PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-22 (22)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2 
Nature  2013;502(7469):105-109.
Circulating lymphocytes continuously enter lymph nodes (LNs) for immune surveillance through specialised blood vessels named high endothelial venules (HEVs)1–5, a process that increases dramatically during immune responses. How HEVs permit lymphocyte transmigration while maintaining vascular integrity is unknown. Here, we report a role for the transmembrane O-glycoprotein podoplanin (PDPN, also known as gp38 and T1α)6–8 in maintaining HEV barrier function. Mice with postnatal deletion of PDPN lost HEV integrity and exhibited spontaneous bleeding in mucosal LNs, and bleeding in the draining peripheral LN after immunisation. Blocking lymphocyte homing rescued bleeding, indicating that PDPN is required to protect the barrier function of HEVs during lymphocyte trafficking. Further analyses demonstrated that PDPN expressed on fibroblastic reticular cells (FRCs)7, which surround HEVs, functions as an activating ligand for platelet C-type lectin-like receptor 2 (CLEC-2)9,10. Mice lacking FRC PDPN or platelet CLEC-2 exhibited significantly reduced levels of VE-cadherin (VE-cad), which is essential for overall vascular integrity11,12, on HEVs. Infusion of wild-type (WT) platelets restored HEV integrity in CLEC-2-deficient mice. Activation of CLEC-2 induced release of sphingosine-1-phosphate (S1P)13,14 from platelets, which promoted expression of VE-cad on HEVs ex vivo. Furthermore, draining peripheral LNs of immunised mice lacking S1P had impaired HEV integrity similar to PDPN- and CLEC-2-deficient mice. These data demonstrate that local S1P release after PDPN-CLEC-2-mediated platelet activation is critical for HEV integrity during immune responses.
doi:10.1038/nature12501
PMCID: PMC3791160  PMID: 23995678
2.  Differential regulation of human and murine P-selectin expression and function in vivo 
The Journal of Experimental Medicine  2010;207(13):2975-2987.
Basal and inducible expression of human P-selectin in transgenic mice differs from that of murine P-selectin, resulting in distinct functions.
Leukocytes roll on P-selectin after its mobilization from secretory granules to the surfaces of platelets and endothelial cells. Tumor necrosis factor (TNF), IL-1β, and lipopolysaccharide increase synthesis of P-selectin in murine but not in human endothelial cells. To explore the physiological significance of this difference in gene regulation, we made transgenic mice bearing the human Selp gene and crossed them with mice lacking murine P-selectin (Selp−/−). The transgenic mice constitutively expressed human P-selectin in platelets, endothelial cells, and macrophages. P-selectin mediated comparable neutrophil migration into the inflamed peritoneum of transgenic and wild-type (WT) mice. Leukocytes rolled similarly on human or murine P-selectin on activated murine platelets and in venules of the cremaster muscle subjected to trauma. However, TNF increased murine P-selectin in venules, slowing rolling and increasing adhesion, whereas it decreased human P-selectin, accelerating rolling and decreasing adhesion. Both P- and E-selectin mediated basal rolling in the skin of WT mice, but E-selectin dominated rolling in transgenic mice. During contact hypersensitivity, murine P-selectin messenger (m) RNA was up-regulated and P-selectin was essential for leukocyte recruitment. However, human P-selectin mRNA was down-regulated and P-selectin contributed much less to leukocyte recruitment. These findings reveal functionally significant differences in basal and inducible expression of human and murine P-selectin in vivo.
doi:10.1084/jem.20101545
PMCID: PMC3005233  PMID: 21149548
3.  Signal-dependent distribution of cell surface P-selectin in clathrin-coated pits affects leukocyte rolling under flow 
The Journal of Cell Biology  2003;163(6):1385-1395.
Flowing leukocytes roll on P-selectin that is mobilized from secretory granules to the surfaces of endothelial cells after stimulation with histamine or thrombin. Before it is internalized, P-selectin clusters in clathrin-coated pits, which enhances its ability to support leukocyte rolling. We found that thrombin and histamine induced comparable exocytosis of P-selectin on endothelial cells. However, compared with histamine, thrombin decreased the recruitment of P-selectin into clathrin-coated pits, slowed the internalization of P-selectin, and reduced the number and stability of neutrophils rolling on P-selectin. Significantly more RhoA was activated in thrombin- than in histamine-stimulated endothelial cells. Inhibitors of RhoA or its effector, Rho kinase, reversed thrombin's ability to inhibit the internalization and adhesive function of P-selectin in endothelial cells. Experiments with transfected cells confirmed that the inhibitory actions of thrombin and Rho kinase on P-selectin required its cytoplasmic domain. Thus, a signaling event affects both the function and clearance of a protein that enters the constitutive clathrin-mediated endocytic pathway.
