Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Structural and Functional Brain Changes beyond Visual System in Patients with Advanced Glaucoma 
PLoS ONE  2014;9(8):e105931.
In order to test the hypothesis that in primary open angle glaucoma (POAG), an important cause of irreversible blindness, a spreading of neurodegeneration occurs through the brain, we performed multimodal MRI and subsequent whole-brain explorative voxelwise analyses in 13 advanced POAG patients and 12 age-matched normal controls (NC). Altered integrity (decreased fractional anisotropy or increased diffusivities) of white matter (WM) tracts was found not only along the visual pathway of POAG but also in nonvisual WM tracts (superior longitudinal fascicle, anterior thalamic radiation, corticospinal tract, middle cerebellar peduncle). POAG patients also showed brain atrophy in both visual cortex and other distant grey matter (GM) regions (frontoparietal cortex, hippocampi and cerebellar cortex), decreased functional connectivity (FC) in visual, working memory and dorsal attention networks and increased FC in visual and executive networks. In POAG, abnormalities in structure and FC within and outside visual system correlated with visual field parameters in the poorer performing eyes, thus emphasizing their clinical relevance. Altogether, this represents evidence that a vision disorder such as POAG can be considered a widespread neurodegenerative condition.
PMCID: PMC4146554  PMID: 25162716
2.  Radiologically Isolated Syndrome: 5-Year Risk for an Initial Clinical Event 
PLoS ONE  2014;9(3):e90509.
To report the 5-year risk and to identify risk factors for the development of a seminal acute or progressive clinical event in a multi-national cohort of asymptomatic subjects meeting 2009 RIS Criteria.
Retrospectively identified RIS subjects from 22 databases within 5 countries were evaluated. Time to the first clinical event related to demyelination (acute or 12-month progression of neurological deficits) was compared across different groups by univariate and multivariate analyses utilizing a Cox regression model.
Data were available in 451 RIS subjects (F: 354 (78.5%)). The mean age at from the time of the first brain MRI revealing anomalies suggestive of MS was 37.2 years (y) (median: 37.1 y, range: 11–74 y) with mean clinical follow-up time of 4.4 y (median: 2.8 y, range: 0.01–21.1 y). Clinical events were identified in 34% (standard error = 3%) of individuals within a 5-year period from the first brain MRI study. Of those who developed symptoms, 9.6% fulfilled criteria for primary progressive MS. In the multivariate model, age [hazard ratio (HR): 0.98 (95% CI: 0.96–0.99); p = 0.03], sex (male) [HR: 1.93 (1.24–2.99); p = 0.004], and lesions within the cervical or thoracic spinal cord [HR: 3.08 (2.06–4.62); p = <0.001] were identified as significant predictors for the development of a first clinical event.
These data provide supportive evidence that a meaningful number of RIS subjects evolve to a first clinical symptom. An age <37 y, male sex, and spinal cord involvement appear to be the most important independent predictors of symptom onset.
PMCID: PMC3943959  PMID: 24598783
3.  Patient subgroup analyses of the treatment effect of subcutaneous interferon β-1a on development of multiple sclerosis in the randomized controlled REFLEX study 
Journal of Neurology  2014;261(3):490-499.
The REFLEX study (NCT00404352) established that subcutaneous (sc) interferon (IFN) β-1a reduced the risks of McDonald MS (2005 criteria) and clinically definite multiple sclerosis (CDMS) in patients with a first clinical demyelinating event suggestive of MS. The aim of this subgroup analysis was to assess the treatment effect of sc IFN β-1a in patient subgroups defined by baseline disease and demographic characteristics (age, sex, use of steroids at the first event, classification of first event as mono- or multifocal, presence/absence of gadolinium-enhancing lesions, count of <9 or ≥9 T2 lesions), and by diagnosis of MS using the revised McDonald 2010 MS criteria. Patients were randomized to the serum-free formulation of IFN β-1a, 44 μg sc three times weekly or once weekly, or placebo, for 24 months or until diagnosis of CDMS. Treatment effects of sc IFN β-1a on McDonald 2005 MS and CDMS in the predefined subgroups were similar to effects found in the intent-to-treat population. McDonald 2010 MS was retrospectively diagnosed in 37.7 % of patients at baseline. Both regimens of sc IFN β-1a significantly reduced the risk versus placebo of McDonald 2005 MS and CDMS, irrespective of McDonald 2010 status at baseline (risk reductions between 29 and 51 %). The effect of sc IFN β-1a was not substantially influenced by baseline patient demographic and disease characteristics, or baseline presence/absence of McDonald 2010 MS.
