Search tips
Search criteria

Results 1-21 (21)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Whole Genome Transcript Profiling of Drug Induced Steatosis in Rats Reveals a Gene Signature Predictive of Outcome 
PLoS ONE  2014;9(12):e114085.
Drug induced steatosis (DIS) is characterised by excess triglyceride accumulation in the form of lipid droplets (LD) in liver cells. To explore mechanisms underlying DIS we interrogated the publically available microarray data from the Japanese Toxicogenomics Project (TGP) to study comprehensively whole genome gene expression changes in the liver of treated rats. For this purpose a total of 17 and 12 drugs which are diverse in molecular structure and mode of action were considered based on their ability to cause either steatosis or phospholipidosis, respectively, while 7 drugs served as negative controls. In our efforts we focused on 200 genes which are considered to be mechanistically relevant in the process of lipid droplet biogenesis in hepatocytes as recently published (Sahini and Borlak, 2014). Based on mechanistic considerations we identified 19 genes which displayed dose dependent responses while 10 genes showed time dependency. Importantly, the present study defined 9 genes (ANGPTL4, FABP7, FADS1, FGF21, GOT1, LDLR, GK, STAT3, and PKLR) as signature genes to predict DIS. Moreover, cross tabulation revealed 9 genes to be regulated ≥10 times amongst the various conditions and included genes linked to glucose metabolism, lipid transport and lipogenesis as well as signalling events. Additionally, a comparison between drugs causing phospholipidosis and/or steatosis revealed 26 genes to be regulated in common including 4 signature genes to predict DIS (PKLR, GK, FABP7 and FADS1). Furthermore, a comparison between in vivo single dose (3, 6, 9 and 24 h) and findings from rat hepatocyte studies (2 h, 8 h, 24 h) identified 10 genes which are regulated in common and contained 2 DIS signature genes (FABP7, FGF21). Altogether, our studies provide comprehensive information on mechanistically linked gene expression changes of a range of drugs causing steatosis and phospholipidosis and encourage the screening of DIS signature genes at the preclinical stage.
PMCID: PMC4254931  PMID: 25470483
2.  Deciphering miRNA transcription factor feed-forward loops to identify drug repurposing candidates for cystic fibrosis 
Genome Medicine  2014;6(12):94.
Cystic fibrosis (CF) is a fatal genetic disorder caused by mutations in the CF transmembrane conductance regulator (CFTR) gene that primarily affects the lungs and the digestive system, and the current drug treatment is mainly able to alleviate symptoms. To improve disease management for CF, we considered the repurposing of approved drugs and hypothesized that specific microRNA (miRNA) transcription factors (TF) gene networks can be used to generate feed-forward loops (FFLs), thus providing treatment opportunities on the basis of disease specific FFLs.
Comprehensive database searches revealed significantly enriched TFs and miRNAs in CF and CFTR gene networks. The target genes were validated using ChIPBase and by employing a consensus approach of diverse algorithms to predict miRNA gene targets. STRING analysis confirmed protein-protein interactions (PPIs) among network partners and motif searches defined composite FFLs. Using information extracted from SM2miR and Pharmaco-miR, an in silico drug repurposing pipeline was established based on the regulation of miRNA/TFs in CF/CFTR networks.
In human airway epithelium, a total of 15 composite FFLs were constructed based on CFTR specific miRNA/TF gene networks. Importantly, nine of them were confirmed in patient samples and CF epithelial cells lines, and STRING PPI analysis provided evidence that the targets interacted with each other. Functional analysis revealed that ubiquitin-mediated proteolysis and protein processing in the endoplasmic reticulum dominate the composite FFLs, whose major functions are folding, sorting, and degradation. Given that the mutated CFTR gene disrupts the function of the chloride channel, the constructed FFLs address mechanistic aspects of the disease and, among 48 repurposing drug candidates, 26 were confirmed with literature reports and/or existing clinical trials relevant to the treatment of CF patients.
The construction of FFLs identified promising drug repurposing candidates for CF and the developed strategy may be applied to other diseases as well.
Electronic supplementary material
The online version of this article (doi:10.1186/s13073-014-0094-2) contains supplementary material, which is available to authorized users.
PMCID: PMC4256829  PMID: 25484921
3.  Recent advances in live cell imaging of hepatoma cells 
BMC Cell Biology  2014;15:26.
