Search tips
Search criteria

Results 1-25 (42)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Functional characterization of the MECP2/IRAK1 lupus risk haplotype in human T cells and a human MECP2 transgenic mouse 
Journal of autoimmunity  2013;41:168-174.
Genetic polymorphism in MECP2/IRAK1 on chromosome Xq28 is a confirmed and replicated susceptibility locus for lupus. High linkage disequilibrium in this locus suggests that both MECP2 and IRAK1 are candidate genes for the disease. DNA methylation changes in lupus T cells play a central role in the pathogenesis of lupus, and MeCp-2 (encoded by MECP2) is a master regulator of gene expression and is also known to recruit DNA methyltransferase 1 (DNMT1) during DNA synthesis. Using human T cells from normal individuals with either the lupus risk or the lupus protective haplotype in MECP2/IRAK1, we demonstrate that polymorphism in this locus increases MECP2 isoform 2 mRNA expression in stimulated but not unstimulated T cells. By assessing DNA methylation levels across over 485,000 methylation sites across the entire genome, we further demonstrate that the lupus risk variant in this locus is associated with significant DNA methylation changes, including in the HLA-DR and HLA-DQ loci, as well as interferon-related genes such as IFI6, IRF6, and BST2. Further, using a human MECP2 transgenic mouse, we show that overexpression of MECP2 alters gene expression in stimulated T cells. This includes overexpression of Eif2c2 that regulates the expression of multiple microRNAs (such as miR-21), and the histone demethylase Jhdm1d. In addition, we show that MECP2 transgenic mice develop antinuclear antibodies. Our data suggest that the lupus associated variant in the MECP2/IRAK1 locus has the potential to affect all 3 epigenetic mechanisms: DNA methylation, microRNA expression, and histone modification. Importantly, these data support the notion that variants within the MECP2 gene can alter DNA methylation in other genetic loci including the HLA and interferon-regulated genes, thereby providing evidence for genetic-epigenetic interaction in lupus.
PMCID: PMC3622940  PMID: 23428850
MECP2; IRAK1; lupus; epigenetics; polymorphism; DNA methylation; T cells; transgenic mouse
2.  An update on belimumab for the treatment of lupus 
B-lymphocyte stimulator (BLyS), a homeostatic factor for B-cell differentiation and survival, has a major role in B-cell expansion and autoreactivity that characterize systemic lupus erythematosus (SLE). Belimumab, a BLyS-specific inhibitor, has shown promising evidence of efficacy in several preclinical and clinical studies in SLE. Two recent large randomized controlled trials yielded a significant positive effect of the drug compared to placebo in patients with active disease. In this review, we discuss basic aspects of B-cell and BLyS biology in SLE and summarize the evidence supporting a role of belimumab in SLE, from animal studies to phase III clinical trials.
PMCID: PMC3044792  PMID: 21383914
B lymphocyte stimulator; lupus erythematosus; belimumab
3.  Dehydroepiandrosterone in systemic lupus erythematosus 
Current rheumatology reports  2008;10(4):286-291.
Dehydroepiandrosterone (DHEA) is a weak androgen that exerts pleomorphic effects on the immune system. The hormone has no known receptor, and consequently, the mechanism of action of DHEA on immunocompetent cells remains poorly understood. Interestingly, serum levels of DHEA are decreased in patients with inflammatory disease including lupus, and these levels seem to inversely correlate with disease activity. Following encouraging studies demonstrating beneficial effects of DHEA supplementation in murine lupus models, a number of clinical studies have tested the effect of DHEA administration in lupus patients. DHEA treatment could improve patient’s overall quality of life assessment measures and glucocorticoid requirements in some lupus patients with mild to moderate disease, however, the effect of DHEA on disease activity in lupus patients remains controversial. Long term safety assessment studies are required in light of the reported effect of DHEA supplementation in lowering HDL cholesterol in lupus patients.
PMCID: PMC2701249  PMID: 18662508
4.  Environmental Exposure, Estrogen and Two X Chromosomes are Required for Disease Development in an Epigenetic Model of Lupus 
Journal of Autoimmunity  2011;38(2-3):J135-J143.