PMCID: PMC3948518  PMID: 24413638
Interferon beta; First clinical demyelinating event; Clinically isolated syndrome; McDonald MS; Clinically definite MS
4.  Distinction of seropositive NMO spectrum disorder and MS brain lesion distribution 
Neurology  2013;80(14):1330-1337.
Neuromyelitis optica and its spectrum disorder (NMOSD) can present similarly to relapsing-remitting multiple sclerosis (RRMS). Using a quantitative lesion mapping approach, this research aimed to identify differences in MRI brain lesion distribution between aquaporin-4 antibody–positive NMOSD and RRMS, and to test their diagnostic potential.
Clinical brain MRI sequences for 44 patients with aquaporin-4 antibody–positive NMOSD and 50 patients with RRMS were examined for the distribution and morphology of brain lesions. T2 lesion maps were created for each subject allowing the quantitative comparison of the 2 conditions with lesion probability and voxel-wise analysis.
Sixty-three percent of patients with NMOSD had brain lesions and of these 27% were diagnostic of multiple sclerosis. Patients with RRMS were significantly more likely to have lesions adjacent to the body of the lateral ventricle than patients with NMOSD. Direct comparison of the probability distributions and the morphologic attributes of the lesions in each group identified criteria of “at least 1 lesion adjacent to the body of the lateral ventricle and in the inferior temporal lobe; or the presence of a subcortical U-fiber lesion; or a Dawson's finger-type lesion,” which could distinguish patients with multiple sclerosis from those with NMOSD with 92% sensitivity, 96% specificity, 98% positive predictive value, and 86% negative predictive value.
Careful inspection of the distribution and morphology of MRI brain lesions can distinguish RRMS and NMOSD.
PMCID: PMC3656462  PMID: 23486868
5.  Correction: MRI Correlates of Disability in African-Americans with Multiple Sclerosis 
PLoS ONE  2013;8(6):10.1371/annotation/25df480c-60b5-43a3-b03c-4e97d6ee399c.
PMCID: PMC3676524
6.  Relevance of Brain Lesion Location to Cognition in Relapsing Multiple Sclerosis 
PLoS ONE  2012;7(11):e44826.
To assess the relationship between cognition and brain white matter (WM) lesion distribution and frequency in patients with relapsing-remitting multiple sclerosis (RR MS).
MRI-based T2 lesion probability map (LPM) was used to assess the relevance of brain lesion location for cognitive impairment in a group of 142 consecutive patients with RRMS. Significance of voxelwise analyses was p<0.05, cluster-corrected for multiple comparisons. The Rao Brief Repeatable Battery was administered at the time of brain MRI to categorize the MS population into cognitively preserved (CP) and cognitively impaired (CI).
Out of 142 RRMS, 106 were classified as CP and 36 as CI. Although the CI group had greater WM lesion volume than the CP group (p = 0.001), T2 lesions tended to be less widespread across the WM. The peak of lesion frequency was almost twice higher in CI (61% in the forceps major) than in CP patients (37% in the posterior corona radiata). The voxelwise analysis confirmed that lesion frequency was higher in CI than in CP patients with significant bilateral clusters in the forceps major and in the splenium of the corpus callosum (p<0.05, corrected). Low scores of the Symbol Digit Modalities Test correlated with higher lesion frequency in these WM regions.
Overall these results suggest that in MS patients, areas relevant for cognition lie mostly in the commissural fiber tracts. This supports the notion of a functional (multiple) disconnection between grey matter structures, secondary to damage located in specific WM areas, as one of the most important mechanisms leading to cognitive impairment in MS.
PMCID: PMC3489883  PMID: 23144775
7.  MRI Correlates of Disability in African-Americans with Multiple Sclerosis 
PLoS ONE  2012;7(8):e43061.
Multiple sclerosis (MS) in African-Americans (AAs) is characterized by more rapid disease progression and poorer response to treatment than in Caucasian-Americans (CAs). MRI provides useful and non-invasive tools to investigate the pathological substrate of clinical progression. The aim of our study was to compare MRI measures of brain damage between AAs and CAs with MS.
Retrospective analysis of 97 AAs and 97 CAs with MS matched for age, gender, disease duration and age at MRI examination.
