Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Instrument specific use-dependent plasticity shapes the anatomical properties of the corpus callosum: a comparison between musicians and non-musicians 
Long-term musical expertise has been shown to be associated with a number of functional and structural brain changes, making it an attractive model for investigating use-dependent plasticity in humans. Physiological interhemispheric inhibition (IHI) as examined by transcranial magnetic stimulation has been shown to be correlated with anatomical properties of the corpus callosum as indexed by fractional anisotropy (FA). However, whether or not IHI or the relationship between IHI and FA in the corpus callosum can be modified by different musical training regimes remains largely unknown. We investigated this question in musicians with different requirements for bimanual finger movements (piano and string players) and non-expert controls. IHI values were generally higher in musicians, but differed significantly from non-musicians only in string players. IHI was correlated with FA in the posterior midbody of the corpus callosum across all participants. Interestingly, subsequent analyses revealed that this relationship may indeed be modulated by different musical training regimes. Crucially, while string players had greater IHI than non-musicians and showed a positive structure-function relationship, the amount of IHI in pianists was comparable to that of non-musicians and there was no significant structure-function relationship. Our findings indicate instrument specific use-dependent plasticity in both functional (IHI) and structural (FA) connectivity of motor related brain regions in musicians.
PMCID: PMC4100438  PMID: 25076879
use-dependent plasticity; corpus callosum; musical training; pianists; string players; interhemispheric inhibition; fractional anisotropy; diffusion imaging
2.  Structural correlates of skilled performance on a motor sequence task 
The brain regions functionally engaged in motor sequence performance are well-established, but the structural characteristics of these regions and the fiber pathways involved have been less well studied. In addition, relatively few studies have combined multiple magnetic resonance imaging (MRI) and behavioral performance measures in the same sample. Therefore, the current study used diffusion tensor imaging (DTI), probabilistic tractography, and voxel-based morphometry (VBM) to determine the structural correlates of skilled motor performance. Further, we compared these findings with fMRI results in the same sample. We correlated final performance and rate of improvement measures on a temporal motor sequence task (TMST) with skeletonized fractional anisotropy (FA) and whole brain gray matter (GM) volume. Final synchronization performance was negatively correlated with FA in white matter (WM) underlying bilateral sensorimotor cortex—an effect that was mediated by a positive correlation with radial diffusivity. Multi-fiber tractography indicated that this region contained crossing fibers from the corticospinal tract (CST) and superior longitudinal fasciculus (SLF). The identified SLF pathway linked parietal and auditory cortical regions that have been shown to be functionally engaged in this task. Thus, we hypothesize that enhanced synchronization performance on this task may be related to greater fiber integrity of the SLF. Rate of improvement on synchronization was positively correlated with GM volume in cerebellar lobules HVI and V—regions that showed training-related decreases in activity in the same sample. Taken together, our results link individual differences in brain structure and function to motor sequence performance on the same task. Further, our study illustrates the utility of using multiple MR measures and analysis techniques to specify the interpretation of structural findings.
PMCID: PMC3486688  PMID: 23125826
superior longitudinal fasciculus; individual differences; motor sequence performance; fractional anisotropy; diffusion tensor imaging; gray matter volume
3.  Quantification of Protoporphyrin IX Accumulation in Glioblastoma Cells: A New Technique 
ISRN Surgery  2014;2014:405360.
Introduction. 5-Aminolevulinic Acid (5-ALA) is a precursor of heme synthesis. A metabolite, protoporphyrin IX (PpIX), selectively accumulates in neoplastic tissue including glioblastoma. Presurgical administration of 5-ALA forms the basis of fluorescence-guided resection (FGR) of glioblastoma (GBM) tumors. However, not all gliomas accumulate sufficient quantities of PpIX to fluoresce, thus limiting the utility of FGR. We therefore developed an assay to determine cellular and pharmacological factors that impact PpIX fluorescence in GBM. This assay takes advantage of a GBM cell line engineered to express yellow fluorescent protein. Methods. The human GBM cell line U87MG was transfected with a YFP expression vector. After treatment with a series of 5-ALA doses, both PpIX and YFP fluorescence were measured. The ratio of PpIX to YFP fluorescence was calculated. Results. YFP fluorescence permitted the quantification of cell numbers and did not interfere with 5-ALA metabolism. The PpIX/YFP fluorescence ratio provided accurate relative PpIX levels, allowing for the assessment of PpIX accumulation in tissue. Conclusion. Constitutive YFP expression strongly correlates with cell number and permits PpIX quantification. Absolute PpIX fluorescence alone does not provide information regarding PpIX accumulation within the cells. Our research indicates that our PpIX/YFP ratio assay may be a promising model for in vitro 5-ALA testing and its interactions with other compounds during FGR surgery.
PMCID: PMC3960765  PMID: 24729904

Results 1-3 (3)