PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (133)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Authors
more »
Year of Publication
more »
1.  Genetic Association of CD247 (CD3ζ) with SLE in a Large-Scale Multiethnic Study 
Genes and immunity  2015;16(2):142-150.
A classic T-cell phenotype in Systemic lupus erythematosus (SLE) is the downregulation and replacement of the CD3ζ chain that alters TCR signaling. However, genetic associations with SLE in the human CD247 locus that encodes CD3ζ are not well established and require replication in independent cohorts. Our aim was therefore to examine, localize and validate CD247-SLE association in a large multi-ethnic population. We typed 44 contiguous CD247 SNPs in 8 922 SLE patients and 8 077 controls from four ethnically distinct populations. The strongest associations were found in the Asian population (11 SNPs in intron 1, 4.99×10−4
doi:10.1038/gene.2014.73
PMCID: PMC4371129  PMID: 25569266
Annals of the Rheumatic Diseases  2014;75(1):242-252.
Objectives
Systemic lupus erythematosus (SLE; OMIM 152700) is characterised by the production of antibodies to nuclear antigens. We previously identified variants in complement receptor 2 (CR2/CD21) that were associated with decreased risk of SLE. This study aimed to identify the causal variant for this association.
Methods
Genotyped and imputed genetic variants spanning CR2 were assessed for association with SLE in 15 750 case-control subjects from four ancestral groups. Allele-specific functional effects of associated variants were determined using quantitative real-time PCR, quantitative flow cytometry, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP)-PCR.
Results
The strongest association signal was detected at rs1876453 in intron 1 of CR2 (pmeta=4.2×10−4, OR 0.85), specifically when subjects were stratified based on the presence of dsDNA autoantibodies (case-control pmeta=7.6×10−7, OR 0.71; case-only pmeta=1.9×10−4, OR 0.75). Although allele-specific effects on B cell CR2 mRNA or protein levels were not identified, levels of complement receptor 1 (CR1/CD35) mRNA and protein were significantly higher on B cells of subjects harbouring the minor allele (p=0.0248 and p=0.0006, respectively). The minor allele altered the formation of several DNA protein complexes by EMSA, including one containing CCCTC-binding factor (CTCF), an effect that was confirmed by ChIP-PCR.
Conclusions
These data suggest that rs1876453 in CR2 has long-range effects on gene regulation that decrease susceptibility to lupus. Since the minor allele at rs1876453 is preferentially associated with reduced risk of the highly specific dsDNA autoantibodies that are present in preclinical, active and severe lupus, understanding its mechanisms will have important therapeutic implications.
doi:10.1136/annrheumdis-2014-205584
PMCID: PMC4717392  PMID: 25180293
Systemic Lupus Erythematosus; Autoantibodies; Gene Polymorphism; B cells
PLoS ONE  2014;9(12):e115614.
To explore the potential influence of the polymorphic 8p23.1 inversion on known autoimmune susceptibility risk at or near BLK locus, we validated a new bioinformatics method that utilizes SNP data to enable accurate, high-throughput genotyping of the 8p23.1 inversion in a Caucasian population. Methods: Principal components analysis (PCA) was performed using markers inside the inversion territory followed by k-means cluster analyses on 7416 European derived and 267 HapMaP CEU and TSI samples. A logistic regression conditional analysis was performed. Results: Three subgroups have been identified; inversion homozygous, heterozygous and non-inversion homozygous. The status of inversion was further validated using HapMap samples that had previously undergone Fluorescence in situ hybridization (FISH) assays with a concordance rate of above 98%. Conditional analyses based on the status of inversion were performed. We found that overall association signals in the BLK region remain significant after controlling for inversion status. The proportion of lupus cases and controls (cases/controls) in each subgroup was determined to be 0.97 for the inverted homozygous group (1067 cases and 1095 controls), 1.12 for the inverted heterozygous group (1935 cases 1717 controls) and 1.36 for non-inverted subgroups (924 cases and 678 controls). After calculating the linkage disequilibrium between inversion status and lupus risk haplotype we found that the lupus risk haplotype tends to reside on non-inversion background. As a result, a new association effect between non-inversion status and lupus phenotype has been identified ((p = 8.18×10−7, OR = 1.18, 95%CI = 1.10–1.26). Conclusion: Our results demonstrate that both known lupus risk haplotype and inversion status act additively in the pathogenesis of lupus. Since inversion regulates expression of many genes in its territory, altered expression of other genes might also be involved in the development of lupus.
