PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-22 (22)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Unilateral leukonychia and hair depigmentation in multifocal motor neuropathy 
Neurology  2013;81(20):1800-1801.
Neurophysiology studies in a 50-year-old man with slowly progressive weakness of the left upper limb revealed conduction block in the ulnar nerve above the elbow. His weakness remained stable with regular subcutaneous immunoglobulin, but he noted gradual hemibody hair depigmentation. Examination also revealed unilateral left hand leukonychia (figure). MRI of the brain and cervical spine was normal.
doi:10.1212/01.wnl.0000435562.07857.fd
PMCID: PMC3821714  PMID: 24218314
2.  T2-weighted MRI detects presymptomatic pathology in the SOD1 mouse model of ALS 
Neuroinflammation has been identified as a potential therapeutic target in amyotrophic lateral sclerosis (ALS), but relevant biomarkers are needed. The superoxide dismutase (SOD1)G93A transgenic mouse model of ALS offers a unique opportunity to study and potentially manipulate presymptomatic pathology. While T2-weighted magnetic resonance imaging (MRI) has been shown to be sensitive to pathologic changes at symptom onset, no earlier biomarkers were previously identified and the underlying histopathologic correlates remain uncertain. To address these issues, we used a multimodal MRI approach targeting structural (T2, T1, apparent diffusion coefficient (ADC), magnetization transfer ratio (MTR)), vascular (gadolinium diethylene triamine pentaacetic acid), and endothelial (vascular cell adhesion molecule–microparticles of iron oxide) changes, together with histopathologic analysis from presymptomatic to symptomatic stages of disease. Presymptomatic changes in brainstem nuclei were evident on T2-weighted images from as early as 60 days (P<0.05). Histologic indices of vacuolation, astro- and microglial activation all correlated with T2-weighted changes. Significant reductions in ADC (P<0.01) and MTR (P<0.05) were found at 120 days in the same brainstem nuclei. No changes in T1 relaxation, vascular permeability, or endothelial activation were found at any stage of disease. These findings suggest that T2-weighted MRI offers the strongest biomarker potential in this model, and that MRI has unique potential for noninvasive and longitudinal assessment of presymptomatically applied therapeutic and neuroprotective agents.
doi:10.1038/jcbfm.2014.19
PMCID: PMC4013759  PMID: 24496176
amyotrophic lateral sclerosis; apparent diffusion coefficient; blood–brain barrier; biomarker; magnetic resonance imaging; magnetization transfer ratio
3.  Autoimmune disease preceding amyotrophic lateral sclerosis 
Neurology  2013;81(14):1222-1225.
Objective:
To study whether the risk of amyotrophic lateral sclerosis (ALS) is increased in people with prior autoimmune disease.
Methods:
An all-England hospital record-linkage dataset spanning 1999–2011 was used. Cohorts were constructed of people with each of a range of autoimmune diseases; the incidence of ALS in each disease cohort was compared with the incidence of ALS in a cohort of individuals without prior admission for the autoimmune disease.
Results:
There were significantly more cases than expected of ALS associated with a prior diagnosis of asthma, celiac disease, younger-onset diabetes (younger than 30 years), multiple sclerosis, myasthenia gravis, myxedema, polymyositis, Sjögren syndrome, systemic lupus erythematosus, and ulcerative colitis.
Conclusions:
Autoimmune disease associations with ALS raise the possibility of shared genetic or environmental risk factors.
doi:10.1212/WNL.0b013e3182a6cc13
PMCID: PMC3795611  PMID: 23946298
4.  Progressive hemiparesis (Mills syndrome) with aphasia in amyotrophic lateral sclerosis 
Neurology  2014;82(5):457-458.
