Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Local GABA concentration is related to network-level resting functional connectivity 
eLife  2014;3:e01465.
Anatomically plausible networks of functionally inter-connected regions have been reliably demonstrated at rest, although the neurochemical basis of these ‘resting state networks’ is not well understood. In this study, we combined magnetic resonance spectroscopy (MRS) and resting state fMRI and demonstrated an inverse relationship between levels of the inhibitory neurotransmitter GABA within the primary motor cortex (M1) and the strength of functional connectivity across the resting motor network. This relationship was both neurochemically and anatomically specific. We then went on to show that anodal transcranial direct current stimulation (tDCS), an intervention previously shown to decrease GABA levels within M1, increased resting motor network connectivity. We therefore suggest that network-level functional connectivity within the motor system is related to the degree of inhibition in M1, a major node within the motor network, a finding in line with converging evidence from both simulation and empirical studies.
eLife digest
Even when your body is at rest, your brain remains active. Subjects lying in brain scanners without any specific task to perform show coordinated and reproducible patterns of brain activity. Areas of the brain with similar functions, such as those involved in vision or in movement, tend to increase or decrease their activity in sync, and these coordinated patterns are referred to as resting state networks.
The functions of these networks are unclear—they may support introspection, memory recall or planning for the future, or they may help to strengthen newly acquired skills by enabling the brain to replay previous learning episodes. There is evidence that resting state networks are altered in disorders such as Alzheimer’s disease, autism and schizophrenia, but little is known about how these changes arise or what they might mean.
Now, Stagg et al. have used a type of brain scan called magnetic resonance spectroscopy to gain insights into the mechanisms by which one particular network—the resting motor network—is generated. This network consists of areas involved in planning, monitoring and executing movements, and includes the primary motor cortex, which initiates movements by sending instructions to the spinal cord.
The levels of a chemical called GABA—a neurotransmitter molecule that tends to inhibit the activity of nerve cells—were measured in the primary motor cortex of young healthy volunteers as they lay idle in a scanner. GABA levels were negatively correlated with the amount of coordinated activity within the resting motor network. By contrast, no relation was seen between coordinated activity and the levels of the neurotransmitter glutamate, which tends to increase the activity of nerve cells. Furthermore, when a weak electric current was applied through the subjects’ scalp to their primary motor cortex—a technique previously shown to lower levels of GABA in the region—the resting motor network became stronger.
In addition to providing new information on how the rhythmic patterns of activity seen in the resting brain arise, the work of Stagg et al. contributes to the more general effort to understand the complex patterns of connections within the human brain.
PMCID: PMC3964822  PMID: 24668166
magnetic resonance spectroscopy; GABA; resting state fMRI; human
2.  Predicting behavioural response to TDCS in chronic motor stroke☆ 
Neuroimage  2014;85(Pt 3):924-933.
Transcranial direct current stimulation (TDCS) of primary motor cortex (M1) can transiently improve paretic hand function in chronic stroke. However, responses are variable so there is incentive to try to improve efficacy and or to predict response in individual patients. Both excitatory (Anodal) stimulation of ipsilesional M1 and inhibitory (Cathodal) stimulation of contralesional M1 can speed simple reaction time. Here we tested whether combining these two effects simultaneously, by using a bilateral M1–M1 electrode montage, would improve efficacy. We tested the physiological efficacy of Bilateral, Anodal or Cathodal TDCS in changing motor evoked potentials (MEPs) in the healthy brain and their behavioural efficacy in changing reaction times with the paretic hand in chronic stroke. In addition, we aimed to identify clinical or neurochemical predictors of patients' behavioural response to TDCS. There were three main findings: 1) unlike Anodal and Cathodal TDCS, Bilateral M1–M1 TDCS (1 mA, 20 min) had no significant effect on MEPs in the healthy brain or on reaction time with the paretic hand in chronic stroke patients; 2) GABA levels in ipsilesional M1 predicted patients' behavioural gains from Anodal TDCS; and 3) although patients were in the chronic phase, time since stroke (and its combination with Fugl–Meyer score) was a positive predictor of behavioural gain from Cathodal TDCS. These findings indicate the superiority of Anodal or Cathodal over Bilateral TDCS in changing motor cortico-spinal excitability in the healthy brain and in speeding reaction time in chronic stroke. The identified clinical and neurochemical markers of behavioural response should help to inform the optimization of TDCS delivery and to predict patient outcome variability in future TDCS intervention studies in chronic motor stroke.
