PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("Qian, inoxia")
1.  Association of a functional IRF7 variant with systemic lupus erythematosus 
Arthritis and Rheumatism  2011;63(3):749-754.
Objective
Previous genome wide association study conducted in a population of European ancestry identified rs4963128, a KIAA1542 SNP 23kb telomeric to IRF7, in strong association with SLE. This study was undertaken to investigate whether genetic polymorphism within IRF7 is a risk factor for the development of SLE.
Methods
We genotyped one KIAA1542 SNP rs4963128 and one IRF7 SNP rs1131665 (Q412R) in an Asian population (cases vs. controls: 1302 vs.1479) to assess their association with SLE using custom-designed Beadstation Infinium II platform (Illumina). Subsequently, rs1131665 was further genotyped in independent panels of Chinese (528 vs.527), European American (EA) (446 vs.461) and African American (AA) (159 vs.115) by Taqman genotyping assay to seek confirmation of association in various ethnic groups. Luciferase reporter assay was used to assess the effect of Q412R polymorphism on the activation of IRF7.
Results
Consistent association of rs1131665 (Q412R) with SLE was identified in Asian, EA and AA populations (case vs. control: 2435 vs. 2582; Pmeta = 6.18×10−6, OR = 1.42[1.22–1.65]). Expression of IRF7 412Q risk allele resulted in a 2-fold increase in ISRE transcriptional activity compared with expression of IRF7 412R (P = 0.0003), suggesting IRF7 412Q confers elevated IRF7 activity and may therefore affect downstream IFN pathway.
Conclusion
We showed that the major allele of a nonsynonymous SNP rs1131665 (412Q) in IRF7 confers elevated IRF7 activation and predisposes to the development of SLE in multiple ethnic groups. This result provides direct genetic evidence supporting IRF7 may be a risk gene for human SLE.
doi:10.1002/art.30193
PMCID: PMC3063317  PMID: 21360504
2.  Non-synonymous variant (Gly307Ser) in CD226 is associated with susceptibility to multiple autoimmune diseases 
Rheumatology (Oxford, England)  2010;49(7):1239-1244.
Objectives. Recently, a non-synonymous (Gly307Ser) variant, rs763361, in the CD226 gene was shown to be associated with multiple autoimmune diseases (ADs) in European Caucasian populations. However, shared autoimmunity with CD226 has not been evaluated in non-European populations. The aim of the present study is to assess the association of this single nucleotide polymorphism (SNP) with ADs in non-European populations.
Methods. To replicate this association in non-European populations, we evaluated case–control association between rs763361 and coeliac disease (CED) samples from Argentina; SLE, RA, type-1 diabetes (T1D) and primary SS (pSS) from Colombia; and SLE samples from China and Japan. We genotyped rs763361 and evaluated its genetic association with multiple ADs, using χ2-test. For each association, odds ratio (OR) and 95% CI were calculated.
Results. We show that rs763361 is significantly associated with Argentinean CED (P = 0.0009, OR = 1.60). We also observed a trend of possible association with Chinese SLE (P = 0.01, OR = 1.19), RA (P = 0.047, OR = 1.25), SLE (P = 0.0899, OR = 1.24) and pSS (P = 0.09, OR = 1.33) in Colombians. Meta-analyses for SLE (using our three populations) and T1D (our population and three published populations) yielded significant association with rs763361, P = 0.009 (OR = 1.16) and P = 1.1.46 × 10−9 (OR = 1.14), respectively.
Conclusions. Our results demonstrate that the coding variant rs763361 in CD226 gene is associated with multiple ADs in non-European populations.
doi:10.1093/rheumatology/kep470
PMCID: PMC2909799  PMID: 20338887
CD226; Autoimmunity; Latin-America; Asia
3.  A Functional Variant in MicroRNA-146a Promoter Modulates Its Expression and Confers Disease Risk for Systemic Lupus Erythematosus 
PLoS Genetics  2011;7(6):e1002128.
Systemic lupus erythematosus (SLE) is a complex autoimmune disease with a strong genetic predisposition, characterized by an upregulated type I interferon pathway. MicroRNAs are important regulators of immune homeostasis, and aberrant microRNA expression has been demonstrated in patients with autoimmune diseases. We recently identified miR-146a as a negative regulator of the interferon pathway and linked the abnormal activation of this pathway to the underexpression of miR-146a in SLE patients. To explore why the expression of miR-146a is reduced in SLE patients, we conducted short parallel sequencing of potentially regulatory regions of miR-146a and identified a novel genetic variant (rs57095329) in the promoter region exhibiting evidence for association with SLE that was replicated independently in 7,182 Asians (Pmeta = 2.74×10−8, odds ratio = 1.29 [1.18–1.40]). The risk-associated G allele was linked to reduced expression of miR-146a in the peripheral blood leukocytes of the controls. Combined functional assays showed that the risk-associated G allele reduced the protein-binding affinity and activity of the promoter compared with those of the promoter containing the protective A allele. Transcription factor Ets-1, encoded by the lupus-susceptibility gene ETS1, identified in recent genome-wide association studies, binds near this variant. The manipulation of Ets-1 levels strongly affected miR-146a promoter activity in vitro; and the knockdown of Ets-1, mimicking its reduced expression in SLE, directly impaired the induction of miR-146a. We also observed additive effects of the risk alleles of miR-146a and ETS1. Our data identified and confirmed an association between a functional promoter variant of miR-146a and SLE. This risk allele had decreased binding to transcription factor Ets-1, contributing to reduced levels of miR-146a in SLE patients.