doi:10.1371/journal.pone.0115614
PMCID: PMC4278715  PMID: 25545785
Kottyan, Leah C. | Zoller, Erin E. | Bene, Jessica | Lu, Xiaoming | Kelly, Jennifer A. | Rupert, Andrew M. | Lessard, Christopher J. | Vaughn, Samuel E. | Marion, Miranda | Weirauch, Matthew T. | Namjou, Bahram | Adler, Adam | Rasmussen, Astrid | Glenn, Stuart | Montgomery, Courtney G. | Hirschfield, Gideon M. | Xie, Gang | Coltescu, Catalina | Amos, Chris | Li, He | Ice, John A. | Nath, Swapan K. | Mariette, Xavier | Bowman, Simon | Rischmueller, Maureen | Lester, Sue | Brun, Johan G. | Gøransson, Lasse G. | Harboe, Erna | Omdal, Roald | Cunninghame-Graham, Deborah S. | Vyse, Tim | Miceli-Richard, Corinne | Brennan, Michael T. | Lessard, James A. | Wahren-Herlenius, Marie | Kvarnström, Marika | Illei, Gabor G. | Witte, Torsten | Jonsson, Roland | Eriksson, Per | Nordmark, Gunnel | Ng, Wan-Fai | Anaya, Juan-Manuel | Rhodus, Nelson L. | Segal, Barbara M. | Merrill, Joan T. | James, Judith A. | Guthridge, Joel M. | Hal Scofield, R. | Alarcon-Riquelme, Marta | Bae, Sang-Cheol | Boackle, Susan A. | Criswell, Lindsey A. | Gilkeson, Gary | Kamen, Diane L. | Jacob, Chaim O. | Kimberly, Robert | Brown, Elizabeth | Edberg, Jeffrey | Alarcón, Graciela S. | Reveille, John D. | Vilá, Luis M. | Petri, Michelle | Ramsey-Goldman, Rosalind | Freedman, Barry I. | Niewold, Timothy | Stevens, Anne M. | Tsao, Betty P. | Ying, Jun | Mayes, Maureen D. | Gorlova, Olga Y. | Wakeland, Ward | Radstake, Timothy | Martin, Ezequiel | Martin, Javier | Siminovitch, Katherine | Moser Sivils, Kathy L. | Gaffney, Patrick M. | Langefeld, Carl D. | Harley, John B. | Kaufman, Kenneth M.
Human Molecular Genetics  2014;24(2):582-596.
Exploiting genotyping, DNA sequencing, imputation and trans-ancestral mapping, we used Bayesian and frequentist approaches to model the IRF5–TNPO3 locus association, now implicated in two immunotherapies and seven autoimmune diseases. Specifically, in systemic lupus erythematosus (SLE), we resolved separate associations in the IRF5 promoter (all ancestries) and with an extended European haplotype. We captured 3230 IRF5–TNPO3 high-quality, common variants across 5 ethnicities in 8395 SLE cases and 7367 controls. The genetic effect from the IRF5 promoter can be explained by any one of four variants in 5.7 kb (P-valuemeta = 6 × 10−49; OR = 1.38–1.97). The second genetic effect spanned an 85.5-kb, 24-variant haplotype that included the genes IRF5 and TNPO3 (P-valuesEU = 10−27–10−32, OR = 1.7–1.81). Many variants at the IRF5 locus with previously assigned biological function are not members of either final credible set of potential causal variants identified herein. In addition to the known biologically functional variants, we demonstrated that the risk allele of rs4728142, a variant in the promoter among the lowest frequentist probability and highest Bayesian posterior probability, was correlated with IRF5 expression and differentially binds the transcription factor ZBTB3. Our analytical strategy provides a novel framework for future studies aimed at dissecting etiological genetic effects. Finally, both SLE elements of the statistical model appear to operate in Sjögren's syndrome and systemic sclerosis whereas only the IRF5–TNPO3 gene-spanning haplotype is associated with primary biliary cirrhosis, demonstrating the nuance of similarity and difference in autoimmune disease risk mechanisms at IRF5–TNPO3.
