Hospital length of stay (LOS), 30-day complications, operative times and charges, and hospital charges were compared between the new groups.
Results
In 91% of conversion cases, the conversion was elective. In 49% of these conversions, the number of ports was fewer than four. According to the new conversion categories, most conversions were performed after minimal or no attempt at dissection. There were no differences in LOS, complications, operating room charges, or hospital charges between categories. Of the six emergent conversions (9%), bleeding and concern about common bile duct (CBD) injury were the main reasons. One CBD injury occurred.
Conclusions
In 49% of the cases, conversion was performed without a genuine attempt at laparoscopic dissection. Considering this new insight into the circumstances of conversion, the authors recommend that surgeons make a genuine effort at a laparoscopic approach, as reflected by placing four ports and trying to elevate the gallbladder before converting a case to an open approach.
doi:10.1007/s00464-011-1909-5
PMCID: PMC3667152  PMID: 21938579
Conversion; Gallbladder removal; Laparoscopic cholecystectomy
14.  Emergence of distinct multi-armed immunoregulatory antigen presenting cells during persistent viral infection 
Cell host & microbe  2012;11(5):481-491.
During persistent viral infection, adaptive immune responses are suppressed by immunoregulatory factors, contributing to viral persistence. Although this suppression is mediated by inhibitory factors, the mechanisms by which virus-specific T cells encounter and integrate immunoregulatory signals during persistent infection are unclear. We show that a distinct population of IL-10-expressing immunoregulatory antigen presenting cells (APC) is amplified during chronic versus acute lymphocytic choriomeningitis virus (LCMV) infection and suppresses T cell responses. Although acute LCMV infection induces the expansion of immunoregulatory APC, they subsequently decline. However, during persistent LCMV infection, immunoregulatory APC are amplified and parallel the viral replication kinetics. Further characterization demonstrates that immunoregulatory APC are molecularly and metabolically distinct, and exhibit increased expression of T cell-interacting molecules and negative regulatory factors that suppress T cell responses. Thus, immunoregulatory APC are amplified during viral persistence and deliver inhibitory signals that suppress antiviral T cell immunity and likely contribute to persistent infection.
doi:10.1016/j.chom.2012.03.009
PMCID: PMC3359873  PMID: 22607801
15.  Ventral Striatal Dopamine Synthesis Capacity Predicts Financial Extravagance in Parkinson’s Disease 
Impulse control disorders (ICDs), including disordered gambling, can occur in a significant number of patients with Parkinson’s disease (PD) receiving dopaminergic therapy. The neurobiology underlying susceptibility to such problems is unclear, but risk likely results from an interaction between dopaminergic medication and a pre-existing trait vulnerability. Impulse control and addictive disorders form part of a broader psychopathological spectrum of disorders, which share a common underlying genetic vulnerability, referred to as externalizing. The broad externalizing risk factor is a continuously varying trait reflecting vulnerability to various impulse control problems, manifested at the overt level by disinhibitory symptoms and at the personality level by antecedent traits such as impulsivity and novelty/sensation seeking. Trait “disinhibition” is thus a core endophenotype of ICDs, and a key target for neurobiological investigation. The ventral striatal dopamine system has been hypothesized to underlie individual variation in behavioral disinhibition. Here, we examined whether individual differences in ventral striatal dopamine synthesis capacity predicted individual variation in disinhibitory temperament traits in individuals with PD. Eighteen early-stage male PD patients underwent 6-[18F]Fluoro-l-DOPA (FDOPA) positron emission tomography scanning to measure striatal dopamine synthesis capacity, and completed a measure of disinhibited personality. Consistent with our predictions, we found that levels of ventral, but not dorsal, striatal dopamine synthesis capacity predicted disinhibited personality, particularly a propensity for financial extravagance. Our results are consistent with recent preclinical models of vulnerability to behavioral disinhibition and addiction proneness, and provide novel insights into the neurobiology of potential vulnerability to impulse control problems in PD and other disorders.
doi:10.3389/fpsyg.2013.00090
PMCID: PMC3583186  PMID: 23450713
dopa decarboxylase; dopamine; disordered gambling; externalizing; impulse control disorders; impulsivity; reward; ventral striatum
16.  A Proposal for a Comprehensive Grading of Parkinson's Disease Severity Combining Motor and Non-Motor Assessments: Meeting an Unmet Need 
PLoS ONE  2013;8(2):e57221.
