Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Functional genetic polymorphisms in ILT3 are associated with decreased surface expression on dendritic cells and increased serum cytokines in lupus patients 
Annals of the rheumatic diseases  2012;72(4):596-601.
Hyperactivity of the type I interferon (IFN) pathway is involved in the pathogenesis of systemic lupus erythematosus (SLE). Immunoglobulin like transcript (ILT3) is an immunohibitory transmembrane molecule which is induced by type I IFNs. ILT3 is expressed by plasmacytoid dendritic cells (PDCs), monocytoid dendritic cells (MDCs), and monocytes/macrophages. Given the pathogenic role of IFN in SLE, we hypothesised that the IFN-induced immunosuppressive ILT3 receptor may be dysfunctional in human SLE.
132 European-derived and 79 Hispanic-American SLE patients were genotyped for two coding-change single nucleotide polymorphisms (SNPs) predicted to interfere with protein folding in ILT3 (rs11540761 and rs1048801). 116 control DNA samples and sera from healthy controls were also studied. We detected associations between ILT3 genotype and serum cytokine profiles. ILT3 expression levels on PDCs and MDCs from 18 patients and 10 controls were studied by flow cytometry.
The rs11540761 SNP in the extracellular region was associated with decreased cell surface expression of ILT3 on circulating MDCs and to a lesser extent PDCs in SLE patients. The cytoplasmically located rs1048801 SNP was not associated with a change in dendritic cells expression of ILT3. Both SNPs were significantly and independently associated with increased levels of serum type I IFN activity in SLE patients. The rs1048801 SNP was also associated with increased serum levels of TNF-α.
Loss-of-function polymorphisms in ILT3 are associated with increased inflammatory cytokine levels in SLE, supporting a biological role for ILT3 in SLE.
PMCID: PMC3910490  PMID: 22904259
2.  Familial Aggregation of High Tumor Necrosis Factor Alpha Levels in Systemic Lupus Erythematosus 
Systemic lupus erythematosus (SLE) patients frequently have high circulating tumor necrosis factor alpha (TNF-α) levels. We explored circulating TNF-α levels in SLE families to determine whether high levels of TNF-α were clustered in a heritable pattern. We measured TNF-α in 242 SLE patients, 361 unaffected family members, 23 unaffected spouses of SLE patients, and 62 unrelated healthy controls. Familial correlations and relative recurrence risk rates for the high TNF-α trait were assessed. SLE-affected individuals had the highest TNF-α levels, and TNF-α was significantly higher in unaffected first degree relatives than healthy unrelated subjects (P = 0.0025). No Mendelian patterns were observed, but 28.4% of unaffected first degree relatives of SLE patients had high TNF-α levels, resulting in a first degree relative recurrence risk of 4.48 (P = 2.9 × 10−5). Interestingly, the median TNF-α value in spouses was similar to that of the first degree relatives. Concordance of the TNF-α trait (high versus low) in SLE patients and their spouses was strikingly high at 78.2%. These data support a role for TNF-α in SLE pathogenesis, and TNF-α levels may relate with heritable factors. The high degree of concordance in SLE patients and their spouses suggests that environmental factors may also play a role in the observed familial aggregation.
PMCID: PMC3800640  PMID: 24187561
3.  Large Scale Analysis of Tumor Necrosis Factor Alpha Levels in Systemic Lupus Erythematosus 
Arthritis and rheumatism  2012;64(9):2947-2952.
SLE disease manifestations are highly variable between patients, and the prevalence of individual clinical features differs significantly by ancestry. Serum tumor necrosis factor alpha (TNF-α) is elevated in some SLE patients, and may play a role in disease pathogenesis. We detected associations between serum TNF-α, clinical manifestations, autoantibodies, and serum IFN-α in a large multi-ancestral SLE cohort.
We studied serum TNF-α in 653 SLE patients, including 214 African-American, 298 European-Americans and 141 Hispanic-American subjects. TNF-α was measured using ELISA, and IFN-α was measured with a functional reporter cell assay. Stratified and multivariate analyses were used to detect associations in each ancestral background separately, with meta-analysis when appropriate.