doi:10.1093/hmg/ddu455
PMCID: PMC4275071  PMID: 25205108
Cellular and Molecular Immunology  2015;13(1):119-131.
Complement receptor 2 (CR2/CD21) is predominantly expressed on the surface of mature B cells where it forms part of a coreceptor complex that functions, in part, to modulate B-cell receptor signal strength. CR2/CD21 expression is tightly regulated throughout B-cell development such that CR2/CD21 cannot be detected on pre-B or terminally differentiated plasma cells. CR2/CD21 expression is upregulated at B-cell maturation and can be induced by IL-4 and CD40 signaling pathways. We have previously characterized elements in the proximal promoter and first intron of CR2/CD21 that are involved in regulating basal and tissue-specific expression. We now extend these analyses to the CR2/CD21 core promoter. We show that in mature B cells, CR2/CD21 transcription proceeds from a focused TSS regulated by a non-consensus TATA box, an initiator element and a downstream promoter element. Furthermore, occupancy of the general transcriptional machinery in pre-B versus mature B-cell lines correlate with CR2/CD21 expression level and indicate that promoter accessibility must switch from inactive to active during the transitional B-cell window.
doi:10.1038/cmi.2014.138
PMCID: PMC4711682  PMID: 25640655
B cells; core promoter; CR2/CD21; molecular biology; transcription factor
Genetic Epidemiology  2015;39(5):376-384.
Bioinformatics approaches to examine gene-gene models provide a means to discover interactions between multiple genes that underlie complex disease. Extensive computational demands and adjusting for multiple testing make uncovering genetic interactions a challenge. Here, we address these issues using our knowledge-driven filtering method, Biofilter, to identify putative single nucleotide polymorphism (SNP) interaction models for cataract susceptibility, thereby reducing the number of models for analysis. Models were evaluated in 3,377 European Americans (1,185 controls, 2,192 cases) from the Marshfield Clinic, a study site of the Electronic Medical Records and Genomics (eMERGE) Network, using logistic regression. All statistically significant models from the Marshfield Clinic were then evaluated in an independent dataset of 4,311 individuals (742 controls, 3,569 cases), using independent samples from additional study sites in the eMERGE Network: Mayo Clinic, Group Health/University of Washington, Vanderbilt University Medical Center, and Geisinger Health System. Eighty-three SNP-SNP models replicated in the independent dataset at likelihood ratio test P < 0.05. Among the most significant replicating models was rs12597188 (intron of CDH1)–rs11564445 (intron of CTNNB1). These genes are known to be involved in processes that include: cell-to-cell adhesion signaling, cell-cell junction organization, and cell-cell communication. Further Biofilter analysis of all replicating models revealed a number of common functions among the genes harboring the 83 replicating SNP-SNP models, which included signal transduction and PI3K-Akt signaling pathway. These findings demonstrate the utility of Biofilter as a biology-driven method, applicable for any genome-wide association study dataset.
doi:10.1002/gepi.21902
PMCID: PMC4550090  PMID: 25982363
association; genetic interaction; complex disease
Background
Eosinophilic esophagitis (EoE) is a chronic antigen-driven allergic inflammatory disease, likely involving the interplay of genetic and environmental factors, yet their respective contributions to heritability are unknown.
Objective
To quantify risk associated with genes and environment on familial clustering of EoE.