Background
Non-motor symptoms are present in Parkinson's disease (PD) and a key determinant of quality of life. The Non-motor Symptoms Scale (NMSS) is a validated scale that allows quantifying frequency and severity (burden) of NMS. We report a proposal for using NMSS scores to determine levels of NMS burden (NMSB) and to complete PD patient classification.
Methods
This was an observational, cross-sectional international study of 935 consecutive patients. Using a distribution of NMSS scores by quartiles, a classification based on levels from 0 (no NMSB at all) to 4 (very severe NMSB) was obtained and its relation with Hoehn and Yahr (HY) staging, motor and health-related quality of life scales was analyzed. Concordance between NMSB levels and grouping based on clinician's global impression of severity, using categorical regression, was determined. Disability and HRQoL predictors were identified by multiple regression models.
Results
The distribution of motor and QoL scales scores by HY and NMSB levels was significantly discriminative. The difference in the classification of cases for both methods, HY and NMSB, was significant (gamma = 0.45; ASE = 0.032). Concordance between NMSB and global severity-based levels from categorical regression was 91.8%, (kappaw = 0.97). NMS score was predictor of disability and QoL.
Conclusions
Current clinical practice does not address a need for inclusion of non-motor scores in routine assessment of PD in spite of the overwhelming influence of NMS on disability and quality of life. Our data overcome the problems of “pure motor assessment” and we propose a combined approach with addition of NMSB levels to standard motor assessments.
doi:10.1371/journal.pone.0057221
PMCID: PMC3584126  PMID: 23468940
17.  Aromatase, breast cancer and obesity: a complex interaction 
Obesity has been associated with abnormally high expression of the enzyme aromatase in the breast, increased local estrogen production, and predisposition to breast hyperplasia and cancer. Increased adiposity in postmenopausal women may trigger signaling pathways that induce aromatase expression. In breast adipose fibroblasts, increased TNF production may induce the distal aromatase promoter, whereas increased local PGE2 production may induce the proximal promoter region. We review here the mechanisms that control aromatase gene expression in breast adipose tissue, and the paracrine interactions between malignant breast epithelial cells and the surrounding adipose fibroblasts. Systematic characterization of these signaling pathways will facilitate the identification of potential drug targets to selectively reduce aromatase expression and excessive estrogen production, with therapeutic benefit.
doi:10.1016/j.tem.2011.10.003
PMCID: PMC3428377  PMID: 22169755
18.  Nursing care in hospitals 
doi:10.3399/bjgp11X613098
PMCID: PMC3223761  PMID: 22137400
19.  Translating insights from persistent LCMV infection into anti-HIV immunity 
Immunologic research  2010;48(1-3):3-13.
Human Immunodeficiency Virus (HIV) is a major global health concern with more than 30 million individuals currently infected world-wide. To date attempts to stimulate protective immunity to viral components of HIV have been unsuccessful in preventing or clearing infection. Lymphocytic choriomeningitis virus (LCMV) is an established murine model of persistent viral infection that has been instrumental in illuminating several critical aspects of anti-viral immunity. Although virologically the course of LCMV infection differs significantly from HIV, the immune responses and regulatory mechanisms elicited by these two viruses are markedly similar. In this review we discuss important recent findings in the LCMV model, highlighting the role of host-derived proteins in shaping immune responses to persistent infections, and explore the therapeutic potential of manipulating these pathways to enhance HIV vaccination strategies.