Systemic lupus erythematosus (SLE) is an autoimmune disease primarily afflicting women. The reason for the gender bias is unclear, but genetic susceptibility, estrogen and environmental agents appear to play significant roles in SLE pathogenesis. Environmental agents can contribute to lupus susceptibility through epigenetic mechanisms. We used (C57BL/6 × SJL)F1 mice transgenic for a dominant-negative MEK (dnMEK) that was previously shown to be inducibly and selectively expressed in T cells. In this model, induction of the dnMEK by doxycycline treatment suppresses T cell ERK signaling, decreasing DNA methyltransferase expression and resulting in DNA demethylation, overexpression of immune genes Itgal (CD11a) and Tnfsf7 (CD70), and anti-dsDNA antibody. To examine the role of gender and estrogen in this model, male and female transgenic mice were neutered and implanted with time-release pellets delivering placebo or estrogen. Doxycycline induced IgG anti-dsDNA antibodies in intact and neutered, placebo-treated control female but not male transgenic mice. Glomerular IgG deposits were also found in the kidneys of female but not male transgenic mice, and not in the absence of doxycycline. Estrogen enhanced anti-dsDNA IgG antibodies only in transgenic, ERK-impaired female mice. Decreased ERK activation also resulted in overexpression and demethylation of the X-linked methylation-sensitive gene CD40lg in female but not male mice, consistent with demethylation of the second X chromosome in the females. The results show that both estrogen and female gender contribute to the female predisposition in lupus susceptibility through hormonal and epigenetic X chromosome effects and through suppression of ERK signaling by environmental agents.
PMCID: PMC3312994  PMID: 22142890
Extracellular Receptor Kinase (ERK); Systemic Lupus erythematosus (SLE); Mouse
5.  Sex-specific differences in the relationship between genetic susceptibility, T cell DNA demethylation and lupus flare severity 
Journal of Autoimmunity  2012;38(2-3):J216-J222.
Lupus is less common in men than women, and the reason is incompletely understood. Current evidence indicates that lupus flares when genetically predisposed individuals encounter environmental agents that trigger the disease, and that the environmental contribution is mediated at least in part by T cell DNA demethylation. We hypothesized that lupus disease activity is directly related to total genetic risk and inversely related to T cell DNA methylation levels in each patient. Since women are predisposed to lupus in part because of their second X chromosome, we also hypothesized that men would require a greater genetic risk, a greater degree of autosomal T cell DNA demethylation, or both, to achieve a lupus flare equal in severity to women. Genetic risk was determined by genotyping men and women with lupus across 32 confirmed lupus susceptibility loci. The methylation status of two T cell autosomal genes known to demethylate in proportion to disease activity, KIR2DL4 (KIR) and PRF1, was measured by bisulfite sequencing. Lupus disease activity was determined by the SLEDAI. Interactions between genetic score, T cell DNA demethylation, and the SLEDAI score were compared between the men and women by regression analysis. Combining the degree of DNA demethylation with the genetic risk score for each patient demonstrated that the (genetic risk)/(DNA methylation) ratio increased directly with disease activity in both men and women with lupus. Importantly, men required a greater (genetic risk)/(DNA methylation) ratio to achieve a SLEDAI score equivalent to women (p=0.010 for KIR and p=0.0054 for PRF1). This difference was not explained by a difference in the genetic risk or T cell DNA demethylation alone, suggesting a genetic-epigenetic interaction. These results suggest that genetic risk and T cell DNA demethylation interact in lupus patients to influence the severity of lupus flares, and that men require a higher genetic risk and/or greater degree of T cell DNA demethylation to achieve a lupus flare equal in severity to women.
PMCID: PMC3313010  PMID: 22305513
Genetic risk; epigenetics; DNA methylation; lupus; genetic-epigenetic interaction; sex-disparity
6.  GFP Affects Human T Cell Activation and Cytokine Production following In Vitro Stimulation 
PLoS ONE  2013;8(4):e50068.
There are many Green Fluorescent Proteins (GFPs) originating from diverse species that are invaluable to cell biologists today because of their ability to provide experimental visualization of protein expression. Since their initial discovery, they have been modified and improved to provide more stable variants with emission ranges spanning a wide array of colors. Due to their ease of expression both in-vitro and in-vivo, they are an attractive choice for use as markers in molecular biology. GFPs are generally assumed to have negligible effects on the cells to which they have been introduced. However, a growing number of reports indicate that this is not always the case. Consequently, because of GFP's ubiquitous use, it is important to document the nature and extent of unintended effects. In this report, we find that GFP affects T cell activation, leading to defects in clustering, upregulation of the activation marker CD25 and IL-2 cytokine production following stimulation in human primary T cells that also express TurboGFP. We utilized a reporter assay which has been routinely used to assay the NF-κB pathway and found reduced NF-κB activitation in stimulated HEK293 and HeLa cells that were co-transfected with TurboGFP, suggesting that GFP interferes with signaling through the NF-κB pathway. These findings indicate that the utilization of GFP-tagged vectors may negatively impact in vitro experiments in T cells, emphasizing the critical importance of controls to identify any GFP-induced effects.
PMCID: PMC3618152  PMID: 23577054
7.  A putative functional variant within the ubiquitin-associated domain-containing protein 2 gene (UBAC2) is associated with increased risk of Behçet’s disease 
Arthritis and rheumatism  2011;63(11):3607-3612.