The onset of motor symptoms in amyotrophic lateral sclerosis (ALS) is strikingly focal. In three-quarters of cases, weakness emerges unilaterally in one limb, typically spreading contiguously over months to become bilateral.1 An extremely rare clinical syndrome of upper motor neuron–predominant, progressive hemiparesis was first described by American neurologist Charles Karsner Mills (1845–1930).2 More typical ALS shares a common histopathologic signature with frontotemporal dementia (FTD), consisting of ubiquitinated neuronal and glial inclusions containing the DNA and RNA binding protein, TDP-43. Cognitive impairment may be detected in at least one-third of ALS cases and involves mainly deficits in language, executive function, and fluency, with variable levels of behavioral impairments that all have overlap with the purer FTD syndromes. Frank FTD is seen in up to 15% of patients with ALS, in whom it typically occurs before or soon after the development of motor symptoms, and is associated with a more rapid disease progression.3
doi:10.1212/WNL.0000000000000090
PMCID: PMC3917681  PMID: 24363135
5.  Multiple Kernel Learning Captures a Systems-Level Functional Connectivity Biomarker Signature in Amyotrophic Lateral Sclerosis 
PLoS ONE  2013;8(12):e85190.
There is significant clinical and prognostic heterogeneity in the neurodegenerative disorder amyotrophic lateral sclerosis (ALS), despite a common immunohistological signature. Consistent extra-motor as well as motor cerebral, spinal anterior horn and distal neuromuscular junction pathology supports the notion of ALS a system failure. Establishing a disease biomarker is a priority but a simplistic, coordinate-based approach to brain dysfunction using MRI is not tenable. Resting-state functional MRI reflects the organization of brain networks at the systems-level, and so changes in of motor functional connectivity were explored to determine their potential as the substrate for a biomarker signature. Intra- as well as inter-motor functional networks in the 0.03–0.06 Hz frequency band were derived from 40 patients and 30 healthy controls of similar age, and used as features for pattern detection, employing multiple kernel learning. This approach enabled an accurate classification of a group of patients that included a range of clinical sub-types. An average of 13 regions-of-interest were needed to reach peak discrimination. Subsequent analysis revealed that the alterations in motor functional connectivity were widespread, including regions not obviously clinically affected such as the cerebellum and basal ganglia. Complex network analysis showed that functional networks in ALS differ markedly in their topology, reflecting the underlying altered functional connectivity pattern seen in patients: 1) reduced connectivity of both the cortical and sub-cortical motor areas with non motor areas 2)reduced subcortical-cortical motor connectivity and 3) increased connectivity observed within sub-cortical motor networks. This type of analysis has potential to non-invasively define a biomarker signature at the systems-level. As the understanding of neurodegenerative disorders moves towards studying pre-symptomatic changes, there is potential for this type of approach to generate biomarkers for the testing of neuroprotective strategies.
doi:10.1371/journal.pone.0085190
PMCID: PMC3877396  PMID: 24391997
6.  An Eye-Tracking Version of the Trail-Making Test 
PLoS ONE  2013;8(12):e84061.
The neurodegenerative disorder amyotrophic lateral sclerosis may render patients unable to speak or write, so that objective assessment of cognitive impairment, which is commonly of a dysexecutive nature, is challenging. There is therefore a need to develop other methods of assessment that utilize other relatively unaffected motor systems. In this proof-of-principle study a novel eye-tracking version of the trail-making test was compared with performance on the standard written version in a group of healthy volunteers. There was good correlation for speed between both versions of Part B (R2=0.73), suggesting that this is a viable method to objectively assess cognitive impairment in disorders where patients are unable to speak or write.
doi:10.1371/journal.pone.0084061
PMCID: PMC3867477  PMID: 24367626
7.  Whole-brain magnetic resonance spectroscopic imaging measures are related to disability in ALS 
Neurology  2013;80(7):610-615.
Objective:
To demonstrate the sensitivity of a recently developed whole-brain magnetic resonance spectroscopic imaging (MRSI) sequence to cerebral pathology and disability in amyotrophic lateral sclerosis (ALS), and compare with measures derived from diffusion tensor imaging.
Methods:
Whole-brain MRSI and diffusion tensor imaging were undertaken in 13 patients and 14 age-similar healthy controls. Mean N-acetylaspartate (NAA), fractional anisotropy, and mean diffusivity were extracted from the corticospinal tract, compared between groups, and then in relation to disability in the patient group.
Results:
Significant reductions in NAA were found along the course of the corticospinal tracts on whole-brain MRSI. There were also significant changes in fractional anisotropy (decreased) and mean diffusivity (increased) in the patient group, but only NAA showed a significant relationship with disability (r = 0.65, p = 0.01).