doi:10.1083/jcb.200307178
PMCID: PMC2173709  PMID: 14676308
selectin; endocytosis; endothelial cell; thrombin; RhoA
4.  Rolling cell adhesion 
Rolling adhesion on vascular surfaces is the first step in recruiting circulating leukocytes, hematopoietic progenitors, or platelets to specific organs or to sites of infection or injury. Rolling requires the rapid yet balanced formation and dissociation of adhesive bonds in the challenging environment of blood flow. This review explores how structurally distinct adhesion receptors interact through mechanically regulated kinetics with their ligands to meet these challenges. Remarkably, increasing force applied to adhesive bonds first prolongs their lifetimes (catch bonds) and then shortens their lifetimes (slip bonds). Catch bonds mediate the counterintuitive phenomenon of flow-enhanced rolling adhesion. Force-regulated disruptions of receptor interdomain or intradomain interactions remote from the ligand-binding surface generate catch bonds. Adhesion receptor dimerization, clustering in membrane domains, and interactions with the cytoskeleton modulate the forces applied to bonds. Both inside-out and outside-in cell signals regulate these processes.
doi:10.1146/annurev.cellbio.042308.113238
PMCID: PMC3557855  PMID: 19575676
selectin; integrin; glycoprotein Ib; von Willebrand factor; PSGL-1; catch bond; leukocyte; platelet; endothelial cell
5.  Rolling back neutrophil adhesion 
Nature immunology  2010;11(4):282-284.
Neutrophils and other cells secrete pentraxin 3, which promotes innate immunity by binding to pathogens and activating complement. New work shows that pentraxin 3 also limits neutrophil recruitment by inhibiting rolling on P-selectin in inflamed venules.
doi:10.1038/ni0410-282
PMCID: PMC3556925  PMID: 20300135
6.  Differential expression of immunomodulatory galectin-1 in peripheral leukocytes and adult tissues and its cytosolic organization in striated muscle 
Glycobiology  2010;20(5):507-520.
Galectin-1 (Gal-1) is important in immune function and muscle regeneration, but its expression and localization in adult tissues and primary leukocytes remain unclear. To address this, we generated a specific monoclonal antibody against Gal-1, termed αhGal-1, and defined a sequential peptide epitope that it recognizes, which is preserved in human and porcine Gal-1, but not in murine Gal-1. Using αhGal-1, we found that Gal-1 is expressed in a wide range of porcine tissues, including striated muscle, liver, lung, brain, kidney, spleen, and intestine. In most types of cells, Gal-1 exhibits diffuse cytosolic expression, but in cells within the splenic red pulp, Gal-1 showed both cytosolic and nuclear localization. Gal-1 was also expressed in arterial walls and exhibited prominent cytosolic and nuclear staining in cultured human endothelial cells. However, human peripheral leukocytes and promyelocytic HL60 cells lack detectable Gal-1 and also showed very low levels of Gal-1 mRNA. In striking contrast, Gal-1 exhibited an organized cytosolic staining pattern within striated muscle tissue of cardiac and skeletal muscle and colocalized with sarcomeric actin on I bands. These results provide insights into previously defined roles for Gal-1 in inflammation, immune regulation and muscle biology.
doi:10.1093/glycob/cwp203
PMCID: PMC2900886  PMID: 20053628
galectin-1 expression; leukocytes; monoclonal antibody; muscle; tissue localization
7.  Galectin-1 signaling in leukocytes requires expression of complex-type N-glycans 
Glycobiology  2008;18(10):770-778.