Using a genome-wide association scan and DNA pooling, we previously identified 5 novel genetic susceptibility loci for Behçet’s disease. Herein, we establish the genetic effect within the UBAC2 gene, replicate this genetic association, and identify a functional variant within this locus.
A total of 676 Behçet’s disease patients and 1,096 controls were studied. The discovery set included 156 patients and 167 controls from Turkey, and the replication sets included 376 patients and 369 controls, and 144 patients and 560 controls, from Turkey and Italy, respectively. Genotyping of 14 SNPs within and around UBAC2 was performed using TaqMan SNP genotyping assays.
The genetic association between Behçet’s disease and UBAC2 was established, replicated and confirmed (Meta-analysis OR= 1.84, meta-analysis P= 1.69X10−7). Haplotype analysis identified both a disease risk and a protective haplotype (P= 0.00014 and 0.0075, respectively). Using conditional haplotype analysis we identified the SNP rs7999348 (A/G) within UBAC2 as the most likely SNP with a genetic effect independent of the haplotypic effect formed by the remaining associated SNPs in this locus. Indeed, we demonstrate that rs7999348 tags a functional variant associated with increased mRNA expression of a UBAC2 transcript variant in PBMCs of individuals homozygous for the Behçet’s disease-associated “G” allele. Further, our data suggest the possibility of multiple genetic effects that increase susceptibility to Behçet’s disease in the UBAC2 locus.
We established and confirmed the genetic association between UBAC2 and Behçet’s disease in three independent sets of patients and controls. We identified the minor allele in rs7999348 as a disease-risk allele that tags altered UBAC2 expression.
PMCID: PMC3205238  PMID: 21918955
8.  Epigenetics in systemic lupus erythematosus: leading the way for specific therapeutic agents 
Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder of an unclearly determined etiology. Past studies, both epidemiological and biological, have implicated epigenetic influences in disease etiology and pathogenesis. Epigenetics describes changes in gene expression not linked to alterations in the underlying genomic sequence, and is most often typified by three modifications: methylation of DNA, addition of various side chains to histone groups and transcriptional regulation via short ncRNA sequences. The purpose of this article is to review the most important advances that link epigenetic changes to lupus. The contribution of DNA methylation changes to lupus pathogenesis is discussed. These include the role of apoptotic DNA, ultraviolet radiation, endogenous retroviruses, dietary contributions and aging. Hypomethylation of specific genes overexpressed in lupus T cells such as ITGAL (CD11a), CD40LG (CD40L), TNFSF7 (CD70), KIR2DL4 and PRF1 (perforin), and CD5 in lupus B cells seem to play an important role. Moreover, histone modifications such as increased global H4 acetylation in monocytes are highly associated with SLE. NcRNAs, especially miR-21, miR-148a and miR-126, control other elements of epigenetic regulation; particularly, transcription of the maintenance DNA methylation enzyme DNMT1. Epigenetic contributions to SLE etiology have been well established, but much is still unknown. Epigenome-wide studies coupled with functional analysis of the epigenomic changes discovered will uncover novel pathways important in disease pathogenesis. Epigenetic therapies for SLE may be feasible in the future, particularly if they are designed to target specific regions within the genome.
PMCID: PMC3241218  PMID: 22184503
DNA methylation; epigenetics; histone modification; lupus; miRNA; SLE; T cells
10.  Genome-wide DNA methylation patterns in CD4+ T cells from patients with systemic lupus erythematosus 
Epigenetics  2011;6(5):593-601.
Systemic lupus erythematosus is a chronic-relapsing autoimmune disease of incompletely understood etiology. Recent evidence strongly supports an epigenetic contribution to the pathogenesis of lupus. To understand the extent and nature of dysregulated DNA methylation in lupus T cells, we performed a genome-wide DNA methylation study in CD4+ T cells in lupus patients compared to normal healthy controls. Cytosine methylation was quantified in 27,578 CG sites located within the promoter regions of 14,495 genes. We identified 236 hypomethylated and 105 hypermethylated CG sites in lupus CD4+ T cells compared to normal controls, consistent with widespread DNA methylation changes in lupus T cells. Of interest, hypomethylated genes in lupus T cells include CD9, which is known to provide potent T-cell co-stimulation signals. Other genes with known involvement in autoimmunity such as MMP9 and PDGFRA were also hypomethylated. The BST2 gene, an interferon-inducible membrane-bound protein that helps restrict the release of retroviral particles was also hypomethylated in lupus patients. Genes involved in folate biosynthesis, which plays a role in DNA methylation, were overrepresented among hypermethylated genes. In addition, the transcription factor RUNX3 was hypermethylated in patients, suggesting an impact on T-cell maturation. Protein-protein interaction maps identified a transcription factor, HNF4a, as a regulatory hub affecting a number of differentially methylated genes. Apoptosis was also an overrepresented ontology in these interaction maps. Further, our data suggest that the methylation status of RAB22A, STX1B2, LGALS3BP, DNASE1L1 and PREX1 correlates with disease activity in lupus patients.