Conclusion:
Whole-brain MRSI has potential as a quantifiable neuroimaging marker of disability in ALS. It offers renewed hope for a neuroimaging outcome measure with the potential for harmonization across multiple sites in the context of a therapeutic trial.
doi:10.1212/WNL.0b013e318281ccec
PMCID: PMC3590062  PMID: 23325907
8.  Teaching Video NeuroImages: Acute Adie syndrome 
Neurology  2012;79(11):e97.
doi:10.1212/WNL.0b013e3182698cc5
PMCID: PMC3525299  PMID: 22965679
9.  A proposed staging system for amyotrophic lateral sclerosis 
Brain  2012;135(3):847-852.
Amyotrophic lateral sclerosis is a neurodegenerative disorder characterized by progressive loss of upper and lower motor neurons, with a median survival of 2–3 years. Although various phenotypic and research diagnostic classification systems exist and several prognostic models have been generated, there is no staging system. Staging criteria for amyotrophic lateral sclerosis would help to provide a universal and objective measure of disease progression with benefits for patient care, resource allocation, research classifications and clinical trial design. We therefore sought to define easily identified clinical milestones that could be shown to occur at specific points in the disease course, reflect disease progression and impact prognosis and treatment. A tertiary referral centre clinical database was analysed, consisting of 1471 patients with amyotrophic lateral sclerosis seen between 1993 and 2007. Milestones were defined as symptom onset (functional involvement by weakness, wasting, spasticity, dysarthria or dysphagia of one central nervous system region defined as bulbar, upper limb, lower limb or diaphragmatic), diagnosis, functional involvement of a second region, functional involvement of a third region, needing gastrostomy and non-invasive ventilation. Milestone timings were standardized as proportions of time elapsed through the disease course using information from patients who had died by dividing time to a milestone by disease duration. Milestones occurred at predictable proportions of the disease course. Diagnosis occurred at 35% through the disease course, involvement of a second region at 38%, a third region at 61%, need for gastrostomy at 77% and need for non-invasive ventilation at 80%. We therefore propose a simple staging system for amyotrophic lateral sclerosis. Stage 1: symptom onset (involvement of first region); Stage 2A: diagnosis; Stage 2B: involvement of second region; Stage 3: involvement of third region; Stage 4A: need for gastrostomy; and Stage 4B: need for non-invasive ventilation. Validation of this staging system will require further studies in other populations, in population registers and in other clinic databases. The standardized times to milestones may well vary between different studies and populations, although the stages themselves and their meanings are likely to remain unchanged.
doi:10.1093/brain/awr351
PMCID: PMC3286327  PMID: 22271664
amyotrophic lateral sclerosis; staging; motor neuron disease; natural history; El Escorial criteria
10.  The internet for self-diagnosis and prognostication in ALS 
Persons with ALS, and those close to them, may use the internet to explore symptoms prior to formal diagnosis, and as a source of information about prognosis and treatment thereafter. We used an internet search engine to rank the sensitivity of a variety of symptom search terms a patient might use for the diagnosis of ALS/MND. We also studied search engine responses to questions about life expectancy and possible ‘cure’. An internet search engine in relation to ALS currently lacks sensitivity, and results varied greatly with only minor differences in the search terms used. The prognostic information did not reflect the inherent heterogeneity. Results in relation to ‘cure’ were misleading and may promulgate false hopes. There is a need to guide those with ALS (and particularly their children) to sources of reliable web-based information in addition to open discussion.
doi:10.3109/17482968.2010.513054
PMCID: PMC3182537  PMID: 20849322
Internet; search engine; Google; online; web
11.  The association between ALS and population density: A population based study 
We aimed to assess whether rural residence is associated with amyotrophic lateral sclerosis in the south-east of England using a population based register. Previous studies in different populations have produced contradictory findings. Residence defined by London borough or non-metropolitan district at time of diagnosis was recorded for each incident case in the South-East England ALS Register between 1995 and 2005. Each of the 26 boroughs or districts of the catchment area of the register was classified according to population density. Age- and sex-adjusted incidence of ALS was calculated for each region and the relationship with population density tested by linear regression, thereby controlling for the underlying population structure. We found that population density in region of residence at diagnosis explained 25% of the variance in ALS rates (r = 0.5, p < 0.01). Thus, in this cohort in the south-east of England, people with ALS were more likely to be resident in areas of high population density at diagnosis.