doi:10.1007/s12026-010-8162-1
PMCID: PMC3491651  PMID: 20725865
LCMV; HIV; T cell exhaustion; persistent viral infection; CD4 T cell; CD8 T cell; immune regulation
20.  The role of IL-10 in regulating immunity to persistent viral infections 
The immune system has evolved multipronged responses that are critical to effectively defend the body from invading pathogens and to clear infection. However, the same weapons employed to eradicate infection can have caustic effects on normal bystander cells. Therefore, tight regulation is vital and the host must balance engendering correct and sufficient immune responses to pathogens while limiting errant and excessive immunopathology. To accomplish this task a complex network of positive and negative immune signals are delivered that in most instances successfully eliminate pathogen. However, in response to some viral infections, immune function is rapidly suppressed leading to viral persistence. Immune suppression is a critical obstacle to the control of many persistent virus infections such as HIV, hepatitis C and hepatitis B virus, which together affect more than 500 million individuals worldwide. Thus, the ability to therapeutically enhance immunity is a potentially powerful approach to resolve persistent infections. The host derived cytokine IL-10 is a key player in the establishment and perpetuation of viral persistence. This chapter discusses the role of IL-10 in viral persistence and explores the exciting prospect of therapeutically blocking IL-10 to increase antiviral immunity and vaccine efficacy.
doi:10.1007/82_2010_96
PMCID: PMC3492216  PMID: 20703965
21.  A European multicentre PET study of fibrillar amyloid in Alzheimer’s disease 
Purpose
Amyloid PET tracers have been developed for in vivo detection of brain fibrillar amyloid deposition in Alzheimer’s disease (AD). To serve as an early biomarker in AD the amyloid PET tracers need to be analysed in multicentre clinical studies.
Methods
In this study 238 [11C]Pittsburgh compound-B (PIB) datasets from five different European centres were pooled. Of these 238 datasets, 18 were excluded, leaving [11C]PIB datasets from 97 patients with clinically diagnosed AD (mean age 69 ± 8 years), 72 patients with mild cognitive impairment (MCI; mean age 67.5 ± 8 years) and 51 healthy controls (mean age 67.4 ± 6 years) available for analysis. Of the MCI patients, 64 were longitudinally followed for 28 ± 15 months. Most participants (175 out of 220) were also tested for apolipoprotein E (ApoE) genotype.
Results
[11C]PIB retention in the neocortical and subcortical brain regions was significantly higher in AD patients than in age-matched controls. Intermediate [11C]PIB retention was observed in MCI patients, with a bimodal distribution (64 % MCI PIB-positive and 36 % MCI PIB-negative), which was significantly different the pattern in both the AD patients and controls. Higher [11C]PIB retention was observed in MCI ApoE ε4 carriers compared to non-ApoE ε4 carriers (p < 0.005). Of the MCI PIB-positive patients, 67 % had converted to AD at follow-up while none of the MCI PIB-negative patients converted.
Conclusion
This study demonstrated the robustness of [11C]PIB PET as a marker of neocortical fibrillar amyloid deposition in brain when assessed in a multicentre setting. MCI PIB-positive patients showed more severe memory impairment than MCI PIB-negative patients and progressed to AD at an estimated rate of 25 % per year. None of the MCI PIB-negative patients converted to AD, and thus PIB negativity had a 100 % negative predictive value for progression to AD. This supports the notion that PIB-positive scans in MCI patients are an indicator of prodromal AD.
Electronic supplementary material
The online version of this article (doi:10.1007/s00259-012-2237-2) contains supplementary material, which is available to authorized users.
doi:10.1007/s00259-012-2237-2
PMCID: PMC3510420  PMID: 22961445
Amyloid; Multicentre PET; PIB; MCI; Alzheimer’s disease; Mild cognitive impairment; Cognition
22.  Acute HCV/HIV Coinfection Is Associated with Cognitive Dysfunction and Cerebral Metabolite Disturbance, but Not Increased Microglial Cell Activation 
PLoS ONE  2012;7(7):e38980.
