Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Contrasting Roles for Orbitofrontal Cortex and Amygdala in Credit Assignment and Learning in Macaques 
Neuron  2015;87(5):1106-1118.
Recent studies have challenged the view that orbitofrontal cortex (OFC) and amygdala mediate flexible reward-guided behavior. We trained macaques to perform an object discrimination reversal task during fMRI sessions and identified a lateral OFC (lOFC) region in which activity predicted adaptive win-stay/lose-shift behavior. Amygdala and lOFC activity was more strongly coupled on lose-shift trials. However, lOFC-amygdala coupling was also modulated by the relevance of reward information in a manner consistent with a role in establishing how credit for reward should be assigned. Day-to-day fluctuations in signals and signal coupling were correlated with day-to-day fluctuation in performance. A second experiment confirmed the existence of signals for adaptive stay/shift behavior in lOFC and reflecting irrelevant reward in the amygdala in a probabilistic learning task. Our data demonstrate that OFC and amygdala each make unique contributions to flexible behavior and credit assignment.
•Orbitofrontal cortex determines future behavior on the basis of reward feedback•Variation in orbitofrontal cortex activity is correlated with variation in learning•Amygdala carries information about irrelevant reward•Amygdala-orbitofrontal interactions emphasize relevant not irrelevant reward
Chau et al. identify a posterior lateral OFC (lOFC) region in which activity predicts adaptive win-stay/lose-shift behavior. Amygdala activity predicts only lose-shift behavior but carries information about irrelevant rewards. lOFC-amygdala connectivity is modulated dynamically by the relevance of reward information.
PMCID: PMC4562909  PMID: 26335649
2.  A Neural Circuit Covarying with Social Hierarchy in Macaques 
PLoS Biology  2014;12(9):e1001940.
A neural circuit that covaries with social hierarchy A neuroimaging study reveals that individual variation in brain circuits in structures below the cerebral cortex of macaques is associated with experience at different ends of the social hierarchy.
Despite widespread interest in social dominance, little is known of its neural correlates in primates. We hypothesized that social status in primates might be related to individual variation in subcortical brain regions implicated in other aspects of social and emotional behavior in other mammals. To examine this possibility we used magnetic resonance imaging (MRI), which affords the taking of quantitative measurements noninvasively, both of brain structure and of brain function, across many regions simultaneously. We carried out a series of tests of structural and functional MRI (fMRI) data in 25 group-living macaques. First, a deformation-based morphometric (DBM) approach was used to show that gray matter in the amygdala, brainstem in the vicinity of the raphe nucleus, and reticular formation, hypothalamus, and septum/striatum of the left hemisphere was correlated with social status. Second, similar correlations were found in the same areas in the other hemisphere. Third, similar correlations were found in a second data set acquired several months later from a subset of the same animals. Fourth, the strength of coupling between fMRI-measured activity in the same areas was correlated with social status. The network of subcortical areas, however, had no relationship with the sizes of individuals' social networks, suggesting the areas had a simple and direct relationship with social status. By contrast a second circuit in cortex, comprising the midsuperior temporal sulcus and anterior and dorsal prefrontal cortex, covaried with both individuals' social statuses and the social network sizes they experienced. This cortical circuit may be linked to the social cognitive processes that are taxed by life in more complex social networks and that must also be used if an animal is to achieve a high social status.
Author Summary
Social status is an important feature of group life in many primates. Position in the dominance hierarchy influences access to food and mates and is correlated with both general and mental health. Discovering how the brain is organized with respect to individual social status is an important first step for understanding the neural mechanisms that might drive social status and mediate its consequences. We performed a neuroimaging study in non-human primates and our findings suggest that brain organization reflects at least two aspects of dominance. First, we identified neural circuits in brain regions that appear to have a relatively simple and direct relationship with social status—one circuit in which gray matter volume tended to be greater in socially dominant individuals and another in which gray matter volume was greater in those with a more subordinate social position. We also showed that the degree of connectivity within each circuit was associated with experiences at each end of the social hierarchy. Second, given that social status in male macaques depends not only on successful engagement in agonistic behavior but also on success in forming social bonds that promote coalitions, we explored regions where gray matter relates to both social status and social network size. This second neural circuit may mediate the way in which dominance is dependent on social bond formation, which is in turn dependent on social cognition.