Dimeric galectin-1 (dGal-1) is a homodimeric lectin with multiple proposed functions. Although dGal-1 binds to diverse glycans, it is unclear whether dGal-1 preferentially binds to specific subsets of glycans on cell surfaces to transmit signals. To explore this question, we selectively inhibited major glycan biosynthetic pathways in human HL60, Molt-4, and Jurkat cells. Inhibition of N-glycan processing blocked surface binding of dGal-1 and prevented dGal-1-induced Ca2+ mobilization and phosphatidylserine exposure. By contrast, inhibition of O-glycan or glycosphingolipid biosynthesis did not affect dGal-1 binding or dGal-1-induced Ca2+ mobilization and phosphatidylserine exposure. These results demonstrate that dGal-1 preferentially binds to and signals through glycoproteins containing complex-type N-glycans in at least some leukocyte subsets.
doi:10.1093/glycob/cwn066
PMCID: PMC2733774  PMID: 18633135
galectin; inflammation; leukocytes; N-glycans; signaling
8.  CD73-generated Adenosine Restricts Lymphocyte Migration into Draining Lymph Nodes1 
After an inflammatory stimulus, lymphocyte migration into draining lymph nodes increases dramatically to facilitate the encounter of naïve T cells with antigen-loaded dendritic cells. Here we show that CD73 (ecto-5′-nucleotidase) plays an important role in regulating this process. CD73 produces adenosine from AMP and is expressed on high endothelial venules (HEV) and subsets of lymphocytes. Cd73-/- mice have normal sized lymphoid organs in the steady state, but approximately 1.5-fold larger draining lymph nodes and 2.5-fold increased rates of L-selectin-dependent lymphocyte migration from the blood through HEV compared to wild type mice 24 hours after LPS administration. Migration rates of cd73+/+ and cd73-/- lymphocytes into lymph nodes of wild type mice are equal, suggesting that it is CD73 on HEV that regulates lymphocyte migration into draining lymph nodes. The A2B receptor is a likely target of CD73-generated adenosine, as it is the only adenosine receptor expressed on the HEV-like cell line KOP2.16 and it is up regulated by TNFα. Furthermore, increased lymphocyte migration into draining lymph nodes of cd73-/- mice is largely normalized by pretreatment with the selective A2B receptor agonist BAY 60-6583. Adenosine receptor signaling to restrict lymphocyte migration across HEV may be an important mechanism to control the magnitude of an inflammatory response.
PMCID: PMC2709497  PMID: 18424752
Rodent; Cell Trafficking; Spleen and lymph nodes; Inflammation
9.  A role for leukocyte-endothelial adhesion mechanisms in epilepsy 
Nature medicine  2008;14(12):1377-1383.
The mechanisms involved in the pathogenesis of epilepsy, a chronic neurological disorder that affects approximately 1 percent of the world population, are not well understood1–3. Using a mouse model of epilepsy, we show that seizures induce elevated expression of vascular cell adhesion molecules and enhanced leukocyte rolling and arrest in brain vessels mediated by the leukocyte mucin P-selectin glycoprotein ligand-1 (PSGL-1) and leukocyte integrins α4β1 and αLβ2. Inhibition of leukocyte-vascular interactions either with blocking antibodies, or in mice genetically deficient in functional PSGL-1, dramatically reduced seizures. Treatment with blocking antibodies following acute seizures prevented the development of epilepsy. Neutrophil depletion also inhibited acute seizure induction and chronic spontaneous recurrent seizures. Blood-brain barrier (BBB) leakage, which is known to enhance neuronal excitability, was induced by acute seizure activity but was prevented by blockade of leukocyte-vascular adhesion, suggesting a pathogenetic link between leukocyte-vascular interactions, BBB damage and seizure generation. Consistent with potential leukocyte involvement in the human, leukocytes were more abundant in brains of epileptics than of controls. Our results suggest leukocyte-endothelial interaction as a potential target for the prevention and treatment of epilepsy.
doi:10.1038/nm.1878
PMCID: PMC2710311  PMID: 19029985
10.  Galectin-1 Induces Reversible Phosphatidylserine Exposure at the Plasma Membrane 
Molecular Biology of the Cell  2009;20(5):1408-1418.
Cells normally undergo physiological turnover through the induction of apoptosis and phagocytic removal, partly through exposure of cell surface phosphatidylserine (PS). In contrast, neutrophils appear to possess apoptosis-independent mechanisms of removal. Here we show that Galectin-1 (Gal-1) induces PS exposure independent of alterations in mitochondrial potential, caspase activation, or cell death. Furthermore, Gal-1–induced PS exposure reverts after Gal-1 removal without altering cell viability. Gal-1–induced PS exposure is uniquely microdomain restricted, yet cells exposing PS do not display evident alterations in membrane morphology nor do they exhibit bleb formation, typically seen in apoptotic cells. Long-term exposure to Gal-1 prolongs PS exposure with no alteration in cell cycle progression or cell growth. These results demonstrate that Gal-1–induced PS exposure and subsequent phagocytic removal of living cells represents a new paradigm in cellular turnover.
doi:10.1091/mbc.E08-07-0786
PMCID: PMC2649277  PMID: 19116313
11.  Mechanisms for Flow-Enhanced Cell Adhesion 
Annals of biomedical engineering  2008;36(4):604-621.