Methods
Family history was obtained from a hospital-based cohort of 914 EoE probands, (n=2192 first-degree “Nuclear-Family” relatives) and the new international registry of monozygotic and dizygotic twins/triplets (n=63 EoE “Twins” probands). Frequencies, recurrence risk ratios (RRRs), heritability and twin concordance were estimated. Environmental exposures were preliminarily examined.
Results
Analysis of the Nuclear-Family–based cohort revealed that the rate of EoE, in first-degree relatives of a proband, was 1.8% (unadjusted) and 2.3% (sex-adjusted). RRRs ranged from 10–64, depending on the family relationship, and were higher in brothers (64.0; p=0.04), fathers (42.9; p=0.004) and males (50.7; p<0.001) compared to sisters, mothers and females, respectively. Risk of EoE for other siblings was 2.4%. In the Nuclear-Families, combined gene and common environment heritability (hgc2) was 72.0±2.7% (p<0.001). In the Twins cohort, genetic heritability was 14.5±4.0% (p<0.001), and common family environment contributed 81.0±4% (p<0.001) to phenotypic variance. Proband-wise concordance in MZ co-twins was 57.9±9.5% compared to 36.4±9.3% in DZ (p=0.11). Greater birth-weight difference between twins (p=0.01), breastfeeding (p=0.15) and Fall birth season (p=0.02) were associated with twin discordance in disease status.
Conclusions
EoE recurrence risk ratios are increased 10–64-fold compared with the general population. EoE in relatives is 1.8–2.4%, depending upon relationship and sex. Nuclear-Family heritability appeared to be high (72.0%). However, Twins cohort analysis revealed a powerful role for common environment (81.0%) compared with additive genetic heritability (14.5%).
doi:10.1016/j.jaci.2014.07.021
PMCID: PMC4253562  PMID: 25258143
eosinophilia; medical genetics; twins; immune system diseases; heritability; gene-environment interaction; drug hypersensitivity; gastrointestinal diseases; skin diseases
Objective
Explore the hypothesis that cases of SLE will be found more frequently in community members with high prior uranium exposure in the Fernald Community Cohort (FCC).
Methods
A nested case control study was performed. The FCC is a volunteer population that lived near a uranium ore processing plant in Fernald, Ohio, USA during plant operation and members were monitored for 18 years. Uranium plant workers were excluded. SLE cases were identified using American College of Rheumatology classification criteria, laboratory testing, and medical record review. Each case was matched to four age-, race-, and sex-matched controls. Sera from potential cases and controls were screened for autoantibodies. Cumulative uranium particulate exposure was calculated using a dosimetry model. Logistic regression with covariates was used to calculate odds ratios (OR) with 95% confidence intervals (CI).
Results
The FCC includes 4,187 individuals with background uranium exposure, 1,273 with moderate exposure, and 2,756 with higher exposure. SLE was confirmed in 23 of 31 individuals with a lupus ICD9 code, and in 2 of 43 other individuals prescribed hydroxychloroquine. The female:male ratio was 5.25:1. Of the 25 SLE cases, 12 were in the higher exposure group. SLE was associated with higher uranium exposure (OR 3.92, 95% CI 1.131-13.588, p = 0.031).
Conclusion
High uranium exposure is associated with SLE relative to matched controls in this sample of uranium exposed individuals. Potential explanations for this relationship include possible autoimmune or estrogen effects of uranium, somatic mutation, epigenetic effects, or effects of some other unidentified accompanying exposure.
doi:10.1002/art.38786
PMCID: PMC4211941  PMID: 25103365
We describe here the design and initial implementation of the eMERGE-PGx project. eMERGE-PGx, a partnership of the eMERGE and PGRN consortia, has three objectives : 1) Deploy PGRNseq, a next-generation sequencing platform assessing sequence variation in 84 proposed pharmacogenes, in nearly 9,000 patients likely to be prescribed drugs of interest in a 1–3 year timeframe across several clinical sites; 2) Integrate well-established clinically-validated pharmacogenetic genotypes into the electronic health record with associated clinical decision support and assess process and clinical outcomes of implementation; and 3) Develop a repository of pharmacogenetic variants of unknown significance linked to a repository of EHR-based clinical phenotype data for ongoing pharmacogenomics discovery. We describe site-specific project implementation and anticipated products, including genetic variant and phenotype data repositories, novel variant association studies, clinical decision support modules, clinical and process outcomes, approaches to manage incidental findings, and patient and clinician education methods.