doi:10.3109/17482961003754552
PMCID: PMC3205411  PMID: 20429684
Amyotrophic lateral sclerosis; epidemiology; population density
12.  Public awareness of motor neuron disease 
A concerning lack of awareness of the symptoms and natural history of motor neuron disease was found in a street-based survey of 118 members of the general public.
doi:10.3109/17482961003716858
PMCID: PMC3182549  PMID: 20672874
13.  MRI as a frontrunner in the search for amyotrophic lateral sclerosis biomarkers? 
Biomarkers in medicine  2011;5(1):79-81.
doi:10.2217/bmm.10.120
PMCID: PMC3182543  PMID: 21319968
amyotrophic lateral sclerosis; biomarker; motor neuron disease; MRI; neuroimaging
14.  Reduction of elevated IGF-1 levels in coincident amyotrophic lateral sclerosis and acromegaly 
We report a patient presenting with ALS in whom acromegaly was later confirmed. Insulin-like growth factor-1 (IGF-1) has been tried in the treatment of ALS and despite equivocal results from clinical trials, efforts have continued to try to harness the significant positive effects on motor neuron growth observed in vitro and in survival of mouse models of the disease. One subsequent study has reported an association between higher circulating serum IGF-1 levels and longer disease duration in ALS patients. Concern therefore arose in our case that treatment of the acromegaly with a somatostatin analogue might adversely affect the natural course of his ALS through lowering of potentially beneficial IGF-1 levels. Through clinical observation and prognostic modelling we suggest that this concern was unfounded. The potential interaction of these two rarely coincident disorders in our patient is discussed.
doi:10.3109/17482960902870985
PMCID: PMC3182544  PMID: 19634028
Survival; prognostic; epidemiology
15.  Lockhart Clarke’s contribution to the description of amyotrophic lateral sclerosis 
Brain : a journal of neurology  2010;133(11):3470-3479.
The definition of the clinicopathological entity of amyotrophic lateral sclerosis evolved over half a century. Although the definitive term amyotrophic lateral sclerosis that acknowledged both upper and lower motor neuron involvement was attributed to Jean-Martin Charcot in 1874, his initial case was published nearly a decade earlier; and it is accepted that, from at least the 1830s, several others (including Charles Bell, François-Amilcar Aran and Jean Cruveilhier) had already recognized a progressive lower motor neuron-only syndrome within a broader, clinically-defined group of disorders, termed progressive muscular atrophy. Although William Gowers first grouped the three phenotypes of amyotrophic lateral sclerosis, progressive muscular atrophy and progressive bulbar palsy together as part of the same syndrome, the term motor neuron disease, as an over-arching label, was not suggested until nearly a century later by W. Russell Brain. Augustus Jacob Lockhart Clarke (1817–80) is best known for his descriptions of spinal cord anatomy. However, in two detailed case reports from the 1860s, he carried out rigorous post-mortem neuropathological studies of what appear to be classical cases of amyotrophic lateral sclerosis. Furthermore, he recognized the additional involvement of the corticospinal tracts that distinguished this from progressive muscular atrophy. Several aspects of the exquisite clinical histories documented as part of both studies, one by Charles Bland Radcliffe, resonate with contemporary debates concerning the evolution of disease in amyotrophic lateral sclerosis. These ‘past masters’ still have much to teach us.