Cell adhesion is mediated by specific receptor—ligand bonds. In several biological systems, increasing flow has been observed to enhance cell adhesion despite the increasing dislodging fluid shear forces. Flow-enhanced cell adhesion includes several aspects: flow augments the initial tethering of flowing cells to a stationary surface, slows the velocity and increases the regularity of rolling cells, and increases the number of rollingly adherent cells. Mechanisms for this intriguing phenomenon may include transport-dependent acceleration of bond formation and force-dependent deceleration of bond dissociation. The former includes three distinct transport modes: sliding of cell bottom on the surface, Brownian motion of the cell, and rotational diffusion of the interacting molecules. The latter involves a recently demonstrated counterintuitive behavior called catch bonds where force prolongs rather than shortens the lifetimes of receptor—ligand bonds. In this article, we summarize our recently published data that used dimensional analysis and mutational analysis to elucidate the above mechanisms for flow-enhanced leukocyte adhesion mediated by L-selectinligand interactions.
doi:10.1007/s10439-008-9464-5
PMCID: PMC2633097  PMID: 18299992
Shear stress; Catch bonds; Tethering rate; Selectins; On-rate; Off-rate
12.  Platelet glycoprotein Ibα forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF 
The Journal of Clinical Investigation  2008;118(9):3195-3207.
Arterial blood flow enhances glycoprotein Ibα (GPIbα) binding to vWF, which initiates platelet adhesion to injured vessels. Mutations in the vWF A1 domain that cause type 2B von Willebrand disease (vWD) reduce the flow requirement for adhesion. Here we show that increasing force on GPIbα/vWF bonds first prolonged (“catch”) and then shortened (“slip”) bond lifetimes. Two type 2B vWD A1 domain mutants, R1306Q and R1450E, converted catch bonds to slip bonds by prolonging bond lifetimes at low forces. Steered molecular dynamics simulations of GPIbα dissociating from the A1 domain suggested mechanisms for catch bonds and their conversion by the A1 domain mutations. Catch bonds caused platelets and GPIbα-coated microspheres to roll more slowly on WT vWF and WT A1 domains as flow increased from suboptimal levels, explaining flow-enhanced rolling. Longer bond lifetimes at low forces eliminated the flow requirement for rolling on R1306Q and R1450E mutant A1 domains. Flowing platelets agglutinated with microspheres bearing R1306Q or R1450E mutant A1 domains, but not WT A1 domains. Therefore, catch bonds may prevent vWF multimers from agglutinating platelets. A disintegrin and metalloproteinase with a thrombospondin type 1 motif–13 (ADAMTS-13) reduced platelet agglutination with microspheres bearing a tridomain A1A2A3 vWF fragment with the R1450E mutation in a shear-dependent manner. We conclude that in type 2B vWD, prolonged lifetimes of vWF bonds with GPIbα on circulating platelets may allow ADAMTS-13 to deplete large vWF multimers, causing bleeding.
doi:10.1172/JCI35754
PMCID: PMC2518822  PMID: 18725999
13.  Flow-enhanced adhesion regulated by a selectin interdomain hinge 
The Journal of Cell Biology  2006;174(7):1107-1117.
L-selectin requires a threshold shear to enable leukocytes to tether to and roll on vascular surfaces. Transport mechanisms govern flow-enhanced tethering, whereas force governs flow-enhanced rolling by prolonging the lifetimes of L-selectin–ligand complexes (catch bonds). Using selectin crystal structures, molecular dynamics simulations, site-directed mutagenesis, single-molecule force and kinetics experiments, Monte Carlo modeling, and flow chamber adhesion studies, we show that eliminating a hydrogen bond to increase the flexibility of an interdomain hinge in L-selectin reduced the shear threshold for adhesion via two mechanisms. One affects the on-rate by increasing tethering through greater rotational diffusion. The other affects the off-rate by strengthening rolling through augmented catch bonds with longer lifetimes at smaller forces. By forcing open the hinge angle, ligand may slide across its interface with L-selectin to promote rebinding, thereby providing a mechanism for catch bonds. Thus, allosteric changes remote from the ligand-binding interface regulate both bond formation and dissociation.
doi:10.1083/jcb.200606056
PMCID: PMC2064400  PMID: 17000883
14.  Correction 
The Journal of Cell Biology  2005;168(6):975.
doi:10.1083/jcb.200403144021805c
PMCID: PMC2171779
15.  Catch bonds govern adhesion through L-selectin at threshold shear 
The Journal of Cell Biology  2004;166(6):913-923.