PMCID: PMC3121972  PMID: 21436623
lupus; T cells; CD4+ T cells; methylation; methylome
11.  The role of epigenetic variation in the pathogenesis of systemic lupus erythematosus 
The focus of the present review is on the extent to which epigenetic alterations influence the development of systemic lupus erythematosus. Lupus is a systemic autoimmune disease characterized by the production of autoantibodies directed at nuclear self-antigens. A DNA methylation defect in CD4+ T cells has long been observed in idiopathic and drug-induced lupus. Recent studies utilizing high-throughput technologies have further characterized the nature of the DNA methylation defect in lupus CD4+ T cells. Emerging evidence in the literature is revealing an increasingly interconnected network of epigenetic dysregulation in lupus. Recent reports describe variable expression of a number of regulatory microRNAs in lupus CD4+ T cells, some of which govern the expression of DNA methyltransferase 1. While studies to date have revealed a significant role for epigenetic defects in the pathogenesis of lupus, the causal nature of epigenetic variation in lupus remains elusive. Future longitudinal epigenetic studies in lupus are therefore needed.
PMCID: PMC3308098  PMID: 22044622
12.  Early disease onset is predicted by a higher genetic risk for lupus and is associated with a more severe phenotype in lupus patients 
Annals of the rheumatic diseases  2010;70(1):151-156.
Systemic lupus erythematosus (SLE) is a chronic, multiorgan, autoimmune disease that affects people of all ages and ethnicities.
To explore the relationship between age at disease onset and many of the diverse manifestations of SLE. Additionally, to determine the relationship between age of disease onset and genetic risk in patients with SLE.
The relationship between the age at disease onset and SLE manifestations were explored in a multiracial cohort of 1317 patients. Patients with SLE were genotyped across 19 confirmed genetic susceptibility loci for SLE. Logistic regression was used to determine the relationships between the number of risk alleles present and age of disease onset.
Childhood-onset SLE had higher odds of proteinuria, malar rash, anti-dsDNA antibody, haemolytic anaemia, arthritis and leucopenia (OR=3.03, 2.13, 2.08, 2.50, 1.89, 1.53, respectively; p values <0.0001, 0.0004, 0.0005, 0.0024, 0.0114, 0.045, respectively). In female subjects, the odds of having cellular casts were 2.18 times higher in childhood-onset than in adult-onset SLE (p=0.0027). With age of onset ≥50, the odds of having proteinuria, cellular casts, anti-nRNP antibody, anti-Sm antibody, anti-dsDNA antibody and seizures were reduced. However, late adult-onset patients with SLE have higher odds of developing photosensitivity than early adult-onset patients. Each SLE-susceptibility risk allele carried within the genome of patients with SLE increased the odds of having a childhood-onset disease in a race-specific manner: by an average of 48% in Gullah and 25% in African-Americans, but this was not significant in Hispanic and European-American lupus patients.
The genetic contribution towards predicting early-onset disease in patients with SLE is quantified for the first time. A more severe SLE phenotype is found in patients with early-onset disease in a large multi-racial cohort, independent of gender, race and disease duration.
PMCID: PMC3034281  PMID: 20881011
14.  Confirmation of an Association Between rs6822844 at the IL2–IL21 Region and Multiple Autoimmune Diseases 
Arthritis and rheumatism  2010;62(2):323-329.
Autoimmune diseases often have susceptibility genes in common, indicating similar molecular mechanisms. Increasing evidence suggests that rs6822844 at the IL2–IL21 region is strongly associated with multiple autoimmune diseases in individuals of European descent. This study was undertaken to attempt to replicate the association between rs6822844 and 6 different immune-mediated diseases in non-European populations, and to perform disease-specific and overall meta-analyses using data from previously published studies.
We evaluated case–control associations between rs6822844 and celiac disease (CD) in subjects from Argentina; rheumatoid arthritis (RA), type 1 diabetes mellitus (DM), primary Sjögren's syndrome (SS), and systemic lupus erythematosus (SLE) in subjects from Colombia; and Behçet's disease (BD) in subjects from Turkey. Allele and gene distributions were compared between cases and controls. Meta-analyses were performed using data from the present study and previous studies.