•Ipsilesional M1 GABA levels predict motor gains from Anodal TDCS in chronic stroke.•Time since stroke and Fugl–Meyer score jointly predict response to Cathodal TDCS.•Bilateral motor cortex TDCS did not reliably change motor evoked potentials.•Bilateral motor cortex TDCS did not reliably change manual reaction time.
PMCID: PMC3899017  PMID: 23727528
Motor stroke; Plasticity; TDCS; Brain stimulation; Magnetic resonance spectroscopy; GABA
3.  Cortical activation changes underlying stimulation-induced behavioural gains in chronic stroke 
Brain  2011;135(1):276-284.
Transcranial direct current stimulation, a form of non-invasive brain stimulation, is showing increasing promise as an adjunct therapy in rehabilitation following stroke. However, although significant behavioural improvements have been reported in proof-of-principle studies, the underlying mechanisms are poorly understood. The rationale for transcranial direct current stimulation as therapy for stroke is that therapeutic stimulation paradigms increase activity in ipsilesional motor cortical areas, but this has not previously been directly tested for conventional electrode placements. This study was performed to test directly whether increases in ipsilesional cortical activation with transcranial direct current stimulation are associated with behavioural improvements in chronic stroke patients. Patients at least 6 months post-first stroke participated in a behavioural experiment (n = 13) or a functional magnetic resonance imaging experiment (n = 11), each investigating the effects of three stimulation conditions in separate sessions: anodal stimulation to the ipsilesional hemisphere; cathodal stimulation to the contralesional hemisphere; and sham stimulation. Anodal (facilitatory) stimulation to the ipsilesional hemisphere led to significant improvements (5–10%) in response times with the affected hand in both experiments. This improvement was associated with an increase in movement-related cortical activity in the stimulated primary motor cortex and functionally interconnected regions. Cathodal (inhibitory) stimulation to the contralesional hemisphere led to a functional improvement only when compared with sham stimulation. We show for the first time that the significant behavioural improvements produced by anodal stimulation to the ipsilesional hemisphere are associated with a functionally relevant increase in activity within the ipsilesional primary motor cortex in patients with a wide range of disabilities following stroke.
PMCID: PMC3267983  PMID: 22155982
transcranial direct current stimulation; stroke rehabilitation; motor system
4.  What are we measuring with GABA magnetic resonance spectroscopy? 
A number of recent papers1–3 have demonstrated a relationship between in vivo concentration of GABA, as assessed using Magnetic Resonance Spectroscopy (MRS), and an individual's task performance, giving a unique insight into the relationship between physiology and behavior. However, interpretation of the functional significance of the MRS GABA measure is not straightforward. Here we discuss some of the outstanding questions as to how total concentration of GABA within a cortical region relates to phasic and tonic GABA activity within the cortical volume studied.
PMCID: PMC3204132  PMID: 22046466
gamma-amino butyric acid (GABA); motor cortex; magnetic resonance spectroscopy; human; inter-individual differences
5.  The Role of GABA in Human Motor Learning 
Current Biology  2011;21(6):480-484.
GABA modification plays an important role in motor cortical plasticity [1–4]. We therefore hypothesized that interindividual variation in the responsiveness of the GABA system to modification influences learning capacity in healthy adults. We assessed GABA responsiveness by transcranial direct current stimulation (tDCS), an intervention known to decrease GABA [5, 6]. The magnitude of M1 GABA decrease induced by anodal tDCS correlated positively with both the degree of motor learning and the degree of fMRI signal change within the left M1 during learning. This study therefore suggests that the responsiveness of the GABAergic system to modification may be relevant to short-term motor learning behavior and learning-related brain activity.
► Change in GABA due to transcranial stimulation correlates with motor learning behavior ► GABA change also correlates with localized fMRI responses during short-term learning ► No correlations are found for these measures with GABA levels in visual cortex
PMCID: PMC3063350  PMID: 21376596

Results 1-5 (5)