Flow-enhanced cell adhesion is an unexplained phenomenon that might result from a transport-dependent increase in on-rates or a force-dependent decrease in off-rates of adhesive bonds. L-selectin requires a threshold shear to support leukocyte rolling on P-selectin glycoprotein ligand-1 (PSGL-1) and other vascular ligands. Low forces decrease L-selectin–PSGL-1 off-rates (catch bonds), whereas higher forces increase off-rates (slip bonds). We determined that a force-dependent decrease in off-rates dictated flow-enhanced rolling of L-selectin–bearing microspheres or neutrophils on PSGL-1. Catch bonds enabled increasing force to convert short-lived tethers into longer-lived tethers, which decreased rolling velocities and increased the regularity of rolling steps as shear rose from the threshold to an optimal value. As shear increased above the optimum, transitions to slip bonds shortened tether lifetimes, which increased rolling velocities and decreased rolling regularity. Thus, force-dependent alterations of bond lifetimes govern L-selectin–dependent cell adhesion below and above the shear optimum. These findings establish the first biological function for catch bonds as a mechanism for flow-enhanced cell adhesion.
doi:10.1083/jcb.200403144
PMCID: PMC2172126  PMID: 15364963
leukocyte; PSGL-1; inflammation; lymphocyte homing; selectin
16.  Defective angiogenesis and fatal embryonic hemorrhage in mice lacking core 1–derived O-glycans 
The Journal of Cell Biology  2004;164(3):451-459.
The core 1 β1-3-galactosyltransferase (T-synthase) transfers Gal from UDP-Gal to GalNAcα1-Ser/Thr (Tn antigen) to form the core 1 O-glycan Galβ1-3GalNAcα1-Ser/Thr (T antigen). The T antigen is a precursor for extended and branched O-glycans of largely unknown function. We found that wild-type mice expressed the NeuAcα2-3Galβ1-3GalNAcα1-Ser/Thr primarily in endothelial, hematopoietic, and epithelial cells during development. Gene-targeted mice lacking T-synthase instead expressed the nonsialylated Tn antigen in these cells and developed brain hemorrhage that was uniformly fatal by embryonic day 14. T-synthase–deficient brains formed a chaotic microvascular network with distorted capillary lumens and defective association of endothelial cells with pericytes and extracellular matrix. These data reveal an unexpected requirement for core 1–derived O-glycans during angiogenesis.
doi:10.1083/jcb.200311112
PMCID: PMC2172228  PMID: 14745002
T-synthase; endothelial cell; galactosyltransferase; mucin; development
17.  P-selectin Glycoprotein Ligand-1 Mediates L-Selectin–dependent Leukocyte Rolling in Venules 
The Journal of Experimental Medicine  2003;197(10):1355-1363.
Leukocyte rolling in postcapillary venules of inflamed tissues is reduced in L-selectin–deficient mice and mice treated with L-selectin blocking antibodies, but the glycoprotein ligand for L-selectin in inflamed venules is unknown. Here, we show that L-selectin–dependent rolling after P-selectin blockade is completely absent in P-selectin glycoprotein ligand-1 (PSGL-1)−/− mice or wild-type mice treated with a PSGL-1 blocking monoclonal antibody. Immunohistochemistry and flow cytometry failed to show PSGL-1 expression on resting or inflamed endothelium or on platelets. To investigate whether leukocyte-expressed PSGL-1 is mediating L-selectin–dependent rolling, we reconstituted lethally irradiated wild-type mice with PSGL-1−/− bone marrow cells. These chimeric mice showed no L-selectin–dependent rolling, suggesting that leukocyte-expressed PSGL-1 mediates L-selectin–dependent rolling. Frame-to-frame video analysis of L-selectin–dependent rolling in wild-type mice showed that the majority of observed L-selectin–dependent leukocyte rolling was between free flowing leukocytes and already adherent leukocytes or possibly leukocyte fragments, followed by E-selectin–dependent leukocyte rolling along the endothelium. Leukocyte rolling was significantly slower for leukocyte–endothelial than leukocyte–leukocyte interactions. We conclude that leukocyte-expressed PSGL-1 serves as the main L-selectin ligand in inflamed postcapillary venules. L-selectin binding to PSGL-1 initiates tethering events that enable L-selectin–independent leukocyte-endothelial interactions. These findings provide a molecular mechanism for the inflammatory defects seen in L-selectin–deficient mice.
