Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Feature Interactions Enable Decoding of Sensorimotor Transformations for Goal-Directed Movement 
The Journal of Neuroscience  2014;34(20):6860-6873.
Neurophysiology and neuroimaging evidence shows that the brain represents multiple environmental and body-related features to compute transformations from sensory input to motor output. However, it is unclear how these features interact during goal-directed movement. To investigate this issue, we examined the representations of sensory and motor features of human hand movements within the left-hemisphere motor network. In a rapid event-related fMRI design, we measured cortical activity as participants performed right-handed movements at the wrist, with either of two postures and two amplitudes, to move a cursor to targets at different locations. Using a multivoxel analysis technique with rigorous generalization tests, we reliably distinguished representations of task-related features (primarily target location, movement direction, and posture) in multiple regions. In particular, we identified an interaction between target location and movement direction in the superior parietal lobule, which may underlie a transformation from the location of the target in space to a movement vector. In addition, we found an influence of posture on primary motor, premotor, and parietal regions. Together, these results reveal the complex interactions between different sensory and motor features that drive the computation of sensorimotor transformations.
PMCID: PMC4099499  PMID: 24828640
fMRI; MVPA; sensorimotor transformations
2.  Corticospinal Excitability Preceding the Grasping of Emotion-Laden Stimuli 
PLoS ONE  2014;9(4):e94824.
Evolutionary theories posit that emotions prime organisms for action. This study examined whether corticospinal excitability (CSE) is modulated by the emotional valence of a to-be-grasped stimulus. CSE was estimated based on the amplitude of motor evoked potentials (MEPs) elicited using transcranial magnetic stimulation (TMS) and recorded on the first dorsal interosseous (FDI) muscle. Participants were instructed to grasp (ACTION condition) or just look at (NO-ACTION condition) unpleasant, pleasant and neutral stimuli. TMS pulses were applied randomly at 500 or 250 ms before a go signal. MEP amplitudes were normalized within condition by computing a ratio for the emotion-laden stimuli by reference to the neutral stimuli. A divergent valence effect was observed in the ACTION condition, where the CSE ratio was higher during the preparation to grasp unpleasant compared to pleasant stimuli. In addition, the CSE ratio was lower for pleasant stimuli during the ACTION condition compared to the NO-ACTION condition. Altogether, these results indicate that motor preparation is selectively modulated by the valence of the stimulus to be grasped. The lower CSE for pleasant stimuli may result from the need to refrain from executing an imminent action.
PMCID: PMC3986344  PMID: 24732961
3.  One week of motor adaptation induces structural changes in primary motor cortex that predict long-term memory one year later 
The neural bases of motor adaptation have been extensively explored in human and non-human primates. A network including the cerebellum, primary motor and the posterior parietal cortex appears to be crucial for this type of learning. Yet, to date, it is unclear whether these regions contribute directly or indirectly to the formation of motor memories. Here we trained subjects on a complex visuomotor rotation associated with long-term memory (in the order of months) to identify potential sites of structural plasticity induced by adaptation. One week of training led to i) an increment in local gray-matter concentration over the hand area of the contralateral primary motor cortex and ii) an increase in fractional anisotropy in an area underneath this region that correlated with the speed of learning. Moreover, the change in gray matter concentration measured immediately after training predicted improvements in the speed of learning during re-adaptation one year later. Our study suggests that motor adaptation induces structural plasticity in primary motor circuits. In addition, it provides the first piece of evidence indicating that early structural changes induced by motor learning may impact on behavior up to one year after training.
PMCID: PMC3180815  PMID: 21849541
motor learning; structural plasticity; magnetic resonance imaging; fractional anisotropy; gray matter concentration
4.  fMRI Supports the Sensorimotor Theory of Motor Resonance 
PLoS ONE  2011;6(11):e26859.
The neural mechanisms mediating the activation of the motor system during action observation, also known as motor resonance, are of major interest to the field of motor control. It has been proposed that motor resonance develops in infants through Hebbian plasticity of pathways connecting sensory and motor regions that fire simultaneously during imitation or self movement observation. A fundamental problem when testing this theory in adults is that most experimental paradigms involve actions that have been overpracticed throughout life. Here, we directly tested the sensorimotor theory of motor resonance by creating new visuomotor representations using abstract stimuli (motor symbols) and identifying the neural networks recruited through fMRI. We predicted that the network recruited during action observation and execution would overlap with that recruited during observation of new motor symbols. Our results indicate that a network consisting of premotor and posterior parietal cortex, the supplementary motor area, the inferior frontal gyrus and cerebellum was activated both by new motor symbols and by direct observation of the corresponding action. This tight spatial overlap underscores the importance of sensorimotor learning for motor resonance and further indicates that the physical characteristics of the perceived stimulus are irrelevant to the evoked response in the observer.
PMCID: PMC3206875  PMID: 22073209
5.  Integrity of white matter in the corpus callosum correlates with bimanual co-ordination skills 
NeuroImage  2007;36(Suppl 2):T16-T21.
Variation in brain structure may reflect variation in functional properties of specific brain systems. Structural variation may therefore reflect variation in behavioural performance. Here, we use diffusion-weighted magnetic resonance imaging to show that variation in white matter integrity in a specific region in the body of the corpus callosum is associated with variation in performance of a bimanual co-ordination task. When the callosal region showing this association is used as a seed for probabilistic tractography, inter-hemispheric pathways are generated to the supplementary motor area and caudal cingulate motor area. This provides further evidence for the role of medial wall motor areas in bimanual co-ordination and supports the idea that variation in brain structure reflects inter-individual differences in skilled performance.
PMCID: PMC3119816  PMID: 17499163
6.  Functional Imaging Reveals Movement Preparatory Activity in the Vegetative State 
The vegetative state (VS) is characterized by the absence of awareness of self or the environment and preserved autonomic functions. The diagnosis relies critically on the lack of consistent signs of purposeful behavior in response to external stimulation. Yet, given that patients with disorders of consciousness often exhibit fragmented movement patterns, voluntary actions may go unnoticed. Here we designed a simple motor paradigm that could potentially detect signs of purposeful behavior in VS patients with mild to severe brain damage by examining the neural correlates of motor preparation in response to verbal commands. Twenty-four patients who met the diagnostic criteria for VS were recruited for this study. Eleven of these patients showing preserved auditory evoked potentials underwent functional magnetic resonance imaging (fMRI) to test for basic speech processing. Five of these patients, who showed word related activity, were included in a second fMRI study aimed at detecting functional changes in premotor cortex elicited by specific verbal instructions to move either their left or their right hand. Despite the lack of overt muscle activity, two patients out of five activated the dorsal premotor cortex contralateral to the instructed hand, consistent with movement preparation. Our results may reflect residual voluntary processing in these two patients. We believe that the identification of positive results with fMRI using this simple task, may complement the clinical assessment by helping attain a more precise diagnosis in patients with disorders of consciousness.
PMCID: PMC3031991  PMID: 21441977
consciousness; intention; vegetative state; functional imaging; movement preparation

Results 1-6 (6)