Background
Microglial cell activation and cerebral function impairment are described in both chronic hepatitis C viral (HCV) and Human-Immune-Deficiency viral (HIV) infections. The aim of this study was to investigate the effect of acute HCV infection upon cerebral function and microglial cell activation in HIV-infected individuals.
Methods
A case-control study was conducted. Subjects with acute HCV and chronic HIV coinfection (aHCV) were compared to matched controls with chronic HIV monoinfection (HIVmono). aHCV was defined as a new positive plasma HCV RNA within 12 months of a negative RNA test. Subjects underwent neuro-cognitive testing (NCT), cerebral proton magnetic resonance spectroscopy (1H-MRS) and positron emission tomography (PET) using a 11C-radiolabeled ligand (PK11195), which is highly specific for translocator protein 18 kDA receptors on activated microglial cells. Differences between cases and controls were assessed using linear regression modelling.
Results
Twenty-four aHCV cases completed NCT and 1H-MRS, 8 underwent PET. Of 57 HIVmono controls completing NCT, 12 underwent 1H-MRS and 8 PET. Subjects with aHCV demonstrated on NCT, significantly poorer executive function (mean (SD) error rate 26.50(17.87) versus 19.09(8.12), p = 0.001) and on 1H-MRS increased myo-inositol/creatine ratios (mI/Cr, a marker of cerebral inflammation) in the basal ganglia (ratio of 0.71(0.22) versus 0.55(0.23), p = 0.03), compared to subjects with HIVmono. On PET imaging, no difference in 11C-PK11195 binding potential (BP) was observed between study groups (p>0.10 all cerebral locations), however lower BPs were associated with combination antiretroviral therapy (cART) use in the parietal (p = 0.01) and frontal (p = 0.03) cerebral locations.
Discussion
Poorer cognitive performance and disturbance of cerebral metabolites are observed in subjects with aHC,V compared to subjects with HIVmono. Higher 11C-PK11195 BP was not observed in subjects with aHCV, but was observed in subjects not on cART.
doi:10.1371/journal.pone.0038980
PMCID: PMC3395624  PMID: 22808022
23.  MK-1775, a potent Wee1 inhibitor, synergizes with gemcitabine to achieve tumor regressions, selectively in p53-deficient pancreatic cancer xenografts 
Clinical Cancer Research  2011;17(9):2799-2806.
Purpose
Investigate the efficacy and pharmacodynamic effects of MK-1775, a potent Wee1 inhibitor, in both monotherapy and in combination with gemcitabine using a panel of p53-deficient and p53-wild type human pancreatic cancer xenografts.
Experimental design
Nine individual patient-derived pancreatic cancer xenografts (six with p53-deficient and three with p53-wild type status) from the PancXenoBank collection at Johns Hopkins were treated with MK-1775, gemcitabine or gemcitabine followed 24 h later by MK-1775 for 4 weeks. Tumor growth rate/regressions were calculated on day 28. Target modulation was assessed by western blot and IHC.
Results
MK-1775 treatment led to the inhibition of Wee1 kinase and reduced inhibitory phosphorylation of its substrate Cdc2. MK-1775, when dosed with gemcitabine, abrogated the checkpoint arrest to promote mitotic entry and facilitated tumor cell death as compared to control and gemcitabine treated tumors. MK-1775 monotherapy did not induce tumor regressions. However, the combination of gemcitabine with MK-1775 produced robust anti-tumor activity and remarkably enhanced tumor regression response (4.01 fold) compared to gemcitabine treatment in p53-deficient tumors. Tumor re-growth curves plotted after the drug treatment period suggest that the effect of the combination therapy is longer-lasting than that of gemcitabine. None of the agents produced tumor regressions in p53-wild type xenografts.