Live cell imaging enables the study of dynamic processes of living cells in real time by use of suitable reporter proteins and the staining of specific cellular structures and/or organelles. With the availability of advanced optical devices and improved cell culture protocols it has become a rapidly growing research methodology. The success of this technique relies mainly on the selection of suitable reporter proteins, construction of recombinant plasmids possessing cell type specific promoters as well as reliable methods of gene transfer. This review aims to provide an overview of the recent developments in the field of marker proteins (bioluminescence and fluorescent) and methodologies (fluorescent resonance energy transfer, fluorescent recovery after photobleaching and proximity ligation assay) employed as to achieve an improved imaging of biological processes in hepatoma cells. Moreover, different expression systems of marker proteins and the modes of gene transfer are discussed with emphasis on the study of lipid droplet formation in hepatocytes as an example.
PMCID: PMC4108253  PMID: 25005127
Live cell imaging; Fluorescence; Bioluminescence; Green Fluorescent Protein; Proximity ligation assay; Lipid droplet
4.  Explanted Diseased Livers – A Possible Source of Metabolic Competent Primary Human Hepatocytes 
PLoS ONE  2014;9(7):e101386.
Being an integral part of basic, translational and clinical research, the demand for primary human hepatocytes (PHH) is continuously growing while the availability of tissue resection material for the isolation of metabolically competent PHH remains limited. To overcome current shortcomings, this study evaluated the use of explanted diseased organs from liver transplantation patients as a potential source of PHH. Therefore, PHH were isolated from resected surgical specimens (Rx-group; n = 60) and explanted diseased livers obtained from graft recipients with low labMELD-score (Ex-group; n = 5). Using established protocols PHH were subsequently cultured for a period of 7 days. The viability and metabolic competence of cultured PHH was assessed by the following parameters: morphology and cell count (CyQuant assay), albumin synthesis, urea production, AST-leakage, and phase I and II metabolism. Both groups were compared in terms of cell yield and metabolic function, and results were correlated with clinical parameters of tissue donors. Notably, cellular yields and viabilities were comparable between the Rx- and Ex-group and were 5.3±0.5 and 2.9±0.7×106 cells/g liver tissue with 84.3±1.3 and 76.0±8.6% viability, respectively. Moreover, PHH isolated from the Rx- or Ex-group did not differ in regards to loss of cell number in culture, albumin synthesis, urea production, AST-leakage, and phase I and II metabolism (measured by the 7-ethoxycoumarin-O-deethylase and uracil-5′-diphosphate-glucuronyltransferase activity). Likewise, basal transcript expressions of the CYP monooxygenases 1A1, 2C8 and 3A4 were comparable as was their induction when treated with a cocktail that consisted of 3-methylcholantren, rifampicin and phenobarbital, with increased expression of CYP 1A1 and 3A4 mRNA while transcript expression of CYP 2C8 was only marginally changed. In conclusion, the use of explanted diseased livers obtained from recipients with low labMELD-score might represent a valuable source of metabolically competent PHH which are comparable in viability and function to cells obtained from specimens following partial liver resection.
PMCID: PMC4084809  PMID: 24999631
5.  Transcriptional Defect of an Inherited NKX2-5 Haplotype Comprising a SNP, a Nonsynonymous and a Synonymous Mutation, Associated with Human Congenital Heart Disease 
PLoS ONE  2013;8(12):e83295.
Germline mutations in cardiac-specific transcription factor genes have been associated with congenital heart disease (CHD) and the homeodomain transcription factor NKX2-5 is an important member of this group. Indeed, more than 40 heterozygous NKX2-5 germline mutations have been observed in individuals with CHD, and these are spread along the coding region, with many shown to impact protein function. In pursuit of understanding causes of CHD, we analyzed n = 49 cardiac biopsies from 28 patients and identified by direct sequencing two nonsynonymous NKX2-5 alterations affecting alanine 119, namely c.356C>A (p.A119E) and c.355G>T, (p.A119S), in patients with AVSD and HLHS, respectively. In functional assays, a significant reduction in transcriptional activities could be determined for the NKX2-5 variants. Importantly, in one family the mother, besides p.A119E, carried a synonymous mutant allele in the homeodomain (c.543G>A, p.Q181), and a synonymous dbSNP (c.63A>G, p.E21) in the transactivation domain of the protein, that were transmitted to the CHD daughter. The presence of these variants in-cis with the p.A119E mutation led to a further reduction in transcriptional activities. Such difference in activity may be in part related to reduced protein expression for the double variant c.356C>A and c.543G>A. We propose changes in mRNA stability and folding, due to a silent mutation and a dbSNP in the NKX2-5 coding region to contribute to the functional defect. Although the clinical significance of the NKX2-5 haplotype identified in the CHD patients remains to be ascertained, we provide evidence of an interaction of a dbSNP, with synonymous and nonsynonymous mutations to negatively impact NKX2-5 transcriptional activity.