We detected significant associations of rs6822844 with SLE (P = 0.008), type 1 DM (P = 0.014), RA (P = 0.019), and primary SS (P = 0.033) but not with BD (P = 0.34) or CD (P = 0.98). We identified little evidence of population differentiation (FST = 0.01) within cases and controls from Argentina and Colombia, suggesting that association was not influenced by population substructure. Disease-specific meta-analysis indicated significant association for RA (Pmeta = 3.61 × 10–6), inflammatory bowel disease (IBD; Crohn's disease and ulcerative colitis) (Pmeta = 3.48 × 10–12), type 1 DM (Pmeta = 5.33 × 10–5), and CD (Pmeta = 5.30 × 10–3). Overall meta-analysis across all autoimmune diseases reinforced association with rs6822844 (23 data sets; Pmeta = 2.61 × 10–25, odds ratio 0.73 [95% confidence interval 0.69–0.78]).
Our results indicate that there is an association between rs6822844 and multiple auto-immune diseases in non-European populations. Meta-analysis results strongly reinforce this robust association across multiple autoimmune diseases in both European-derived and non-European populations.
PMCID: PMC3028384  PMID: 20112382
15.  T cell CD40LG gene expression and the production of IgG by autologous B cells in systemic lupus erythematosus 
Clinical immunology (Orlando, Fla.)  2009;132(3):362-370.
CD40 ligand (CD40LG), encoded on the X chromosome, has been reported to be overexpressed on lupus Tcells. Herein, we investigated the effect of DNA demethylation on Tcell CD40LG expression and the production of IgG by autologous B cells in lupus. We found normal human T cells transfected with CD40LG induced autologous B cell activation and plasma cell differentiation. Both female lupus CD4+ T cells and demethylating agents treated CD4+ T cells overexpressed CD40LG mRNA. Further, lupus T cells from both genders or demethylated CD4+ T cells from healthy women overstimulated autologous B cells, and this could be reversed with anti-CD40LG Ab in only females. We demonstrated that female lupus CD4+ T cells and demethylated CD4+ T cells express high level of CD40LG and overstimulate B cells to produce IgG. This is due to DNA demethylation and thereby reactivation of the inactive X chromosome in female.
PMCID: PMC2810511  PMID: 19520616
CD40 ligand; DNA methylation; Immunoglobulin G; Systemic lupus; erythematosus
16.  Autoimmunity and Klinefelter’s syndrome: when men have two X chromosomes 
Journal of autoimmunity  2009;33(1):31-34.
Similar to other autoimmune diseases, systemic lupus erythematosus (SLE) predominately affects women. Recent reports demonstrate excess Klinefelter’s among men with SLE and a possible under-representation of Turner’s syndrome among women with SLE as well as a case report of a 46,XX boy with SLE. These data suggest that risk of SLE is related to a gene dose effect for the X chromosome. Such an effect could be mediated by abnormal inactivation of genes on the X chromosome as has been demonstrated for CD40L, or by genetic polymorphism as has been demonstrated for Xq28. On the other hand, a gene dose effect could also be mediated by a gene without an SLE-associated polymorphism in that a gene that avoids X inactivation will have a higher level of expression in persons with two X chromosomes.
PMCID: PMC2885450  PMID: 19464849
Systemic lupus erythematosus; Genetics; X chromosome
17.  Identification of novel genetic susceptibility loci for Behçet's disease using a genome-wide association study 
Behçet's disease is a chronic systemic inflammatory disease that remains incompletely understood. Herein, we perform the first genome-wide association study in Behçet's disease.
Using DNA pooling technology and the Affymetrix 500K arrays, we identified possible candidate gene associations with Behçet's disease in a cohort of 152 Behçet's disease patients and 172 healthy ethnically matched controls. Genetic loci that were identified in the pooling study were genotyped in patients and controls using TaqMan genotyping technology.
We identified genetic associations between Behçet's disease and single-nucleotide polymorphisms (SNPs) in KIAA1529, CPVL, LOC100129342, UBASH3B, and UBAC2 (odds ratio = 2.04, 2.26, 1.84, 1.71, and 1.61, respectively; P value = 4.2 × 10-5, 1.0 × 10-4, 3.0 × 10-4, 1.5 × 10-3, and 5.8 × 10-3, respectively). Among the associated SNPs, the Behçet's disease-risk allele in rs2061634 leads to substitution of serine to cysteine at amino acid position 995 (S995C) in the KIAA1529 protein.
Using an unbiased whole-genome genetic association approach, we identified novel candidate genetic loci that are associated with increased susceptibility for Behçet's disease. These findings will help to better understand the pathogenesis of Behçet's disease and identify novel targets for therapeutic intervention.
PMCID: PMC2714112  PMID: 19442274
18.  Common Variants within MECP2 Confer Risk of Systemic Lupus Erythematosus 
PLoS ONE  2008;3(3):e1727.