Conclusions
These results indicate that MK-1775 selectively synergizes with gemcitabine to achieve tumor regressions, selectively in p53-deficient pancreatic cancer xenografts.
doi:10.1158/1078-0432.CCR-10-2580
PMCID: PMC3307341  PMID: 21389100
MK-1775; Wee1 kinase; pancreatic cancer; chemotherapy; cell cycle inhibitor
24.  Characterisation of the contribution of the GABA-benzodiazepine α1 receptor subtype to [11C]Ro15-4513 PET images 
This positron emission tomography (PET) study aimed to further define selectivity of [11C]Ro15-4513 binding to the GABARα5 relative to the GABARα1 benzodiazepine receptor subtype. The impact of zolpidem, a GABARα1-selective agonist, on [11C]Ro15-4513, which shows selectivity for GABARα5, and the nonselective benzodiazepine ligand [11C]flumazenil binding was assessed in humans. Compartmental modelling of the kinetics of [11C]Ro15-4513 time-activity curves was used to describe distribution volume (VT) differences in regions populated by different GABA receptor subtypes. Those with low α5 were best fitted by one-tissue compartment models; and those with high α5 required a more complex model. The heterogeneity between brain regions suggested spectral analysis as a more appropriate method to quantify binding as it does not a priori specify compartments. Spectral analysis revealed that zolpidem caused a significant VT decrease (∼10%) in [11C]flumazenil, but no decrease in [11C]Ro15-4513 binding. Further analysis of [11C]Ro15-4513 kinetics revealed additional frequency components present in regions containing both α1 and α5 subtypes compared with those containing only α1. Zolpidem reduced one component (mean±s.d.: 71%±41%), presumed to reflect α1-subtype binding, but not another (13%±22%), presumed to reflect α5. The proposed method for [11C]Ro15-4513 analysis may allow more accurate selective binding assays and estimation of drug occupancy for other nonselective ligands.
doi:10.1038/jcbfm.2011.177
PMCID: PMC3318150  PMID: 22214903
GABA; imaging; kinetic modelling; pharmacokinetics; positron emission tomography
25.  DengueTools: innovative tools and strategies for the surveillance and control of dengue 
Global Health Action  2012;5:10.3402/gha.v5i0.17273.
Dengue fever is a mosquito-borne viral disease estimated to cause about 230 million infections worldwide every year, of which 25,000 are fatal. Global incidence has risen rapidly in recent decades with some 3.6 billion people, over half of the world's population, now at risk, mainly in urban centres of the tropics and subtropics. Demographic and societal changes, in particular urbanization, globalization, and increased international travel, are major contributors to the rise in incidence and geographic expansion of dengue infections. Major research gaps continue to hamper the control of dengue. The European Commission launched a call under the 7th Framework Programme with the title of ‘Comprehensive control of Dengue fever under changing climatic conditions’. Fourteen partners from several countries in Europe, Asia, and South America formed a consortium named ‘DengueTools’ to respond to the call to achieve better diagnosis, surveillance, prevention, and predictive models and improve our understanding of the spread of dengue to previously uninfected regions (including Europe) in the context of globalization and climate change.
The consortium comprises 12 work packages to address a set of research questions in three areas:
Research area 1: Develop a comprehensive early warning and surveillance system that has predictive capability for epidemic dengue and benefits from novel tools for laboratory diagnosis and vector monitoring.
Research area 2: Develop novel strategies to prevent dengue in children.
Research area 3: Understand and predict the risk of global spread of dengue, in particular the risk of introduction and establishment in Europe, within the context of parameters of vectorial capacity, global mobility, and climate change.
In this paper, we report on the rationale and specific study objectives of ‘DengueTools’. DengueTools is funded under the Health theme of the Seventh Framework Programme of the European Community, Grant Agreement Number: 282589 Dengue Tools.
doi:10.3402/gha.v5i0.17273
PMCID: PMC3312611  PMID: 22451836
dengue; dengue control; dengue diagnostics; economic evaluation; entomology; climate change; early warning systems; risk mapping; surveillance; globalization

Results 1-25 (68)