PMCID: PMC3869772  PMID: 24376681
6.  Serum acute phase reactants hallmark healthy individuals at risk for acetaminophen-induced liver injury 
Genome Medicine  2013;5(9):86.
Acetaminophen (APAP) is a commonly used analgesic. However, its use is associated with drug-induced liver injury (DILI). It is a prominent cause of acute liver failure, with APAP hepatotoxicity far exceeding other causes of acute liver failure in the United States. In order to improve its safe use this study aimed to identify individuals at risk for DILI prior to drug treatment by searching for non-genetic serum markers in healthy subjects susceptible to APAP-induced liver injury (AILI).
Healthy volunteers (n = 36) received either placebo or acetaminophen at the maximum daily dose of 4 g for 7 days. Blood samples were taken prior to and after APAP treatment. Serum proteomic profiling was done by 2D SDS-PAGE and matrix-assisted laser desorption/ionization-time of flight-mass spectrometry. Additionally, the proteins C-reactive protein, haptoglobin and hemopexin were studied by quantitative immunoassays.
One-third of study subjects presented more than four-fold increased alanine transaminase activity to evidence liver injury, while serum proteomics informed on 20 proteins as significantly regulated. These function primarily in acute phase and immune response. Pre-treatment associations included C-reactive protein, haptoglobin isoforms and retinol binding protein being up to six-fold higher in AILI susceptible individuals, whereas alpha1-antitrypsin, serum amyloid A, kininogen and transtyretin were regulated by nearly five-fold in AILI responders. When compared with published findings for steatohepatitis and cases of hepatocellular, cholestatic and mixed DILI, 10 proteins were identified as uniquely associated with risk for AILI, including plasminogen. Notably, this zymogen facilitates macrophage chemotactic migration and inflammatory response as reported for plasminogen-deficient mice shown to be resistant to APAP hepatotoxicity. Finally, analysis of a publicly available database of gene expression profiles of cultures of human hepatocytes treated with drugs labeled as no- (n = 8), low- (n = 45) or most-DILI-concern (n = 39) confirmed regulation of the identified biomarkers to demonstrate utility in predicting risk for liver injury.
The significant regulation of acute phase reactants points to an important link between AILI and the immune system. Monitoring of serum acute phase reactants prior to drug treatment may contribute to prevention and management of AILI, and may also be of utility for other drugs with known liver liabilities.
PMCID: PMC3979026  PMID: 24070255
7.  A Discriminative Approach for Unsupervised Clustering of DNA Sequence Motifs 
PLoS Computational Biology  2013;9(3):e1002958.
Algorithmic comparison of DNA sequence motifs is a problem in bioinformatics that has received increased attention during the last years. Its main applications concern characterization of potentially novel motifs and clustering of a motif collection in order to remove redundancy. Despite growing interest in motif clustering, the question which motif clusters to aim at has so far not been systematically addressed. Here we analyzed motif similarities in a comprehensive set of vertebrate transcription factor classes. For this we developed enhanced similarity scores by inclusion of the information coverage (IC) criterion, which evaluates the fraction of information an alignment covers in aligned motifs. A network-based method enabled us to identify motif clusters with high correspondence to DNA-binding domain phylogenies and prior experimental findings. Based on this analysis we derived a set of motif families representing distinct binding specificities. These motif families were used to train a classifier which was further integrated into a novel algorithm for unsupervised motif clustering. Application of the new algorithm demonstrated its superiority to previously published methods and its ability to reproduce entrained motif families. As a result, our work proposes a probabilistic approach to decide whether two motifs represent common or distinct binding specificities.
Author Summary
Transcription factors play a central role in the regulation of gene expression. Their interaction with specific elements in the DNA mediates dynamic changes in transcriptional activity. Databases store a growing number of known DNA sequence patterns, also denoted as DNA sequence motifs that are recognized by transcription factors. Such databases can be searched to find a match for a newly discovered pattern and that way identify the potential binding factor. It is also of interest to cluster motifs in order to examine which transcription factors have similar binding properties and, thus, may promiscuously bind to each other's sites, or how many distinct specificities have been described. To gain deeper insight into the similarities between DNA sequence motifs, we analyzed a comprehensive set of known motifs. For this purpose we devised a network-based approach that enabled us to identify clusters of related motifs that largely coincided with grouping of related TFs on the basis of protein similarity. On the basis of these results, we were able to predict whether two motifs belong to the same subgroup and constructed a novel, fully-automated method for motif clustering, which enables users to assess the similarity of a newly found motif with all known motifs in the collection.