Serum TNF-α levels were significantly higher in SLE patients than in nonautoimmune controls (p<5.0×10−3 for each ancestral background). High serum TNF-α was positively correlated with high serum IFN-α when tested in the same sample across all ancestral backgrounds (meta-analysis OR=1.8, p=1.2×10−3). While serum TNF-α levels alone did not differ significantly between SLE patients of different ancestral backgrounds, the proportion of patients with concurrently high TNF-α and high IFN-α was highest in African-Americans and lowest in European-Americans (p=5.0×10−3). Serum TNF-α was not associated with autoantibodies, clinical criteria for the diagnosis of SLE, or age at time of sample.
Serum TNF-α levels are high in many SLE patients, and we observed a positive correlation between serum TNF-α and IFN-α. These data support a role for TNF-α in SLE pathogenesis across all ancestral backgrounds, and suggest important cytokine subgroups within the disease.
PMCID: PMC3396783  PMID: 22488302
systemic lupus erythematosus; tumor necrosis factor alpha; autoantibodies, ancestry
4.  The Autoimmune Disease Risk Allele of UBE2L3 in African American Patients with Systemic Lupus Erythematosus: A Recessive Effect Upon Subphenotypes 
The Journal of Rheumatology  2011;39(1):73-78.
UBE2L3 is associated with susceptibility to systemic lupus erythematosus (SLE) and rheumatoid arthritis in European ancestry populations, and this locus has not been investigated fully in non-European populations. We studied the UBE2L3 risk allele for association with SLE, interferon-α (IFN-α), and autoantibodies in a predominantly African American SLE cohort.
We studied 395 patients with SLE and 344 controls. The UBE2L3 rs5754217 polymorphism was genotyped using Taqman primer-probe sets, and IFN-α was measured using a reporter cell assay.
The UBE2L3 rs5754217 T allele was strongly enriched in African American patients with anti-La antibodies as compared to controls, and a recessive model was the best fit for this association (OR 2.55, p = 0.0061). Serum IFN-α also demonstrated a recessive association with the rs5754217 genotype in African American patients, and the TT/anti-La-positive patients formed a significantly high IFN-α subgroup (p = 0.0040). Similar nonstatistically significant patterns of association were observed in the European American patients with SLE. Case-control analysis did not show large allele frequency differences, supporting the idea that this allele is most strongly associated with anti-La-positive patients.
This pattern of recessive influence within a subgroup of patients may explain why this allele does not produce a strong signal in standard case-control studies, and subphenotypes should be included in future studies of UBE2L3. The interaction we observed between UBE2L3 genotype and autoantibodies upon serum IFN-α suggests a biological role for this locus in patients with SLE in vivo.
PMCID: PMC3304461  PMID: 22045845
5.  Autoimmune Disease Risk Variant of IFIH1 Is Associated with Increased Sensitivity to IFN-α and Serologic Autoimmunity in Lupus Patients 
Increased IFN-α signaling is a heritable risk factor for systemic lupus erythematosus (SLE). IFN induced with helicase C domain 1 (IFIH1) is a cytoplasmic dsRNA sensor that activates IFN-α pathway signaling. We studied the impact of the autoimmune-disease–associated IFIH1 rs1990760 (A946T) single nucleotide polymorphism upon IFN-α signaling in SLE patients in vivo. We studied 563 SLE patients (278 African-American, 179 European-American, and 106 Hispanic-American). Logistic regression models were used to detect genetic associations with autoantibody traits, and multiple linear regression was used to analyze IFN-α–induced gene expression in PBMCs in the context of serum IFN-α in the same blood sample. We found that the rs1990760 T allele was associated with anti-dsDNA Abs across all of the studied ancestral backgrounds (meta-analysis odds ratio = 1.34, p = 0.026). This allele also was associated with lower serum IFN-α levels in subjects who had anti-dsDNA Abs (p = 0.0026). When we studied simultaneous serum and PBMC samples from SLE patients, we found that the IFIH1 rs1990760 T allele was associated with increased IFN-induced gene expression in PBMCs in response to a given amount of serum IFN-α in anti-dsDNA–positive patients. This effect was independent of the STAT4 genotype, which modulates sensitivity to IFN-α in a similar way. Thus, the IFIH1 rs1990760 Tallele was associated with dsDNA Abs, and in patients with anti-dsDNA Abs this risk allele increased sensitivity to IFN-α signaling. These studies suggest a role for the IFIH1 risk allele in SLE in vivo.
