Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Disentangling spatial perception and spatial memory in the hippocampus: a univariate and multivariate pattern analysis fMRI study 
Journal of cognitive neuroscience  2012;25(4):10.1162/jocn_a_00301.
Although the role of the hippocampus in spatial cognition is well accepted, it is unclear whether its involvement is restricted to the mnemonic domain or also extends to perception. We used functional magnetic resonance imaging (fMRI) to scan neurologically healthy participants during a scene oddity judgment task that placed no explicit demand on long-term memory. Crucially, a surprise recognition test was administered after scanning so that each trial could be categorized not only according to oddity accuracy but also subsequent memory. Univariate analyses showed significant hippocampal activity in association with correct oddity judgment, whereas greater parahippocampal place area (PPA) activity was observed during incorrect oddity trials, both irrespective of subsequent recognition performance. Consistent with this, multivariate pattern analyses revealed that a linear support vector machine was able to distinguish correct from incorrect oddity trials on the basis of activity in voxels within the hippocampus or PPA. Although no significant regions of activity were identified by univariate analyses in association with memory performance, a classifier was able to predict subsequent memory using voxels in either the hippocampus or PPA. Our findings are consistent with the idea that the hippocampus is important for processes beyond long-term declarative memory and that this structure may also play a role in complex spatial perception.
PMCID: PMC3807938  PMID: 23016766
2.  The hippocampus and visual perception 
In this review, we will discuss the idea that the hippocampus may be involved in both memory and perception, contrary to theories that posit functional and neuroanatomical segregation of these processes. This suggestion is based on a number of recent neuropsychological and functional neuroimaging studies that have demonstrated that the hippocampus is involved in the visual discrimination of complex spatial scene stimuli. We argue that these findings cannot be explained by long-term memory or working memory processing or, in the case of patient findings, dysfunction beyond the medial temporal lobe (MTL). Instead, these studies point toward a role for the hippocampus in higher-order spatial perception. We suggest that the hippocampus processes complex conjunctions of spatial features, and that it may be more appropriate to consider the representations for which this structure is critical, rather than the cognitive processes that it mediates.
PMCID: PMC3328126  PMID: 22529794
hippocampus; perirhinal cortex; medial temporal lobe; memory; perception; amnesia; functional neuroimaging; neuropsychology
3.  It does not look odd to me: Perceptual impairments and eye movements in amnesic patients with medial temporal lobe damage 
Neuropsychologia  2013;51(1):168-180.
Studies of people with memory impairments have shown that a specific set of brain structures in the medial temporal lobe (MTL) is vital for memory function. However, whether these structures have a role outside of memory remains contentious. Recent studies of amnesic patients with damage to two structures within the MTL, the hippocampus and the perirhinal cortex, indicated that these patients also performed poorly on perceptual tasks. More specifically, they performed worse than controls when discriminating between objects, faces and scenes with overlapping features. In order to investigate whether these perceptual deficits are reflected in their viewing strategies, we tested a group of amnesic patients with MTL damage that included the hippocampus and perirhinal cortex on a series of oddity discrimination tasks in which they had to select an odd item from a visual array. Participants' eye movements were monitored throughout the experiment. Results revealed that patients were impaired on tasks that required them to discriminate between items that shared many features, and tasks that required processing items from different viewpoints. An analysis of their eye movements revealed that they exhibited a similar viewing pattern as controls: they fixated more on the target item on trials answered correctly, but not on trials answered incorrectly. In addition, their impaired performance was not explained by an abnormal viewing-strategy that assessed their use of working memory. These results suggest that the perceptual deficits in the MTL patients are not a consequence of abnormal viewing patterns of the objects and scenes, but instead, could involve an inability to bind information gathered from several fixations into a cohesive percept. These data also support the view that MTL structures are important not only for long-term memory, but are also involved in perceptual tasks.
► MTL patients performed worse than controls on perceptual discrimination tasks. ► Eye movement patterns of MTL patients were not different than those of controls. ► Deficits in MTL patients are not a consequence of impaired working memory. ► MTL structures are important not only for declarative memory, but also for perception.
PMCID: PMC3557385  PMID: 23154380
Medial temporal lobe; Amnesia; Perception; Memory; Eye movements; Perirhinal cortex
4.  A Potential Spatial Working Memory Training Task to Improve Both Episodic Memory and Fluid Intelligence 
PLoS ONE  2012;7(11):e50431.