PMCID: PMC3605052  PMID: 23555204
8.  HNF4alpha Dysfunction as a Molecular Rational for Cyclosporine Induced Hypertension 
PLoS ONE  2011;6(1):e16319.
Induction of tolerance against grafted organs is achieved by the immunosuppressive agent cyclosporine, a prominent member of the calcineurin inhibitors. Unfortunately, its lifetime use is associated with hypertension and nephrotoxicity. Several mechanism for cyclosporine induced hypertension have been proposed, i.e. activation of the sympathetic nervous system, endothelin-mediated systemic vasoconstriction, impaired vasodilatation secondary to reduction in prostaglandin and nitric oxide, altered cytosolic calcium translocation, and activation of the renin-angiotensin system (RAS). In this regard the molecular basis for undue RAS activation and an increased signaling of the vasoactive oligopeptide angiotensin II (AngII) remain elusive. Notably, angiotensinogen (AGT) is the precursor of AngII and transcriptional regulation of AGT is controlled by the hepatic nuclear factor HNF4alpha. To better understand the molecular events associated with cyclosporine induced hypertension, we investigated the effect of cyclosporine on HNF4alpha expression and activity and searched for novel HNF4alpha target genes among members of the RAS cascade. Using bioinformatic algorithm and EMSA bandshift assays we identified angiotensin II receptor type 1 (AGTR1), angiotensin I converting enzyme (ACE), and angiotensin I converting enzyme 2 (ACE2) as genes targeted by HNF4alpha. Notably, cyclosporine represses HNF4alpha gene and protein expression and its DNA-binding activity at consensus sequences to AGT, AGTR1, ACE, and ACE2. Consequently, the gene expression of AGT, AGTR1, and ACE2 was significantly reduced as evidenced by quantitative real-time RT-PCR. While RAS is composed of a sophisticated interplay between multiple factors we propose a decrease of ACE2 to enforce AngII signaling via AGTR1 to ultimately result in vasoconstriction and hypertension. Taken collectively we demonstrate cyclosporine to repress HNF4alpha activity through calcineurin inhibitor mediated inhibition of nuclear factor of activation of T-cells (NFAT) which in turn represses HNF4alpha that leads to a disturbed balance of RAS.
PMCID: PMC3029342  PMID: 21298017
9.  Micro-computed tomography of pulmonary fibrosis in mice induced by adenoviral gene transfer of biologically active transforming growth factor-β1 
Respiratory Research  2010;11(1):181.
Micro-computed tomography (micro-CT) is a novel tool for monitoring acute and chronic disease states in small laboratory animals. Its value for assessing progressive lung fibrosis in mice has not been reported so far. Here we examined the importance of in vivo micro-CT as non-invasive tool to assess progression of pulmonary fibrosis in mice over time.
Pulmonary fibrosis was induced in mice by intratracheal delivery of an adenoviral gene vector encoding biologically active TGF-ß1 (AdTGF-ß1). Respiratory gated and ungated micro-CT scans were performed at 1, 2, 3, and 4 weeks post pulmonary adenoviral gene or control vector delivery, and were then correlated with respective histopathology-based Ashcroft scoring of pulmonary fibrosis in mice. Visual assessment of image quality and consolidation was performed by 3 observers and a semi-automated quantification algorithm was applied to quantify aerated pulmonary volume as an inverse surrogate marker for pulmonary fibrosis.
We found a significant correlation between classical Ashcroft scoring and micro-CT assessment using both visual assessment and the semi-automated quantification algorithm. Pulmonary fibrosis could be clearly detected in micro-CT, image quality values were higher for respiratory gated exams, although differences were not significant. For assessment of fibrosis no significant difference between respiratory gated and ungated exams was observed.
Together, we show that micro-CT is a powerful tool to assess pulmonary fibrosis in mice, using both visual assessment and semi-automated quantification algorithms. These data may be important in view of pre-clinical pharmacologic interventions for the treatment of lung fibrosis in small laboratory animals.
PMCID: PMC3022722  PMID: 21176193
10.  Cancer Genomics Identifies Regulatory Gene Networks Associated with the Transition from Dysplasia to Advanced Lung Adenocarcinomas Induced by c-Raf-1 
PLoS ONE  2009;4(10):e7315.
Lung cancer is a leading cause of cancer morbidity. To improve an understanding of molecular causes of disease a transgenic mouse model was investigated where targeted expression of the serine threonine kinase c-Raf to respiratory epithelium induced initialy dysplasia and subsequently adenocarcinomas. This enables dissection of genetic events associated with precancerous and cancerous lesions.