PMCID: PMC4151964  PMID: 25180883
3.  The Organization of Dorsal Frontal Cortex in Humans and Macaques 
The Journal of Neuroscience  2013;33(30):12255-12274.
The human dorsal frontal cortex has been associated with the most sophisticated aspects of cognition, including those that are thought to be especially refined in humans. Here we used diffusion-weighted magnetic resonance imaging (DW-MRI) and functional MRI (fMRI) in humans and macaques to infer and compare the organization of dorsal frontal cortex in the two species. Using DW-MRI tractography-based parcellation, we identified 10 dorsal frontal regions lying between the human inferior frontal sulcus and cingulate cortex. Patterns of functional coupling between each area and the rest of the brain were then estimated with fMRI and compared with functional coupling patterns in macaques. Areas in human medial frontal cortex, including areas associated with high-level social cognitive processes such as theory of mind, showed a surprising degree of similarity in their functional coupling patterns with the frontal pole, medial prefrontal, and dorsal prefrontal convexity in the macaque. We failed to find evidence for “new” regions in human medial frontal cortex. On the lateral surface, comparison of functional coupling patterns suggested correspondences in anatomical organization distinct from those that are widely assumed. A human region sometimes referred to as lateral frontal pole more closely resembled area 46, rather than the frontal pole, of the macaque. Overall the pattern of results suggest important similarities in frontal cortex organization in humans and other primates, even in the case of regions thought to carry out uniquely human functions. The patterns of interspecies correspondences are not, however, always those that are widely assumed.
PMCID: PMC3744647  PMID: 23884933
4.  On the relationship between the “default mode network” and the “social brain” 
The default mode network (DMN) of the brain consists of areas that are typically more active during rest than during active task performance. Recently however, this network has been shown to be activated by certain types of tasks. Social cognition, particularly higher-order tasks such as attributing mental states to others, has been suggested to activate a network of areas at least partly overlapping with the DMN. Here, we explore this claim, drawing on evidence from meta-analyses of functional MRI data and recent studies investigating the structural and functional connectivity of the social brain. In addition, we discuss recent evidence for the existence of a DMN in non-human primates. We conclude by discussing some of the implications of these observations.
PMCID: PMC3380415  PMID: 22737119
default mode network; mentalizing; social cognition; fMRI; theory of mind; TPJ; posterior cingulate; medial frontal cortex
Despite the prominence of parietal activity in human neuromaging investigations of sensorimotor and cognitive processes there remains uncertainty about basic aspects of parietal cortical anatomical organization. Descriptions of human parietal cortex draw heavily on anatomical schemes developed in other primate species but the validity of such comparisons has been questioned by claims that there are fundamental differences between the parietal cortex in humans and other primates. A scheme is presented for parcellation of human lateral parietal cortex into component regions on the basis of anatomical connectivity and the functional interactions of the resulting clusters with other brain regions. Anatomical connectivity was estimated using diffusion-weighted magnetic resonance image (MRI) based tractography and functional interactions were assessed by correlations in activity measured with functional MRI (fMRI) at rest. Resting state functional connectivity was also assessed directly in the rhesus macaque lateral parietal cortex in an additional experiment and the patterns found reflected known neuroanatomical connections. Cross-correlation in the tractography-based connectivity patterns of parietal voxels reliably parcellated human lateral parietal cortex into ten component clusters. The resting state functional connectivity of human superior parietal and intraparietal clusters with frontal and extrastriate cortex suggested correspondences with areas in macaque superior and intraparietal sulcus. Functional connectivity patterns with parahippocampal cortex and premotor cortex again suggested fundamental correspondences between inferior parietal cortex in humans and macaques. In contrast, the human parietal cortex differs in the strength of its interactions between the central inferior parietal lobule region and the anterior prefrontal cortex.
PMCID: PMC3091022  PMID: 21411650

Results 1-5 (5)