Systemic lupus erythematosus (SLE) is a predominantly female autoimmune disease that affects multiple organ systems. Herein, we report on an X-chromosome gene association with SLE. Methyl-CpG-binding protein 2 (MECP2) is located on chromosome Xq28 and encodes for a protein that plays a critical role in epigenetic transcriptional regulation of methylation-sensitive genes. Utilizing a candidate gene association approach, we genotyped 21 SNPs within and around MECP2 in SLE patients and controls. We identify and replicate association between SLE and the genomic element containing MECP2 in two independent SLE cohorts from two ethnically divergent populations. These findings are potentially related to the overexpression of methylation-sensitive genes in SLE.
PMCID: PMC2253825  PMID: 18320046
19.  Current status of lupus genetics 
Over the past 40 years more than 100 genetic risk factors have been defined in systemic lupus erythematosus through a combination of case studies, linkage analyses of multiplex families, and case-control analyses of single genes. Multiple investigators have examined patient cohorts gathered from around the world, and although we doubt that all of the reported associations will be replicated, we have probably already discovered many of the genes that are important in lupus pathogenesis, including those encoding human leukocyte antigen-DR, Fcγ receptor 3A, protein tyrosine phosphatase nonreceptor 22, cytotoxic T lymphocyte associated antigen 4, and mannose-binding lectin. In this review we will present what is known, what is disputed, and what remains to be discovered in the world of lupus genetics.
PMCID: PMC2206359  PMID: 17509159
20.  Calibration of the PROMIS Physical Function Item Bank in Dutch Patients with Rheumatoid Arthritis 
PLoS ONE  2014;9(3):e92367.
To calibrate the Dutch-Flemish version of the PROMIS physical function (PF) item bank in patients with rheumatoid arthritis (RA) and to evaluate cross-cultural measurement equivalence with US general population and RA data.
Data were collected from RA patients enrolled in the Dutch DREAM registry. An incomplete longitudinal anchored design was used where patients completed all 121 items of the item bank over the course of three waves of data collection. Item responses were fit to a generalized partial credit model adapted for longitudinal data and the item parameters were examined for differential item functioning (DIF) across country, age, and sex.
In total, 690 patients participated in the study at time point 1 (T2, N = 489; T3, N = 311). The item bank could be successfully fitted to a generalized partial credit model, with the number of misfitting items falling within acceptable limits. Seven items demonstrated DIF for sex, while 5 items showed DIF for age in the Dutch RA sample. Twenty-five (20%) items were flagged for cross-cultural DIF compared to the US general population. However, the impact of observed DIF on total physical function estimates was negligible.
The results of this study showed that the PROMIS PF item bank adequately fit a unidimensional IRT model which provides support for applications that require invariant estimates of physical function, such as computer adaptive testing and targeted short forms. More studies are needed to further investigate the cross-cultural applicability of the US-based PROMIS calibration and standardized metric.
PMCID: PMC3956923  PMID: 24637885
21.  HRES-1/Rab4 Promotes the Formation of LC3+ Autophagosomes and the Accumulation of Mitochondria during Autophagy 
PLoS ONE  2014;9(1):e84392.
HRES-1/Rab4 is a small GTPase that regulates endocytic recycling. It has been colocalized to mitochondria and the mechanistic target of rapamycin (mTOR), a suppressor of autophagy. Since the autophagosomal membrane component microtubule-associated protein light chain 3 (LC3) is derived from mitochondria, we investigated the impact of HRES-1/Rab4 on the formation of LC3+ autophagosomes, their colocalization with HRES-1/Rab4 and mitochondria, and the retention of mitochondria during autophagy induced by starvation and rapamycin. HRES-1/Rab4 exhibited minimal baseline colocalization with LC3, which was enhanced 22-fold upon starvation or 6-fold upon rapamycin treatment. Colocalization of HRES-1/Rab4 with mitochondria was increased >2-fold by starvation or rapamycin. HRES-1/Rab4 overexpression promoted the colocalization of mitochondria with LC3 upon starvation or rapamycin treatment. A dominant-negative mutant, HRES-1/Rab4S27N had reduced colocalization with LC3 and mitochondria upon starvation but not rapamycin treatment. A constitutively active mutant, HRES-1/Rab4Q72L showed diminished colocalization with LC3 but promoted the partitioning of mitochondria with LC3 upon starvation or rapamycin treatment. Phosphorylation-resistant mutant HRES-1/Rab4S204Q showed diminished colocalization with LC3 but increased partitioning to mitochondria. A newly discovered C-terminally truncated native isoform, HRES-1/Rab41–121, showed enhanced localization to LC3 and mitochondria without starvation or rapamycin treatment. HRES-1/Rab41–121 increased the formation of LC3+ autophagosomes in resting cells, while other isoforms promoted autophagosome formation upon starvation. HRES-1/Rab4, HRES-1/Rab41–121, HRES-1/Rab4Q72L and HRES-1/Rab4S204Q promoted the accumulation of mitochondria during starvation. The specificity of HRES-1/Rab4-mediated mitochondrial accumulation is indicated by its abrogation by dominant-negative HRES-1/Rab4S27N mutation. The formation of interconnected mitochondrial tubular networks was markedly enhanced by HRES-1/Rab4Q72L upon starvation, which may contribute to the retention of mitochondria during autophagy. The present study thus indicates that HRES-1/Rab4 regulates autophagy through promoting the formation of LC3+ autophagosomes and the preservation of mitochondria.