AA patients had significantly greater T2- (p = 0.001) and T1-weighted (p = 0.0003) lesion volumes compared to CA patients. In contrast, measurements of global and regional brain volume did not significantly differ between the two ethnic groups (p>0.1).
By studying a quite large sample of well demographically and clinically matched CA and AA patients with a homogeneous MRI protocol we showed that higher lesion accumulation, rather than pronounced brain volume decrease might explain the early progress to ambulatory assistance of AAs with MS.
PMCID: PMC3416750  PMID: 22900088
8.  Risk and Determinants of Dementia in Patients with Mild Cognitive Impairment and Brain Subcortical Vascular Changes: A Study of Clinical, Neuroimaging, and Biological Markers—The VMCI-Tuscany Study: Rationale, Design, and Methodology 
Dementia is one of the most disabling conditions. Alzheimer's disease and vascular dementia (VaD) are the most frequent causes. Subcortical VaD is consequent to deep-brain small vessel disease (SVD) and is the most frequent form of VaD. Its pathological hallmarks are ischemic white matter changes and lacunar infarcts. Degenerative and vascular changes often coexist, but mechanisms of interaction are incompletely understood. The term mild cognitive impairment defines a transitional state between normal ageing and dementia. Pre-dementia stages of VaD are also acknowledged (vascular mild cognitive impairment, VMCI). Progression relates mostly to the subcortical VaD type, but determinants of such transition are unknown. Variability of phenotypic expression is not fully explained by severity grade of lesions, as depicted by conventional MRI that is not sensitive to microstructural and metabolic alterations. Advanced neuroimaging techniques seem able to achieve this. Beside hypoperfusion, blood-brain-barrier dysfunction has been also demonstrated in subcortical VaD. The aim of the Vascular Mild Cognitive Impairment Tuscany Study is to expand knowledge about determinants of transition from mild cognitive impairment to dementia in patients with cerebral SVD. This paper summarizes the main aims and methodological aspects of this multicenter, ongoing, observational study enrolling patients affected by VMCI with SVD.
PMCID: PMC3328954  PMID: 22550606
9.  Modeling the Distribution of New MRI Cortical Lesions in Multiple Sclerosis Longitudinal Studies 
PLoS ONE  2011;6(10):e26712.
Recent studies have shown the relevance of the cerebral grey matter involvement in multiple sclerosis (MS). The number of new cortical lesions (CLs), detected by specific MRI sequences, has the potential to become a new research outcome in longitudinal MS studies. Aim of this study is to define the statistical model better describing the distribution of new CLs developed over 12 and 24 months in patients with relapsing-remitting (RR) MS.
Four different models were tested (the Poisson, the Negative Binomial, the zero-inflated Poisson and the zero-inflated Negative Binomial) on a group of 191 RRMS patients untreated or treated with 3 different disease modifying therapies. Sample size for clinical trials based on this new outcome measure were estimated by a bootstrap resampling technique.
The zero-inflated Poisson model gave the best fit, according to the Akaike criterion to the observed distribution of new CLs developed over 12 and 24 months both in each treatment group and in the whole RRMS patients group adjusting for treatment effect.
The sample size calculations based on the zero-inflated Poisson model indicate that randomized clinical trials using this new MRI marker as an outcome are feasible.
PMCID: PMC3197685  PMID: 22028937
10.  Assessing neuronal metabolism in-vivo by modelling imaging measures 
Mitochondrial dysfunction contributes to the pathogenesis of many neurological diseases, including multiple sclerosis (MS), but is not directly measurable in-vivo. We modelled N-acetyl-aspartate (NAA) which reflects axonal structural integrity and mitochondrial metabolism, with imaging measures of axonal structural integrity (axial diffusivity and cord cross-sectional area) to extract its mitochondrial metabolic contribution. Lower residual variance in NAA, reflecting reduced mitochondrial metabolism, was associated with greater clinical disability in MS, independent of structural damage.
PMCID: PMC3044872  PMID: 21068308
mitochondria; metabolism; imaging; spinal cord; multiple sclerosis
11.  Improving the Characterization of Radiologically Isolated Syndrome Suggestive of Multiple Sclerosis 
PLoS ONE  2011;6(4):e19452.
To improve the characterization of asymptomatic subjects with brain magnetic resonance imaging (MRI) abnormalities highly suggestive of multiple sclerosis (MS), a condition named as “radiologically isolated syndrome” (RIS).