doi:10.1093/brain/awq097
PMCID: PMC3182545  PMID: 20576696
amyotrophic lateral sclerosis; motor neuron disease; Lockhart Clarke; Radcliffe; Charcot
16.  Pattern of spread and prognosis in lower limb-onset ALS 
Our objective was to establish the pattern of spread in lower limb-onset ALS (contra- versus ipsi-lateral) and its contribution to prognosis within a multivariate model. Pattern of spread was established in 109 sporadic ALS patients with lower limb-onset, prospectively recorded in Oxford and Sheffield tertiary clinics from 2001 to 2008. Survival analysis was by univariate Kaplan-Meier log-rank and multivariate Cox proportional hazards. Variables studied were time to next limb progression, site of next progression, age at symptom onset, gender, diagnostic latency and use of riluzole. Initial progression was either to the contralateral leg (76%) or ipsilateral arm (24%). Factors independently affecting survival were time to next limb progression, age at symptom onset, and diagnostic latency. Time to progression as a prognostic factor was independent of initial direction of spread. In a regression analysis of the deceased, overall survival from symptom onset approximated to two years plus the time interval for initial spread. In conclusion, rate of progression in lower limb-onset ALS is not influenced by whether initial spread is to the contralateral limb or ipsilateral arm. The time interval to this initial spread is a powerful factor in predicting overall survival, and could be used to facilitate decision-making and effective care planning.
doi:10.3109/17482960903420140
PMCID: PMC3182546  PMID: 20001488
Epidemiology; prognostic; survival
18.  Diffusion imaging of whole, post-mortem human brains on a clinical MRI scanner 
Neuroimage  2011;57(1-4):167-181.
Diffusion imaging of post mortem brains has great potential both as a reference for brain specimens that undergo sectioning, and as a link between in vivo diffusion studies and “gold standard” histology/dissection. While there is a relatively mature literature on post mortem diffusion imaging of animals, human brains have proven more challenging due to their incompatibility with high-performance scanners. This study presents a method for post mortem diffusion imaging of whole, human brains using a clinical 3-Tesla scanner with a 3D segmented EPI spin-echo sequence. Results in eleven brains at 0.94 × 0.94 × 0.94 mm resolution are presented, and in a single brain at 0.73 × 0.73 × 0.73 mm resolution. Region-of-interest analysis of diffusion tensor parameters indicate that these properties are altered compared to in vivo (reduced diffusivity and anisotropy), with significant dependence on post mortem interval (time from death to fixation). Despite these alterations, diffusion tractography of several major tracts is successfully demonstrated at both resolutions. We also report novel findings of cortical anisotropy and partial volume effects.
Research highlights
► Acquisition and processing protocols for diffusion MRI of post-mortem human brains. ► Effect of post-mortem and scan intervals on diffusion indices. ► Tractography in post-mortem human brains. ► Radial diffusion anisotropy in cortical gray matter.
doi:10.1016/j.neuroimage.2011.03.070
PMCID: PMC3115068  PMID: 21473920
Diffusion tensor imaging; Tractography; Post mortem; Human; Brain
19.  Advances in the application of MRI to amyotrophic lateral sclerosis 
Importance of the field
With the emergence of therapeutic candidates for the incurable and rapidly progressive neurodegenerative condition of amyotrophic lateral sclerosis (ALS), it will be essential to develop easily obtainable biomarkers for diagnosis, as well as monitoring, in a disease where clinical examination remains the predominant diagnostic tool. Magnetic resonance imaging (MRI) has greatly developed over the past thirty years since its initial introduction to neuroscience. With multi-modal applications, MRI is now offering exciting opportunities to develop practical biomarkers in ALS.
Areas covered in this review
The historical application of MRI to the field of ALS, its state-of-the-art and future aspirations will be reviewed. Specifically, the significance and limitations of structural MRI to detect gross morphological tissue changes in relation to clinical presentation will be discussed. The more recent application of diffusion tensor imaging (DTI), magnetic resonance spectroscopy (MRS), functional and resting-state MRI (fMRI & R-fMRI) will be contrasted in relation to these more conventional MRI assessments. Finally, future aspirations will be sketched out in providing a more disease mechanism-based molecular MRI.
What the reader will gain
This review will equip the reader with an overview of the application of MRI to ALS and illustrate its potential to develop biomarkers. This discussion is exemplified by key studies, demonstrating the strengths and limitations of each modality. The reader will gain an expert opinion on both the current and future developments of MR imaging in ALS.