Methodology/Principal Findings
By laser microdissection cancer cell populations were harvested and subjected to whole genome expression analyses. Overall 473 and 541 genes were significantly regulated, when cancer versus transgenic and non-transgenic cells were compared, giving rise to three distinct and one common regulatory gene network. At advanced stages of tumor growth predominately repression of gene expression was observed, but genes previously shown to be up-regulated in dysplasia were also up-regulated in solid tumors. Regulation of developmental programs as well as epithelial mesenchymal and mesenchymal endothelial transition was a hall mark of adenocarcinomas. Additionaly, genes coding for cell adhesion, i.e. the integrins and the tight and gap junction proteins were repressed, whereas ligands for receptor tyrosine kinase such as epi- and amphiregulin were up-regulated. Notably, Vegfr- 2 and its ligand Vegfd, as well as Notch and Wnt signalling cascades were regulated as were glycosylases that influence cellular recognition. Other regulated signalling molecules included guanine exchange factors that play a role in an activation of the MAP kinases while several tumor suppressors i.e. Mcc, Hey1, Fat3, Armcx1 and Reck were significantly repressed. Finally, probable molecular switches forcing dysplastic cells into malignantly transformed cells could be identified.
This study provides insight into molecular pertubations allowing dysplasia to progress further to adenocarcinoma induced by exaggerted c-Raf kinase activity.
PMCID: PMC2754338  PMID: 19812696
12.  An update on the mouse liver proteome 
Proteome Science  2009;7:35.
Decoding of the liver proteome is subject of intense research, but hampered by methodological constraints. We recently developed an improved protocol for studying rat liver proteins based on 2-DE-MALDI-TOF-MS peptide mass finger printing.
This methodology was now applied to develop a mouse liver protein database.
Liver proteins were extracted by two different lysis buffers in sequence followed by a liquid-phase IEF pre-fractionation and separation of proteins by 2 DE at two different pH ranges, notably 5-8 and 7-10. Based on 9600 in gel digests a total of 643 mouse liver proteins with high sequence coverage (> 20 peptides per protein) could be identified by MALDI-TOF-MS peptide mass finger printing. Notably, 255 proteins are novel and have not been reported so far by conventional two-dimensional electrophoresis proteome mapping. Additionally, the results of the present findings for mouse liver were compared to published data of the rat proteome to compile as many proteins as possible in a rodent liver database.
Based on 2-DE MALDI-TOF-MS a significantly improved proteome map of mouse liver was obtained. We discuss some prominent members of newly identified proteins for a better understanding of liver biology.
PMCID: PMC2752743  PMID: 19737410
13.  Expression of HNF4alpha in the human and rat choroid plexus – Implications for drug transport across the blood-cerebrospinal-fluid (CSF) barrier 
BMC Molecular Biology  2009;10:68.
The choroid plexus consists of highly differentiated epithelium and functions as a barrier at the interface of the blood-cerebrospinal-fluid (CSF). This tissue may therefore determine the bioavailability and transport of drugs to the brain. Little is known about the expression of drug and xenobiotic metabolizing enzymes (DME) and of drug transporters in the human choroid plexus. Notably, the transcription factor and zinc finger protein HNF4alpha is a master regulator of DMEs and of drug transporters. As of today its activity in the blood-CSF barrier is unknown. Here we report our efforts in determining HNF4alpha activity in the regulation of ABC transporters in the human and rat choroid plexus.
We report expression of HNF4alpha by qRT-PCR and by immunohistochemistry and evidence transcript expression of the ATP-binding cassette transporters ABCB1, ABCB4, ABCC1-6 in choroid plexus. Additionally, HNF4alpha DNA binding activity at regulatory sequences of ABCB4 and ABCC1 was determined by EMSA bandshift assays with a specific antibody. We then performed siRNA mediated functional knock down of HNF4alpha in Caco-2 cells and found ABCC1 gene expression to be repressed in cell culture experiments.
Our study evidences activity of HNF4alpha in human and rat choroid plexus. This transcription factor targets DMEs and drug transporters and may well determine availability of drugs at the blood-CSF barrier.
PMCID: PMC2713241  PMID: 19575803
14.  Molecular Characterization of Lung Dysplasia Induced by c-Raf-1 
PLoS ONE  2009;4(5):e5637.
Lung cancer is a multistage process with poor prognosis and high morbidity. Importantly, the genetics of dysplasia, a facultative cancer, at the edge of malignant transformation is unknown.