doi:10.1084/jem.20021854
PMCID: PMC2193782  PMID: 12756271
PSGL-1; L-selectin; inflammation; leukocyte rolling; intravital
18.  Distinct molecular and cellular contributions to stabilizing selectin-mediated rolling under flow 
The Journal of Cell Biology  2002;158(4):787-799.
Leukocytes roll on selectins at nearly constant velocities over a wide range of wall shear stresses. Ligand-coupled microspheres roll faster on selectins and detach quickly as wall shear stress is increased. To examine whether the superior performance of leukocytes reflects molecular features of native ligands or cellular properties that favor selectin-mediated rolling, we coupled structurally defined selectin ligands to microspheres or K562 cells and compared their rolling on P-selectin. Microspheres bearing soluble P-selectin glycoprotein ligand (sPSGL)-1 or 2-glycosulfopeptide (GSP)-6, a GSP modeled after the NH2-terminal P-selectin–binding region of PSGL-1, rolled equivalently but unstably on P-selectin. K562 cells displaying randomly coupled 2-GSP-6 also rolled unstably. In contrast, K562 cells bearing randomly coupled sPSGL-1 or 2-GSP-6 targeted to a membrane-distal region of the presumed glycocalyx rolled more like leukocytes: rolling steps were more uniform and shear resistant, and rolling velocities tended to plateau as wall shear stress was increased. K562 cells treated with paraformaldehyde or methyl-β-cyclodextrin before ligand coupling were less deformable and rolled unstably like microspheres. Cells treated with cytochalasin D were more deformable, further resisted detachment, and rolled slowly despite increases in wall shear stress. Thus, stable, shear-resistant rolling requires cellular properties that optimize selectin–ligand interactions.
doi:10.1083/jcb.200204041
PMCID: PMC2174028  PMID: 12177042
selectin; PSGL-1; rolling; adhesion; leukocyte
19.  P-selectin glycoprotein ligand-1–deficient mice have impaired leukocyte tethering to E-selectin under flow 
P-selectin glycoprotein ligand-1 (PSGL-1) mediates rolling of leukocytes on P-selectin under flow. The glycoproteins that enable leukocyte tethering to or rolling on E-selectin are not known. We used gene targeting to prepare PSGL-1–deficient (PSGL-1–/–) mice, which were healthy but had moderately elevated total blood leukocytes. Fluid-phase E-selectin bound to approximately 70% fewer sites on PSGL-1–/– than PSGL-1+/+ neutrophils. Compared with PSGL-1+/+ leukocytes, significantly fewer PSGL-1–/– leukocytes rolled on E-selectin in vitro, because their initial tethering to E-selectin was impaired. The residual cells that tethered rolled with the same shear resistance and velocities as PSGL-1+/+ leukocytes. Compared with PSGL-1+/+ mice, significantly fewer PSGL-1–/– leukocytes rolled on E-selectin in TNF-α–treated venules of cremaster muscle in which P-selectin function was blocked by an mAb. The residual PSGL-1–/– leukocytes that tethered rolled with slow velocities equivalent to those of PSGL-1+/+ leukocytes. These results reveal a novel function for PSGL-1 in tethering leukocytes to E-selectin under flow.
doi:10.1172/JCI14151
PMCID: PMC150926  PMID: 11927621
20.  Interactions of the Cytoplasmic Domain of P-Selectin with Clathrin-coated Pits Enhance Leukocyte Adhesion under Flow  
The Journal of Cell Biology  1998;142(3):859-871.