PMCID: PMC3880286  PMID: 24404161
22.  SMAD3 rs17228212 Gene Polymorphism Is Associated with Reduced Risk to Cerebrovascular Accidents and Subclinical Atherosclerosis in Anti-CCP Negative Spanish Rheumatoid Arthritis Patients 
PLoS ONE  2013;8(10):e77695.
Rheumatoid arthritis (RA) is a complex polygenic inflammatory disease associated with accelerated atherosclerosis and increased risk of cardiovascular (CV) disease. Previous genome-wide association studies have described SMAD3 rs17228212 polymorphism as an important signal associated with CV events. The aim of the present study was to evaluate for the first time the relationship between this gene polymorphism and the susceptibility to CV manifestations and its potential association with the presence of subclinical atherosclerosis assessed by the evaluation of carotid intima-media thickness (cIMT) in patients with RA.
One thousand eight hundred and ninety-seven patients fulfilling classification criteria for RA were genotyped for SMAD3 rs17228212 gene polymorphism through TaqMan genotyping assay. Also, subclinical atherosclerosis determined by the assessment of cIMT was analyzed in a subgroup of these patients by carotid ultrasonography.
No statistically significant differences were observed when allele frequencies of RA patients with or without CV events were compared. Nevertheless, when RA patients were stratified according to anti-cyclic citrullinated peptide (anti-CCP) status, we found that in RA patients who were negative for anti-CCP antibodies, the presence of C allele of SMAD3 rs17228212 polymorphism conferred a protective effect against the risk of cerebrovascular accident (CVA) after adjustment for demographic and classic CV risk factors (HR [95%CI]=0.36 [0.14–0.94], p=0.038) in a Cox regression model. Additionally, correlation between the presence of C allele of SMAD3 rs17228212 polymorphism and lower values of cIMT was found after adjustment for demographic and classic CV risk factors (p-value=0.0094) in the anti-CCP negative RA patients.
Our results revealed that SMAD3 rs17228212 gene variant is associated with lower risk of CVA and less severe subclinical atherosclerosis in RA patients negative for anti-CCP antibodies. These findings may have importance to establish predictive models of CV disease in RA patients according to anti-CCP status.
PMCID: PMC3804609  PMID: 24204921
23.  Trans-Ancestral Studies Fine Map the SLE-Susceptibility Locus TNFSF4 
PLoS Genetics  2013;9(7):e1003554.
We previously established an 80 kb haplotype upstream of TNFSF4 as a susceptibility locus in the autoimmune disease SLE. SLE-associated alleles at this locus are associated with inflammatory disorders, including atherosclerosis and ischaemic stroke. In Europeans, the TNFSF4 causal variants have remained elusive due to strong linkage disequilibrium exhibited by alleles spanning the region. Using a trans-ancestral approach to fine-map the locus, utilising 17,900 SLE and control subjects including Amerindian/Hispanics (1348 cases, 717 controls), African-Americans (AA) (1529, 2048) and better powered cohorts of Europeans and East Asians, we find strong association of risk alleles in all ethnicities; the AA association replicates in African-American Gullah (152,122). The best evidence of association comes from two adjacent markers: rs2205960-T (P = 1.71×10−34, OR = 1.43[1.26–1.60]) and rs1234317-T (P = 1.16×10−28, OR = 1.38[1.24–1.54]). Inference of fine-scale recombination rates for all populations tested finds the 80 kb risk and non-risk haplotypes in all except African-Americans. In this population the decay of recombination equates to an 11 kb risk haplotype, anchored in the 5′ region proximal to TNFSF4 and tagged by rs2205960-T after 1000 Genomes phase 1 (v3) imputation. Conditional regression analyses delineate the 5′ risk signal to rs2205960-T and the independent non-risk signal to rs1234314-C. Our case-only and SLE-control cohorts demonstrate robust association of rs2205960-T with autoantibody production. The rs2205960-T is predicted to form part of a decameric motif which binds NF-κBp65 with increased affinity compared to rs2205960-G. ChIP-seq data also indicate NF-κB interaction with the DNA sequence at this position in LCL cells. Our research suggests association of rs2205960-T with SLE across multiple groups and an independent non-risk signal at rs1234314-C. rs2205960-T is associated with autoantibody production and lymphopenia. Our data confirm a global signal at TNFSF4 and a role for the expressed product at multiple stages of lymphocyte dysregulation during SLE pathogenesis. We confirm the validity of trans-ancestral mapping in a complex trait.