Methodology/Principal Findings
We employed laser microdissection to harvest c-Raf1- induced dysplastic as opposed to transgenic but otherwise morphologically unaltered epithelium and compared findings to non-transgenic lung. We then employed microarrays to search genome wide for gene regulatory networks. A total of 120 and 287 genes were significantly regulated, respectively. Dysplasia was exclusive associated with up-regulation of genes coding for cell growth and proliferation, cell-to-cell signalling and interaction, lipid metabolism, development, and cancer. Likewise, when dysplasia was compared with non-transgenic cells up-regulation of cancer associated genes, tight junction proteins, xenobiotic defence and developmental regulators was observed. Further, in a comparison of the data sets of dysplasia vs transgenic and dysplasia vs non-transgenic 114 genes were regulated in common. We additionally confirmed regulation of some genes by immunohistochemistry and therefore demonstrate good concordance between gene regulation and coded protein.
Our study identified transcriptional networks at successive stages of tumor-development, i.e. from histological unaltered but transgenic lungs to nuclear atypia. Our SP-C/c-raf transgenic mouse model revealed interesting and novel candidate genes and pathways that provide clues on the mechanism forcing respiratory epithelium into dysplasia and subsequently cancer, some of which might also be useful in the molecular imaging and flagging of early stages of disease.
PMCID: PMC2681412  PMID: 19529782
15.  HNF4alpha and HNF1alpha Dysfunction as a Molecular Rational for Cyclosporine Induced Posttransplantation Diabetes Mellitus 
PLoS ONE  2009;4(3):e4662.
Posttransplantation diabetes mellitus (PTDM) is a frequent complication in immunosuppressive therapy. To better understand the molecular events associated with PTDM we investigated the effect of cyclosporine on expression and activity of hepatic nuclear factor (HNF)1alpha and 4alpha and on genes coding for glucose metabolism in cultures of the rat insulinoma cell line INS-1E, the human epithelial cell line Caco-2 and with Zucker diabetic fatty (ZDF) rats. In the pancreas of untreated but diabetic animals expression of HNF4alpha, insulin1, insulin2 and of phosphoenolpyruvate carboxykinase was significantly repressed. Furthermore, cyclosporine treatment of the insulinoma-1E cell line resulted in remarkable reduction in HNF4alpha protein and INS1 as well as INS2 gene expression, while transcript expression of HNF4alpha, apolipoprotein C2, glycerolkinase, pyruvatekinase and aldolase B was repressed in treated Caco-2 cells. Furthermore, with nuclear extracts of cyclosporine treated cell lines protein expression and DNA binding activity of hepatic nuclear factors was significantly repressed. As cyclosporine inhibits the calcineurin dependent dephosphorylation of nuclear factor of activated T-cells (NFAT) we also searched for binding sites for NFAT in the pancreas specific P2 promoter of HNF4alpha. Notably, we observed repressed NFAT binding to a novel DNA binding site in the P2 promoter of HNF4alpha. Thus, cyclosporine caused inhibition of DNA binding of two important regulators for insulin signaling, i.e. NFAT and HNF4alpha. We further investigated HNF4alpha transcript expression and observed >200-fold differences in abundance in n = 14 patients. Such variability in expression might help to identify individuals at risk for developing PTDM. We propose cyclosporine to repress HNF4alpha gene and protein expression, DNA-binding to targeted promoters and subsequent regulation of genes coding for glucose metabolism and of pancreatic beta-cell function.
PMCID: PMC2646130  PMID: 19252740
16.  A simple and reliable protocol for mouse serum proteome profiling studies by use of two-dimensional electrophoresis and MALDI TOF/TOF mass spectrometry 
Proteome Science  2008;6:25.
Unravelling the serum proteome is the subject of intensified research. In this regard, two-dimensional electrophoresis coupled with MALDI MS analysis is still one of the most commonly used method. Despite some improvements, there is the need for better protocols to enable comprehensive identification of serum proteins.
Here we report a combination of two proteomic strategies, zoom in acidic and neutral part of 2-D gels and an application of two optimised matrix preparations for MALDI-MS analyses to simplify serum proteome mapping.
Mouse serum proteins were separated by 2-D electrophoresis at the pH ranges 3–10 and 4–7, respectively. Then in gel tryptic digests were analysed by MALDI-MS. Notably, sample-matrix preparations consisted of either a thin-layer α-ciano-4-hydroxycinnamic acid (CHCA) matrix deposition or a matrix-layer 2,5-dihydroxybenzoic acid (DHB). This enabled an identification of 90 proteins. The herein reported method enhanced identification of proteins by 32% when compared with previously published studies of mouse serum proteins, using the same approaches. Furthermore, experimental improvements of matrix preparations enabled automatic identification of mouse proteins, even when one of the two matrices failed.