Author Summary
Genome-wide association studies have identified quite a number of susceptibility loci associated with complex diseases such as systemic lupus erythematosus (SLE). However, for most of them, the intrinsic link between genetic variation and disease mechanism is not fully understood. SLE is characterized by a significantly upregulated type I interferon (IFN) pathway, and we have previously reported that underexpression of a microRNA, miR-146a, contributes to alterations in the type I IFN pathway in lupus patients. Here we identified a novel genetic variant in the promoter region of miR-146a that is directly related to reduced expression of miR-146a and is associated with SLE susceptibility. The risk allele of this variant confers weaker binding affinity for Ets-1, which is a transcription factor encoded by a lupus susceptibility gene found in recent GWAS. These findings suggest that reduced expression of Ets-1 and its reduced binding affinity to the miR-146a promoter both may contribute to low levels of this microRNA in SLE patients, which may contribute to the upregulated type I IFN pathway in these patients. To our knowledge, this is also the first piece of evidence showing association between a genetic variant in a promoter region of a miRNA gene and a human disease.
doi:10.1371/journal.pgen.1002128
PMCID: PMC3128113  PMID: 21738483
4.  Association of Genetic Variants in Complement Factor H and Factor H-Related Genes with Systemic Lupus Erythematosus Susceptibility 
PLoS Genetics  2011;7(5):e1002079.
Systemic lupus erythematosus (SLE), a complex polygenic autoimmune disease, is associated with increased complement activation. Variants of genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) within the chromosome 1q32 locus linked to SLE, have been associated with multiple human diseases and may contribute to dysregulated complement activation predisposing to SLE. We assessed 60 SNPs covering the CFH-CFHRs region for association with SLE in 15,864 case-control subjects derived from four ethnic groups. Significant allelic associations with SLE were detected in European Americans (EA) and African Americans (AA), which could be attributed to an intronic CFH SNP (rs6677604, in intron 11, Pmeta = 6.6×10−8, OR = 1.18) and an intergenic SNP between CFHR1 and CFHR4 (rs16840639, Pmeta = 2.9×10−7, OR = 1.17) rather than to previously identified disease-associated CFH exonic SNPs, including I62V, Y402H, A474A, and D936E. In addition, allelic association of rs6677604 with SLE was subsequently confirmed in Asians (AS). Haplotype analysis revealed that the underlying causal variant, tagged by rs6677604 and rs16840639, was localized to a ∼146 kb block extending from intron 9 of CFH to downstream of CFHR1. Within this block, the deletion of CFHR3 and CFHR1 (CFHR3-1Δ), a likely causal variant measured using multiplex ligation-dependent probe amplification, was tagged by rs6677604 in EA and AS and rs16840639 in AA, respectively. Deduced from genotypic associations of tag SNPs in EA, AA, and AS, homozygous deletion of CFHR3-1Δ (Pmeta = 3.2×10−7, OR = 1.47) conferred a higher risk of SLE than heterozygous deletion (Pmeta = 3.5×10−4, OR = 1.14). These results suggested that the CFHR3-1Δ deletion within the SLE-associated block, but not the previously described exonic SNPs of CFH, might contribute to the development of SLE in EA, AA, and AS, providing new insights into the role of complement regulators in the pathogenesis of SLE.
Author Summary
Systemic lupus erythematosus (SLE) is a complex autoimmune disease, associated with increased complement activation. Previous studies have provided evidence for the presence of SLE susceptibility gene(s) in the chromosome 1q31-32 locus. Within 1q32, genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) may contribute to the development of SLE, because genetic variants of these genes impair complement regulation and predispose to various human diseases. In this study, we tested association of genetic variants in the region containing CFH and CFHRs with SLE. We identified genetic variants predisposing to SLE in European American, African American, and Asian populations, which might be attributed to the deletion of CFHR3 and CFHR1 genes but not previously identified disease-associated exonic variants of CFH. This study provides the first evidence for consistent association between CFH/CFHRs and SLE across multi-ancestral SLE datasets, providing new insights into the role of complement regulators in the pathogenesis of SLE.
doi:10.1371/journal.pgen.1002079
PMCID: PMC3102741  PMID: 21637784

Results 1-4 (4)