doi:10.1038/clpt.2014.137
PMCID: PMC4169732  PMID: 24960519
pharmacogenetics; pharmacogenomics; next generation sequencing; study design; pre-emptive genotyping
Vaccine  2014;32(43):5624-5631.
Background
Roughly half of U.S. adults do not receive recommended booster vaccinations, but protective antibody levels are rarely measured in adults. Demographic factors, vaccination history, and responses to other vaccinations could help identify at-risk individuals. We sought to characterize rates of seroconversion and determine associations of humoral responses to multiple vaccinations in healthy adults.
Methods
Humoral responses toward measles, mumps, tetanus toxoid, pertussis, hepatitis B surface antigen, and anthrax protective antigen were measured by ELISA in post-immunization samples from 1,465 healthy U.S. military members. We examined the effects of demographic and clinical factors on immunization responses, as well as assessed correlations between vaccination responses.
Results
Subsets of boosted adults did not have seroprotective levels of antibodies toward measles (10.4%), mumps (9.4%), pertussis (4.7%), hepatitis B (8.6%) or protective antigen (14.4%) detected. Half-lives of antibody responses were generally long (>30 years). Measles and mumps antibody levels were correlated (r=0.31, p<0.001), but not associated with select demographic features or vaccination history. Measles and mumps antibody levels also correlated with tetanus antibody response (r=0.11, p<0.001).
Conclusions
Vaccination responses are predominantly robust and vaccine specific. However, a small but significant portion of the vaccinated adult population may not have quantitative seroprotective antibody to common vaccine-preventable infections.
doi:10.1016/j.vaccine.2014.08.005
PMCID: PMC4323156  PMID: 25140930
Anthrax Vaccine Adsorbed; measles; mumps; tetanus; hepatitis B; pertussis
PLoS ONE  2015;10(9):e0138677.
Introduction
Liver enzyme levels and total serum bilirubin are under genetic control and in recent years genome-wide population-based association studies have identified different susceptibility loci for these traits. We conducted a genome-wide association study in European ancestry participants from the Electronic Medical Records and Genomics (eMERGE) Network dataset of patient medical records with available genotyping data in order to identify genetic contributors to variability in serum bilirubin levels and other liver function tests and to compare the effects between adult and pediatric populations.
Methods
The process of whole genome imputation of eMERGE samples with standard quality control measures have been described previously. After removing missing data and outliers based on principal components (PC) analyses, 3294 samples from European ancestry were used for the GWAS study. The association between each single nucleotide polymorphism (SNP) and total serum bilirubin and other liver function tests was tested using linear regression, adjusting for age, gender, site, platform and ancestry principal components (PC).
Results
Consistent with previous results, a strong association signal has been detected for UGT1A gene cluster (best SNP rs887829, beta = 0.15, p = 1.30x10-118) for total serum bilirubin level. Indeed, in this region more than 176 SNPs (or indels) had p<10−8 spanning 150Kb on the long arm of chromosome 2q37.1. In addition, we found a similar level of magnitude in a pediatric group (p = 8.26x10-47, beta = 0.17). Further imputation using sequencing data as a reference panel revealed association of other markers including known TA7 repeat indels (rs8175347) (p = 9.78x10-117) and rs111741722 (p = 5.41x10-119) which were in proxy (r2 = 0.99) with rs887829. Among rare variants, two Asian subjects homozygous for coding SNP rs4148323 (G71R) were identified. Additional known effects for total serum bilirubin were also confirmed including organic anion transporters SLCO1B1-SLCO1B3, TDRP and ZMYND8 at FDR<0.05 with no gene-gene interaction effects. Phenome-wide association studies (PheWAS) suggest a protective effect of TA7 repeat against cerebrovascular disease in an adult cohort (OR = 0.75, p = 0.0008). Among other liver function tests, we also confirmed the previous effect of the ABO blood group locus for variation in serum alkaline phosphatase (rs579459, p = 9.44x10-15).