PMCID: PMC3304466  PMID: 21705624
6.  Gene-Expression-Guided Selection of Candidate Loci and Molecular Phenotype Analyses Enhance Genetic Discovery in Systemic Lupus Erythematosus 
Systemic lupus erythematosus (SLE) is a highly heterogeneous autoimmune disorder characterized by differences in autoantibody profiles, serum cytokines, and clinical manifestations. We have previously conducted a case-case genome-wide association study (GWAS) of SLE patients to detect associations with autoantibody profile and serum interferon alpha (IFN-α). In this study, we used public gene expression data sets to rationally select additional single nucleotide polymorphisms (SNPs) for validation. The top 200 GWAS SNPs were searched in a database which compares genome-wide expression data to genome-wide SNP genotype data in HapMap cell lines. SNPs were chosen for validation if they were associated with differential expression of 15 or more genes at a significance of P < 9 × 10−5. This resulted in 11 SNPs which were genotyped in 453 SLE patients and 418 matched controls. Three SNPs were associated with SLE-associated autoantibodies, and one of these SNPs was also associated with serum IFN-α (P < 4.5 × 10−3 for all). One additional SNP was associated exclusively with serum IFN-α. Case-control analysis was insensitive to these molecular subphenotype associations. This study illustrates the use of gene expression data to rationally select candidate loci in autoimmune disease, and the utility of stratification by molecular phenotypes in the discovery of additional genetic associations in SLE.
PMCID: PMC3439981  PMID: 22988468
7.  Network Analysis of Associations between Serum Interferon Alpha Activity, Autoantibodies, and Clinical Features in Systemic Lupus Erythematosus 
Arthritis and rheumatism  2011;63(4):1044-1053.
Interferon-alpha (IFN-α) is a primary pathogenic factor in systemic lupus erythematosus (SLE), and high IFN-α levels may be associated with particular clinical manifestations. The prevalence of individual clinical and serologic features differs significantly by ancestry. We used multivariate and network analyses to detect associations between clinical and serologic disease manifestations and serum IFN-α activity in a large diverse SLE cohort.
1089 SLE patients were studied (387 African-American, 186 Hispanic-American, and 516 European-American). Presence or absence of ACR clinical criteria for SLE, autoantibodies, and serum IFN-α activity data were analyzed in univariate and multivariate models. Iterative multivariate logistic regression was performed in each background separately to establish the network of associations between variables that were independently significant following Bonferroni correction.
In all ancestral backgrounds, high IFN-α activity was associated with anti-Ro and anti-dsDNA antibodies (p-values 4.6×10−18 and 2.9 × 10−16 respectively). Younger age, non-European ancestry, and anti-RNP were also independently associated with increased serum IFN-α activity (p≤6.7×10−4). We found 14 unique associations between variables in network analysis, and only 7 of these associations were shared by more than one ancestral background. Associations between clinical criteria were different in different ancestral backgrounds, while autoantibody-IFN-α relationships were similar across backgrounds. IFN-α activity and autoantibodies were not associated with ACR clinical features in multivariate models.
Serum IFN-α activity was strongly and consistently associated with autoantibodies, and not independently associated with clinical features in SLE. IFN-α may be more relevant to humoral tolerance and initial pathogenesis than later clinical disease manifestations.
PMCID: PMC3068224  PMID: 21162028
systemic lupus erythematosus; interferon alpha; autoantibodies; ancestry
8.  Osteopontin Alleles Are Associated with Clinical Characteristics in Systemic Lupus Erythematosus 
Variants of the osteopontin (OPN) gene have been associated with systemic lupus erythematosus (SLE) susceptibility and cytokine profiles in SLE patients. It is not known whether these alleles are associated with specific clinical phenotypes in SLE. We studied 252 well-characterized SLE patients from a multiethnic cohort, genotyping the rs11730582, rs28357094, rs6532040, and rs9138 SNPs in the OPN gene. Ancestry informative markers were used to control for genetic ancestry. The SLE-risk allele rs9138C in the 3′ UTR region was associated with photosensitivity in lupus patients across all ancestral backgrounds (meta-analysis OR = 3.2, 95% CI = 1.6–6.5, P = 1.0 × 10−3). Additionally, the promoter variant rs11730582C demonstrated suggestive evidence for association with two hematologic traits: thrombocytopenia (OR = 2.1, P = 0.023) and hemolytic anemia (OR = 2.6, P = 0.036). These clinical associations with SNPs in the promoter and 3′ UTR regions align with previously reported SLE-susceptibility SNPs in OPN and suggest potential roles for these variants in antibody-mediated cytopenias and skin inflammation in SLE.
PMCID: PMC3205903  PMID: 22131818

Results 1-8 (8)