Flowing leukocytes tether to and roll on P-selectin, a receptor on endothelial cells that is rapidly internalized in clathrin-coated pits. We asked whether the association of P-selectin with clathrin-coated pits contributes to its adhesive function. Under flow, rolling neutrophils accumulated efficiently on CHO cells expressing wild-type P-selectin or a P-selectin construct with a substitution in the cytoplasmic domain that caused even faster internalization than that of the wild-type protein. By contrast, far fewer rolling neutrophils accumulated on CHO cells expressing P-selectin constructs with a deletion or a substitution in the cytoplasmic domain that impaired internalization. Neutrophils rolled on the internalization-competent constructs with greater adhesive strength, slower velocity, and more uniform motion. Flowing neutrophils tethered equivalently to internalization-competent or internalization-defective P-selectin, but after tethering, they rolled further on internalization-competent P-selectin. Confocal microscopy demonstrated colocalization of α-adaptin, a component of clathrin-coated pits, with wild-type P-selectin, but not with P-selectin lacking the cytoplasmic domain. Treatment of CHO cells or endothelial cells with hypertonic medium reversibly impaired the clathrin-mediated internalization of P-selectin and its ability to support neutrophil rolling. Interactions of the cytoplasmic domain of P-selectin with clathrin-coated pits provide a novel mechanism to enhance leukocyte adhesion under flow.
PMCID: PMC2148165  PMID: 9700172
endocytosis; selectins; adhesion; clathrin; leukocytes
21.  Isolation and Quantitation of the Platelet Membrane Glycoprotein Deficient in Thrombasthenia Using a Monoclonal Hybridoma Antibody 
Journal of Clinical Investigation  1980;66(6):1311-1318.
We used the hybridoma technique to characterize further the platelet glycoprotein abnormality in Glanzmann's thrombasthenia. Spleen cells from Balb/c mice immunized with human platelets were fused to mouse myeloma cell line Sp2/0-Ag14. Hybridoma lines producing a variety of antiplatelet antibodies were isolated by hypoxanthine-aminopterin-thymidine selection and cloned, and purified monoclonal IgG from six lines was prepared. One of these lines, 8aB5-9, produced an antibody, Tab, that binds to a protein on normal but not thrombasthenic platelets. We isolated this protein from Triton X-100 solubilized normal platelet membranes by affinity chromatography on Tab-Sepharose. As determined by SDS polyacrylamide gel electrophoresis, the isolated protein is a complex of glycoproteins IIb and IIIa, because the two subunits comigrate with glycoproteins IIb and IIIa of whole platelets and show identical changes in mobility after disulfide bond reduction. We prepared 125I-Tab to determine the number of glycoprotein IIb-IIIa complexes on normal and thrombasthenic platelets by a direct binding assay. Platelets from 17 normal donors bound 39,000±4,600 (SD) Tab molecules/platelet. Platelets from four patients with thrombasthenia lacked Tab binding sites (<5%). Five obligate and four presumed heterozygotes for thrombasthenia bound 24,500±5,800 Tab molecules/platelet. The platelet alloantigen, PlAl, is not that recognized by Tab, because platelets from three PlAl-negative subjects bound Tab normally. Studies with the Tab antibody have (a) enabled quantitation of the number of glycoprotein IIb-IIIa complexes on normal platelet membranes, (b) demonstrated that thrombasthenic homozygotes lack and heterozygotes have a partial deficiency of this complex, and (c) made possible the isolation of this membrane protein which may be required for normal platelet aggregation and clot retraction.
Images
PMCID: PMC371616  PMID: 6449521
22.  P-Selectin Glycoprotein Ligand-1 Forms Dimeric Interactions with E-Selectin but Monomeric Interactions with L-Selectin on Cell Surfaces 
PLoS ONE  2013;8(2):e57202.
Interactions of selectins with cell surface glycoconjugates mediate the first step of the adhesion and signaling cascade that recruits circulating leukocytes to sites of infection or injury. P-selectin dimerizes on the surface of endothelial cells and forms dimeric bonds with P-selectin glycoprotein ligand-1 (PSGL-1), a homodimeric sialomucin on leukocytes. It is not known whether leukocyte L-selectin or endothelial cell E-selectin are monomeric or oligomeric. Here we used the micropipette technique to analyze two-dimensional binding of monomeric or dimeric L- and E-selectin with monomeric or dimeric PSGL-1. Adhesion frequency analysis demonstrated that E-selectin on human aortic endothelial cells supported dimeric interactions with dimeric PSGL-1 and monomeric interactions with monomeric PSGL-1. In contrast, L-selectin on human neutrophils supported monomeric interactions with dimeric or monomeric PSGL-1. Our work provides a new method to analyze oligomeric cross-junctional molecular binding at the interface of two interacting cells.
doi:10.1371/journal.pone.0057202
PMCID: PMC3581448  PMID: 23451187

Results 1-22 (22)