We report a simple and reliable protocol for serum proteome analysis that combines an optimized resolution of 2-D gels spots and improved sample-matrix preparations for MALDI-MS analysis. The protocol allowed automated data acquisition for both CHCA and DHB and simplified the MS data acquisition therefore avoiding time-consuming procedures. The simplicity and reliability of the developed protocol may be applied universally.
PMCID: PMC2563006  PMID: 18789141
17.  Topoisomerase II inhibition involves characteristic chromosomal expression patterns 
BMC Genomics  2008;9:324.
The phenomenon of co-localization of transcriptionally upregulated genes showing similar expression levels is known across all eukaryotic genomes. We recently mapped the Aroclor 1254-regulated transcriptome back onto the genome and provided evidence for the statistically significant co-localization of regulated genes. They did, however, not always show similar expression levels, and many of the regulated genes were, in fact, repressed.
In this study, we were able to reproduce this observation with microarray data stemming from 1) human hepatocytes treated with the gyrase and potential topoisomerase II inhibitor trovafloxacin, 2) human hepatocytes treated with the topoisomerase II inhibitor doxorubicin and 3) mouse lymphoma cells treated with the topoisomerase II inhibitor etoposide. We found statistically significant co-localization of regulated gene pairs – induced and repressed – within the window size of 0–100 kbp. Notably, by using microarray data stemming from lung tissue of a mouse transgenic line overexpressing the transcription factor c-myc, which served as a negative control, we found regulated genes to be located with regard to each other nearly in the same way as genes distributed randomly all over the genome (0–100 kbp).
We suggest topoisomerase II inhibition by Aroclor 1254, trovafloxacin, doxorubicin, and etoposide to be responsible for significant co-localization of regulated genes through the inability of the stabilized enzyme complexes to religate DNA. Within the permanently opened chromatin domains, neighbored genes might be allowed to be regulated. Overexpression of c-myc, however, does not inhibit topoisomerase II activity. Consequently, the enzyme is able to perform its normal function of transiently breaking and rejoining the DNA double strand. As a result, exclusively target genes are regulated.
PMCID: PMC2488358  PMID: 18611269
18.  Transcription profiling of lung adenocarcinomas of c-myc-transgenic mice: Identification of the c-myc regulatory gene network 
BMC Systems Biology  2008;2:46.
The transcriptional regulator c-Myc is the most frequently deregulated oncogene in human tumors. Targeted overexpression of this gene in mice results in distinct types of lung adenocarcinomas. By using microarray technology, alterations in the expression of genes were captured based on a female transgenic mouse model in which, indeed, c-Myc overexpression in alveolar epithelium results in the development of bronchiolo-alveolar carcinoma (BAC) and papillary adenocarcinoma (PLAC). In this study, we analyzed exclusively the promoters of induced genes by different in silico methods in order to elucidate the c-Myc transcriptional regulatory network.
We analyzed the promoters of 361 transcriptionally induced genes with respect to c-Myc binding sites and found 110 putative binding sites in 94 promoters. Furthermore, we analyzed the flanking sequences (+/- 100 bp) around the 110 c-Myc binding sites and found Ap2, Zf5, Zic3, and E2f binding sites to be overrepresented in these regions. Then, we analyzed the promoters of 361 induced genes with respect to binding sites of other transcription factors (TFs) which were upregulated by c-Myc overexpression. We identified at least one binding site of at least one of these TFs in 220 promoters, thus elucidating a potential transcription factor network. The analysis correlated well with the significant overexpression of the TFs Atf2, Foxf1a, Smad4, Sox4, Sp3 and Stat5a. Finally, we analyzed promoters of regulated genes which where apparently not regulated by c-Myc or other c-Myc targeted TFs and identified overrepresented Oct1, Mzf1, Ppargamma, Plzf, Ets, and HmgIY binding sites when compared against control promoter background.
Our in silico data suggest a model of a transcriptional regulatory network in which different TFs act in concert upon c-Myc overexpression. We determined molecular rules for transcriptional regulation to explain, in part, the carcinogenic effect seen in mice overexpressing the c-Myc oncogene.
PMCID: PMC2430022  PMID: 18498649
19.  Genome wide prediction of HNF4α functional binding sites by the use of local and global sequence context 
Genome Biology  2008;9(2):R36.
An application of machine learning algorithms enables prediction of the functional context of transcription factor binding sites in the human genome.
We report an application of machine learning algorithms that enables prediction of the functional context of transcription factor binding sites in the human genome. We demonstrate that our method allowed de novo identification of hepatic nuclear factor (HNF)4α binding sites and significantly improved an overall recognition of faithful HNF4α targets. When applied to published findings, an unprecedented high number of false positives were identified. The technique can be applied to any transcription factor.