Author Summary
Systemic lupus erythematosus (SLE/lupus) is a complex disease in which the body's immune cells cause inflammation in one or more systems to cause the associated morbidity. Hormones, the environment and genes are all causal contributors to SLE and over the past several years the genetic component of SLE has been firmly established. Several genes which are regulators of the immune system are associated with disease risk. We have established one of these, the tumour-necrosis family superfamily member 4 (TNFSF4) gene, as a lupus susceptibility gene in Northern Europeans. A major obstacle in pinpointing the marker(s) at TNFSF4 which best explain the risk of SLE has been the strong correlation (linkage disequilibrium, LD) between adjacent markers across the TNFSF4 region in this population. To address this, we have typed polymorphisms in several populations in addition to the European groups. The mixed ancestry of these populations gives a different LD pattern than that found in Europeans, presenting a method of pinpointing the section of the TNFSF4 region which results in SLE susceptibility. The Non-European populations have allowed identification of a polymorphism likely to regulate expression of TNFSF4 to increase susceptibility to SLE.
PMCID: PMC3715547  PMID: 23874208
24.  Systemic Lupus Erythematosus and Vitamin D Deficiency Are Associated with Shorter Telomere Length among African Americans: A Case-Control Study 
PLoS ONE  2013;8(5):e63725.
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease that disproportionately affects African American females. The causes of SLE are unknown but postulated to be a combination of genetic predisposition and environmental triggers. Vitamin D deficiency is one of the possible environmental triggers. In this study we evaluated relationships between vitamin D status, cellular aging (telomere length) and anti-telomere antibodies among African American Gullah women with SLE. The study population included African American female SLE patients and unaffected controls from the Sea Island region of South Carolina. Serum 25-hydroxyvitamin D levels were measured using a nonchromatographic radioimmunoassay. Telomere length was measured in genomic DNA of peripheral blood mononuclear cells (PBMCs) by monochrome multiplex quantitative PCR. Anti-telomere antibody levels were measured by enzyme-linked immunosorbent assay (ELISA). Patients with SLE had significantly shorter telomeres and higher anti-telomere antibody titers compared to age- and gender-matched unaffected controls. There was a positive correlation between anti-telomere antibody levels and disease activity among patients and a significant correlation of shorter telomeres with lower 25-hydroxyvitamin D levels in both patients and controls. In follow-up examination of a subset of the patients, the patients who remained vitamin D deficient tended to have shorter telomeres than those patients whose 25-hydroxyvitamin D levels were repleted. Increasing 25-hydroxyvitamin D levels in African American patients with SLE may be beneficial in maintaining telomere length and preventing cellular aging. Moreover, anti-telomere antibody levels may be a promising biomarker of SLE status and disease activity.
PMCID: PMC3658981  PMID: 23700431
25.  Analysis of autosomal genes reveals gene–sex interactions and higher total genetic risk in men with systemic lupus erythematosus 
Annals of the Rheumatic Diseases  2011;71(5):694-699.
Systemic lupus erythematosus (SLE) is a sexually dimorphic autoimmune disease which is more common in women, but affected men often experience a more severe disease. The genetic basis of sexual dimorphism in SLE is not clearly defined. A study was undertaken to examine sex-specific genetic effects among SLE susceptibility loci.
A total of 18 autosomal genetic susceptibility loci for SLE were genotyped in a large set of patients with SLE and controls of European descent, consisting of 5932 female and 1495 male samples. Sex-specific genetic association analyses were performed. The sex–gene interaction was further validated using parametric and nonparametric methods. Aggregate differences in sex-specific genetic risk were examined by calculating a cumulative genetic risk score for SLE in each individual and comparing the average genetic risk between male and female patients.
A significantly higher cumulative genetic risk for SLE was observed in men than in women. (P = 4.52×10−8) A significant sex–gene interaction was seen primarily in the human leucocyte antigen (HLA) region but also in IRF5, whereby men with SLE possess a significantly higher frequency of risk alleles than women. The genetic effect observed in KIAA1542 is specific to women with SLE and does not seem to have a role in men.
The data indicate that men require a higher cumulative genetic load than women to develop SLE. These observations suggest that sex bias in autoimmunity could be influenced by autosomal genetic susceptibility loci.
PMCID: PMC3324666  PMID: 22110124

Results 1-25 (42)