Quantitative MRI metrics such as brain volumes and magnetization transfer (MT) were assessed in 19 subjects previously classified as RIS, 20 demographically-matched relapsing-remitting MS (RRMS) patients and 20 healthy controls (HC). Specific measures were: white matter (WM) lesion volumes (LV), total and regional brain volumes, and MT ratio (MTr) in lesions, normal-appearing WM (NAWM) and cortex.
LV was similar in RIS and RRMS, without differences in distribution and frequency at lesion mapping. Brain volumes were similarly lower in RRMS and RIS than in HC (p<0.001). Lesional-MTr was lower in RRMS than in RIS (p = 0.048); NAWM-MTr and cortical-MTr were similar in RIS and HC and lower (p<0.01) in RRMS. These values were particularly lower in RRMS than in RIS in the sensorimotor and memory networks. A multivariate logistic regression analysis showed that 13/19 RIS had ≥70% probability of being classified as RRMS on the basis of their brain volume and lesional-MTr values.
Macroscopic brain damage was similar in RIS and RRMS. However, the subtle tissue damage detected by MTr was milder in RIS than in RRMS in clinically relevant brain regions, suggesting an explanation for the lack of clinical manifestations of subjects with RIS. This new approach could be useful for narrowing down the RIS individuals with a high risk of progression to MS.
PMCID: PMC3084867  PMID: 21559385
12.  Age-related changes in grey and white matter structure throughout adulthood 
Neuroimage  2010;51(3-2):943-951.
Normal ageing is associated with gradual brain atrophy. Determining spatial and temporal patterns of change can help shed light on underlying mechanisms. Neuroimaging provides various measures of brain structure that can be used to assess such age-related change but studies to date have typically considered single imaging measures. Although there is consensus on the notion that brain structure deteriorates with age, evidence on the precise time course and spatial distribution of changes is mixed. We assessed grey matter (GM) and white matter (WM) structure in a group of 66 adults aged between 23 and 81. Multimodal imaging measures included voxel-based morphometry (VBM)-style analysis of GM and WM volume and diffusion tensor imaging (DTI) metrics of WM microstructure. We found widespread reductions in GM volume from middle age onwards but earlier reductions in GM were detected in frontal cortex. Widespread age-related deterioration in WM microstructure was detected from young adulthood onwards. WM decline was detected earlier and more sensitively using DTI-based measures of microstructure than using markers of WM volume derived from conventional T1-weighted imaging.
PMCID: PMC2896477  PMID: 20211265
13.  Efficacy of subcutaneous interferon β-1a on MRI outcomes in a randomised controlled trial of patients with clinically isolated syndromes 
The REbif FLEXible dosing in early MS (REFLEX) study compared several brain MRI outcomes in patients presenting with clinically isolated syndromes suggestive of multiple sclerosis and treated with two dose-frequencies of subcutaneous interferon (IFN) β-1a or placebo.
Patients were randomised (1:1:1) to IFN β-1a, 44 µg subcutaneously three times a week or once a week, or placebo three times a week for up to 24 months. MRI scans were performed every 3 months, or every 6 months if the patient developed clinically definite multiple sclerosis. End points analysed included: number of combined unique active lesions per patient per scan; numbers and volumes of new T2, T1 hypointense and gadolinium-enhancing (Gd+) lesions per patient per scan; and brain volume.
517 patients were randomised (intent-to-treat population: subcutaneous IFN β-1a three times a week, n=171; subcutaneous IFN β-1a once a week, n=175; placebo, n=171). Combined unique active lesions were lower in patients treated with subcutaneous IFN β-1a versus placebo (mean (SD) lesions per patient per scan: three times a week 0.6 (1.15); once a week 1.23 (4.26); placebo 2.70 (5.23); reduction versus placebo: three times a week 81%; once a week 63%; p<0.001) and with three times a week versus once a week (48% reduction; p=0.002). The mean numbers of new T2, T1 hypointense and Gd+ lesions were all significantly lower in the two active treatment arms compared with placebo (p≤0.004 for three times a week or once a week) and in the three times a week group compared with once a week (p≤0.012).
Both subcutaneous IFN β-1a 44 µg regimens improved MRI outcomes versus placebo, with the three times a week regimen having a more pronounced effect than once a week dosing.
Trial registration identifier, NCT00404352.
PMCID: PMC4033030  PMID: 24292999
Randomised Trials; Multiple Sclerosis; MRI; INTERFERON

Results 1-13 (13)