PMCID: PMC2374721  PMID: 18291023
20.  Expression of Xenobiotic Metabolizing Enzymes in Different Lung Compartments of Smokers and Nonsmokers 
Environmental Health Perspectives  2006;114(11):1655-1661.
Cytochrome P450 monooxygenases (CYP) play an important role in the defense against inhaled toxicants, and expression of CYP enzymes may differ among various lung cells and tissue compartments.
We studied the effects of tobacco smoke in volunteers and investigated gene expression of 19 CYPs and 3 flavin-containing monooxygenases, as well as isoforms of gluthathione S-transferases (GST) and uridine diphosphate glucuronosyltransferases (UGT) and the microsomal epoxide hydrolase (EPHX1) in bronchoalveolar lavage cells and bronchial biopsies derived from smokers (n = 8) and nonsmokers (n = 10). We also investigated gene expression of nuclear transcription factors known to be involved in the regulation of xenobiotic metabolism enzymes.
Gene expression of CYP1A1, CYP1B1, CYP2S1, GSTP1, and EPHX1 was induced in bronchoalveolar lavage cells of smokers, whereas expression of CYP2B6/7, CYP3A5, and UGT2A1 was repressed. In bronchial biopsies of smokers, CYP1A1, CYP1B1, CYP2C9, GSTP1, and GSTA2 were induced, but CYP2J2 and EPHX1 were repressed. Induction of CYP1A1 and CYP1B1 transcript abundance resulted in increased activity of the coded enzyme. Finally, expression of the liver X receptor and the glucocorticoid receptor was significantly up-regulated in bronchoalveolar lavage cells of smokers.
We found gene expression of pulmonary xenobiotic metabolizing enzymes and certain key transcription factors to be regulated in bronchoalveolar lavage cells and bronchial biopsies of smokers. The observed changes demonstrate tissue specificity in xenobiotic metabolism, with likely implications for the metabolic activation of procarcinogens to ultimate carcinogens of tobacco smoke.
PMCID: PMC1665420  PMID: 17107849
cytochrome P450 monooxygenases; metabolism; smoking; transcription factors; xenobiotic metabolizing enzymes
21.  Transcriptome profiling of human hepatocytes treated with Aroclor 1254 reveals transcription factor regulatory networks and clusters of regulated genes 
BMC Genomics  2006;7:217.
Aroclor 1254 is a well-known hepatotoxin and consists of a complex mixture of polychlorinated biphenyls (PCBs), some of which have the ability to activate the aryl hydrocarbon receptor (AhR) and other transcription factors (TFs). Altered transcription factor expression enables activation of promoters of many genes, thereby inducing a regulatory gene network. In the past, computational approaches were not applied to understand the combinatorial interplay of TFs acting in concert after treatment of human hepatocyte cultures with Aroclor 1254. We were particularly interested in interrogating promoters for transcription factor binding sites of regulated genes.
Here, we present a framework for studying a gene regulatory network and the large-scale regulation of transcription on the level of chromatin structure. For that purpose, we employed cDNA and oligomicroarrays to investigate transcript signatures in human hepatocyte cultures treated with Aroclor 1254 and found 910 genes to be regulated, 52 of which code for TFs and 47 of which are involved in cell cycle and apoptosis. We identified regulatory elements proximal to AhR binding sites, and this included recognition sites for the transcription factors ETS, SP1, CREB, EGR, NF-kB, NKXH, and ZBP. Notably, ECAT and TBP binding sites were identified for Aroclor 1254-induced and E2F, MAZ, HOX, and WHZ for Aroclor 1254-repressed genes. We further examined the chromosomal distribution of regulated genes and observed a statistically significant high number of gene pairs within a distance of 200 kb. Genes regulated by Aroclor 1254, are much closer located to each other than genes distributed randomly all over the genome. 37 regulated gene pairs are even found to be directly neighbored. Within these directly neighbored gene pairs, not all genes were bona fide targets for AhR (primary effect). Upon further analyses many were targets for other transcription factors whose expression was regulated by Aroclor 1254 (secondary effect).
We observed coordinate events in transcript regulation upon treatment of human hepatocytes with Aroclor 1254 and identified a regulatory gene network of different TFs acting in concert. We determined molecular rules for transcriptional regulation to explain, in part, the pleiotropic effect seen in animals and humans upon exposure to Aroclor 1254.
PMCID: PMC1590027  PMID: 16934159

Results 1-21 (21)