Conclusions
Taken together, our data present interesting findings with strong confirmation of previous effects by simply using the eMERGE electronic health record phenotyping. In addition, our findings indicate that similar to the adult population, the UGT1A1 is the main locus responsible for normal variation of serum bilirubin in pediatric populations.
doi:10.1371/journal.pone.0138677
PMCID: PMC4586138  PMID: 26413716
Human Molecular Genetics  2014;23(15):4161-4176.
Integrin alpha M (ITGAM; CD11b) is a component of the macrophage-1 antigen complex, which mediates leukocyte adhesion, migration and phagocytosis as part of the immune system. We previously identified a missense polymorphism, rs1143679 (R77H), strongly associated with systemic lupus erythematosus (SLE). However, the molecular mechanisms of this variant are incompletely understood. A meta-analysis of published and novel data on 28 439 individuals with European, African, Hispanic and Asian ancestries reinforces genetic association between rs1143679 and SLE [Pmeta = 3.60 × 10−90, odds ratio (OR) = 1.76]. Since rs1143679 is in the most active region of chromatin regulation and transcription factor binding in ITGAM, we quantitated ITGAM RNA and surface protein levels in monocytes from patients with each rs1143679 genotype. We observed that transcript levels significantly decreased for the risk allele (‘A’) relative to the non-risk allele (‘G’), in a dose-dependent fashion: (‘AA’ < ‘AG’ < ‘GG’). CD11b protein levels in patients' monocytes were directly correlated with RNA levels. Strikingly, heterozygous individuals express much lower (average 10- to 15-fold reduction) amounts of the ‘A’ transcript than ‘G’ transcript. We found that the non-risk sequence surrounding rs1143679 exhibits transcriptional enhancer activity in vivo and binds to Ku70/80, NFKB1 and EBF1 in vitro, functions that are significantly reduced with the risk allele. Mutant CD11b protein shows significantly reduced binding to fibrinogen and vitronectin, relative to non-risk, both in purified protein and in cellular models. This two-pronged contribution (nucleic acid- and protein-level) of the rs1143679 risk allele to decreasing ITGAM activity provides insight into the molecular mechanisms of its potent association with SLE.
doi:10.1093/hmg/ddu106
PMCID: PMC4082363  PMID: 24608226
Genes and immunity  2014;16(1):15-23.
Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disorder characterized by inflammation of multiple organ systems and dysregulated interferon responses. SLE is both genetically and phenotypically heterogeneous, greatly reducing the power of case-control studies in SLE. Elevated circulating interferon alpha (IFN-α) is a stable, heritable trait in SLE, which has been implicated in primary disease pathogenesis. 40–50% of patients have high IFN-α, and high levels correspond with clinical differences. To study genetic heterogeneity in SLE, we performed a case-case study comparing patients with high vs. low IFN-α in over 1550 SLE cases, including GWAS and replication cohorts. In meta-analysis, the top associations in European ancestry were PRKG1 rs7897633 (PMeta=2.75 × 10−8) and PNP rs1049564 (PMeta=1.24 × 10−7). We also found evidence for cross-ancestral background associations with the ANKRD44 and PLEKHF2 loci. These loci have not been previously identified in case-control SLE genetic studies. Bioinformatic analyses implicated these loci functionally in dendritic cells and natural killer cells, both of which are involved in IFN-α production in SLE. As case-control studies of heterogeneous diseases reach a limit of feasibility with respect to subject number and detectable effect size, the study of informative pathogenic subphenotypes becomes an attractive strategy for genetic discovery in complex disease.