Take home message
MR imaging generates potential diagnostic, prognostic and therapeutic monitoring biomarkers of ALS. The emerging fusion of structural, functional and potentially molecular imaging will improve our understanding of wider cerebral connectivity and holds the promise of biomarkers sensitive to the earliest changes.
doi:10.1517/17530059.2010.536836
PMCID: PMC3080036  PMID: 21516259
20.  Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration 
Human Molecular Genetics  2008;18(3):472-481.
Amyotrophic lateral sclerosis (ALS) is a spontaneous, relentlessly progressive motor neuron disease, usually resulting in death from respiratory failure within 3 years. Variation in the genes SOD1 and TARDBP accounts for a small percentage of cases, and other genes have shown association in both candidate gene and genome-wide studies, but the genetic causes remain largely unknown. We have performed two independent parallel studies, both implicating the RNA polymerase II component, ELP3, in axonal biology and neuronal degeneration. In the first, an association study of 1884 microsatellite markers, allelic variants of ELP3 were associated with ALS in three human populations comprising 1483 people (P = 1.96 × 10−9). In the second, an independent mutagenesis screen in Drosophila for genes important in neuronal communication and survival identified two different loss of function mutations, both in ELP3 (R475K and R456K). Furthermore, knock down of ELP3 protein levels using antisense morpholinos in zebrafish embryos resulted in dose-dependent motor axonal abnormalities [Pearson correlation: −0.49, P = 1.83 × 10−12 (start codon morpholino) and −0.46, P = 4.05 × 10−9 (splice-site morpholino), and in humans, risk-associated ELP3 genotypes correlated with reduced brain ELP3 expression (P = 0.01). These findings add to the growing body of evidence implicating the RNA processing pathway in neurodegeneration and suggest a critical role for ELP3 in neuron biology and of ELP3 variants in ALS.
doi:10.1093/hmg/ddn375
PMCID: PMC2638803  PMID: 18996918
21.  Mimics and chameleons in motor neurone disease 
Practical Neurology  2013;13(3):153-164.
The progression of motor neurone disease (MND) is currently irreversible, and the grave implications of diagnosis naturally fuels concern among neurologists over missing a potential mimic disorder. There is no diagnostic test for MND but in reality there are few plausible mimics in routine clinical practice. In the presence of a progressive pure motor disorder, signs such as florid fasciculations, bilateral tongue wasting, the ‘split hand’, head drop, emotionality, and cognitive or behavioural impairment carry high positive predictive value. MND is clinically heterogeneous, however, with some important chameleon-like presentations and considerable variation in clinical course. Lack of confidence about the scope of such variation, or an approach to diagnosis emphasising investigations over clinical common sense, has the potential to exacerbate diagnostic delay in MND and impede timely planning of the care which is essential to maximising quality of life.
doi:10.1136/practneurol-2013-000557
PMCID: PMC3664389  PMID: 23616620
MOTOR NEURON DISEASE
22.  Myelin imaging in amyotrophic and primary lateral sclerosis 
Primary lateral sclerosis (PLS) has been regarded as a rare, extreme form of amyotrophic lateral sclerosis (ALS). Like ALS, it is a clinical diagnosis without established biomarkers. We sought to explore loss of cerebral myelin in relation to clinical features, including cognitive impairment, in cases of both ALS and PLS.
A novel MRI sequence (mcDESPOT) sensitive to water pools within myelin and intra- and extra-cellular spaces was applied to 23 ALS patients, seven PLS patients and 12 healthy controls, with interval follow-up in 15 ALS and four PLS patients.
Results demonstrated that PLS patients were distinguished by widespread cerebral myelin water fraction reductions, independent of disease duration and clinical upper motor neuron burden. ALS patients showed a significant increase in intra- and extra-cellular water, indirectly linked to neuroinflammatory activity. Limited measures of cognitive impairment in the ALS group were associated with myelin changes within the anterior corpus callosum and frontal lobe projections. Longitudinal changes were only significant in the PLS group. In conclusion, in this exploratory study, myelin imaging has potential to distinguish PLS from ALS, and may have value as a marker of extramotor involvement. PLS may be a more active cerebral pathological process than its rate of clinical deterioration suggests.
doi:10.3109/21678421.2013.794843
PMCID: PMC3837681  PMID: 23678852
Imaging; biomarker; pathology

Results 1-22 (22)