One current challenge in cognitive training is to create a training regime that benefits multiple cognitive domains, including episodic memory, without relying on a large battery of tasks, which can be time-consuming and difficult to learn. By giving careful consideration to the neural correlates underlying episodic and working memory, we devised a computerized working memory training task in which neurologically healthy participants were required to monitor and detect repetitions in two streams of spatial information (spatial location and scene identity) presented simultaneously (i.e. a dual n-back paradigm). Participants’ episodic memory abilities were assessed before and after training using two object and scene recognition memory tasks incorporating memory confidence judgments. Furthermore, to determine the generalizability of the effects of training, we also assessed fluid intelligence using a matrix reasoning task. By examining the difference between pre- and post-training performance (i.e. gain scores), we found that the trainers, compared to non-trainers, exhibited a significant improvement in fluid intelligence after 20 days. Interestingly, pre-training fluid intelligence performance, but not training task improvement, was a significant predictor of post-training fluid intelligence improvement, with lower pre-training fluid intelligence associated with greater post-training gain. Crucially, trainers who improved the most on the training task also showed an improvement in recognition memory as captured by d-prime scores and estimates of recollection and familiarity memory. Training task improvement was a significant predictor of gains in recognition and familiarity memory performance, with greater training improvement leading to more marked gains. In contrast, lower pre-training recollection memory scores, and not training task improvement, led to greater recollection memory performance after training. Our findings demonstrate that practice on a single working memory task can potentially improve aspects of both episodic memory and fluid intelligence, and that an extensive training regime with multiple tasks may not be necessary.
PMCID: PMC3508978  PMID: 23209740
5.  Intact Memory for Irrelevant Information Impairs Perception in Amnesia 
Neuron  2012;75(1):157-167.
Memory and perception have long been considered separate cognitive processes, and amnesia resulting from medial temporal lobe (MTL) damage is thought to reflect damage to a dedicated memory system. Recent work has questioned these views, suggesting that amnesia can result from impoverished perceptual representations in the MTL, causing an increased susceptibility to interference. Using a perceptual matching task for which fMRI implicated a specific MTL structure, the perirhinal cortex, we show that amnesics with MTL damage including the perirhinal cortex, but not those with damage limited to the hippocampus, were vulnerable to object-based perceptual interference. Importantly, when we controlled such interference, their performance recovered to normal levels. These findings challenge prevailing conceptions of amnesia, suggesting that effects of damage to specific MTL regions are better understood not in terms of damage to a dedicated declarative memory system, but in terms of impoverished representations of the stimuli those regions maintain.
► Perception can be impaired in amnesia resulting from perirhinal cortex (PRC) damage ► Reducing object perceptual interference can rescue PRC-damaged amnesics' performance ► Memory loss after PRC damage can reflect heightened susceptibility to interference ► Impoverished object representations may contribute to amnesia
Barense and colleagues demonstrate that perceptual deficits in amnesic patients with medial temporal lobe damage can be rescued by reducing interference from visually similar stimuli. These findings challenge current views on amnesia and the neural basis of memory.
PMCID: PMC3657172  PMID: 22794269
6.  Human medial temporal lobe damage can disrupt the perception of single objects 
The idea that the medial temporal lobe (MTL), traditionally viewed as an exclusive memory system, may also subserve higher-order perception has been debated fiercely. To support this suggestion, monkey and human lesion studies have demonstrated that perirhinal cortex damage impairs complex object discrimination. The interpretation of these findings has, however, been disputed since these impairments may reflect a primary deficit in MTL-mediated working memory processes or, in the case of human patients, undetected damage to visual processing regions beyond the MTL. To address these issues, this study investigated object perception in two human amnesic patients who were chosen on the basis of their lesion locations and suitability for detailed neuroimaging investigation. A neuropsychological task with minimal working memory demands was administered in which participants assessed the structural coherency of single novel objects. Critically, only the patient with perirhinal atrophy was impaired. Moreover, volumetric and functional neuroimaging data demonstrated that this deficit cannot be attributed to the dysfunction of visual cortical areas. Additional analyses of eye-movement patterns during the perceptual task revealed an inability of this patient to detect structural incoherency consistently. This study uses a combination of techniques to provide strong evidence that the perirhinal cortex subserves perception and suggests that the MTL perceptual-mnemonic debate cannot be dismissed on the basis of anatomy or a working memory impairment.
PMCID: PMC3079896  PMID: 20463221
Memory; Amnesia; Hippocampus; Parahippocampal; Imaging; Eye movement
7.  Investigating the Interaction between Spatial Perception and Working Memory in the Human Medial Temporal Lobe 
Journal of cognitive neuroscience  2010;22(12):2823-2835.
There has been considerable debate surrounding the functions of the medial temporal lobe (MTL). Although this region has been traditionally thought to subserve long-term declarative memory only, recent evidence suggests a role in short-term working memory and even higher-order perception. To investigate this issue, functional neuroimaging was used to investigate the involvement of the MTL in spatial scene perception and working memory. Healthy participants were scanned during a working memory task incorporating two factors of working memory (high vs. low demand) and spatial processing (complex vs. simple). It was found that an increase in spatial processing demand produced significantly greater activity in the posterior hippocampus and parahippocampal cortex irrespective of whether working memory demand was high or low. In contrast, there was no region within the MTL that increased significantly in activity during both the complex and simple spatial processing conditions when working memory demand was increased. There was, however, a significant interaction effect between spatial processing and working memory in the right posterior hippocampus and parahippocampal cortex bilaterally: an increase in working memory demand produced a significant increase in activity in these areas during the complex, but not simple, spatial processing conditions. These findings suggest while there may be a role for the MTL in both stimulus processing and working memory, increasing the latter does not necessarily increase posterior MTL involvement. We suggest that these structures may play a critical role in processing complex spatial representations, which, in turn, may form the basis of short- and long-term mnemonic processes.
PMCID: PMC2929461  PMID: 19925184
8.  Medial Temporal Lobe Activity During Complex Discrimination of Faces, Objects, and Scenes: Effects of Viewpoint 
Hippocampus  2010;20(3):389-401.
The medial temporal lobe (MTL), a set of heavily inter-connected structures including the hippocampus and underlying entorhinal, perirhinal and parahippocampal cortex, is traditionally believed to be part of a unitary system dedicated to declarative memory. Recent studies, however, demonstrated perceptual impairments in amnesic individuals with MTL damage, with hippocampal lesions causing scene discrimination deficits, and perirhinal lesions causing object and face discrimination deficits. The degree of impairment on these tasks was influenced by the need to process complex conjunctions of features: discriminations requiring the integration of multiple visual features caused deficits, whereas discriminations that could be solved on the basis of a single feature did not. Here, we address these issues with functional neuroimaging in healthy participants as they performed a version of the oddity discrimination task used previously in patients. Three different types of stimuli (faces, scenes, novel objects) were presented from either identical or different viewpoints. Consistent with studies in patients, we observed increased perirhinal activity when participants distinguished between faces and objects presented from different, compared to identical, viewpoints. The posterior hippocampus, by contrast, showed an effect of viewpoint for both faces and scenes. These findings provide convergent evidence that the MTL is involved in processes beyond long-term declarative memory and suggest a critical role for these structures in integrating complex features of faces, objects, and scenes into view-invariant, abstract representations.
PMCID: PMC2912509  PMID: 19499575
hippocampus; perirhinal cortex; memory; perception; fMRI
9.  Fornix microstructure correlates with recollection but not familiarity memory 
The fornix is the main tract between the medial temporal lobe (MTL) and medial diencephalon, both of which are critical for episodic memory. The precise involvement of the fornix in memory, however, has been difficult to ascertain since damage to this tract in human amnesics is invariably accompanied by atrophy to surrounding structures. We used diffusion-weighted imaging to investigate whether individual differences in fornix white matter microstructure in neurologically healthy participants were related to differences in memory as assessed by two recognition tasks. Higher microstructural integrity in the fornix tail was found to be associated with significantly better recollection memory. In contrast, there was no significant correlation between fornix microstructure and familiarity memory or performance on two non-mnemonic tasks. Our findings support the idea that there are distinct MTL-diencephalon pathways that subserve differing memory processes.
PMCID: PMC2825810  PMID: 19940194
Recognition Memory; Fornix; Hippocampal function; Memory; Hippocampus; Imaging

Results 1-9 (9)