doi:10.1038/gene.2014.57
PMCID: PMC4305028  PMID: 25338677
Sjögren’s syndrome (SS) is a complex polygenic autoimmune disorder. A few major genetic effects have been identified. Historically, HLA and non-HLA genetic associations have been reported. Recently, the HLA region continued to reveal association findings. A new susceptibility region has been suggested by a study of a D6S349 microsatellite marker. Among non-HLA studies, recent association of immunoglobulin κ chain allotype KM1 with anti-La autoantibodies in primary Sjögren’s syndrome confirms findings in a study from two decades ago. Meanwhile, mouse models have been employed to study the genetic contribution to salivary lymphadenitis or dry eyes and mouth. Gene transfer exploration in mouse models shows promise. The authors review the HLA and non-HLA association studies and the mouse model work that has been reported. Newly developed genomic capacity will provide, in the future, a much closer approximation of the true picture of the genetic architecture of Sjögren’s syndrome.
doi:10.1007/s12016-007-8002-9
PMCID: PMC4420170  PMID: 17963047
Sjögren’s syndrome; Genetics; HLA; Histocompatibility
Lupus  2014;23(4):360-369.
Objective
To examine whether smoking is associated with autoantibody production in systemic lupus erythematosus (SLE) patients, unaffected first-degree relatives (FDR) of individuals with SLE - a group at increased risk of developing SLE, or unaffected, unrelated controls.
Methods
Detailed demographic, environmental, clinical, and therapeutic information was collected by questionnaire on 1,242 SLE patients, 981 FDRs, and 946 controls in the Lupus Family Registry and Repository; a blood sample was obtained. All sera were tested for multiple lupus autoantibodies by immunofluorescence and luminex bead-based assays. Generalized estimating equations, adjusting for age, gender, and ethnicity and accounting for correlation within families, were used to assess smoking status with the dichotomous outcome variables of positivity for SLE status, positivity of ANA by immunofluorescence (≥ 1:120), positivity for ≥ 1 autoantibody by the luminex assay, and positivity for each of the 11 autoantibodies.
Results
Current smoking was associated with being positive for ≥ 1 autoantibody (excluding ANA) (adjusted OR=1.53, 95% CI 1.04–2.24) in our subjects with SLE. No association was observed in unaffected FDRs or healthy controls. Former smoking was associated with anti-Ro/SS-A60 in our unaffected FDRs. There was an increased association with anti-nRNP A seropositivity, as well as a decreased association with anti-nRNP 68 positivity, in current smokers in SLE subjects.
Conclusions
No clear association between smoking status and individual autoantibodies was detected in SLE patients, unaffected FDRs, nor healthy controls within this collection. The association of smoking with SLE may therefore manifest its risk through mechanisms outside of autoantibody production, at least for the specificities tested.
doi:10.1177/0961203314520838
PMCID: PMC3954895  PMID: 24449338
Smoking; autoantibodies; systemic lupus erythematosus
Human Molecular Genetics  2013;23(6):1656-1668.
Recent reports have associated NCF2, encoding a core component of the multi-protein NADPH oxidase (NADPHO), with systemic lupus erythematosus (SLE) susceptibility in individuals of European ancestry. To identify ethnicity-specific and -robust variants within NCF2, we assessed 145 SNPs in and around the NCF2 gene in 5325 cases and 21 866 controls of European-American (EA), African-American (AA), Hispanic (HS) and Korean (KR) ancestry. Subsequent imputation, conditional, haplotype and bioinformatic analyses identified seven potentially functional SLE-predisposing variants. Association with non-synonymous rs17849502, previously reported in EA, was detected in EA, HS and AA (PEA = 1.01 × 10−54, PHS = 3.68 × 10−10, PAA = 0.03); synonymous rs17849501 was similarly significant. These SNPs were monomorphic in KR. Novel associations were detected with coding variants at rs35937854 in AA (PAA = 1.49 × 10−9), and rs13306575 in HS and KR (PHS = 7.04 × 10−7, PKR = 3.30 × 10−3). In KR, a 3-SNP haplotype was significantly associated (P = 4.20 × 10−7), implying that SLE predisposing variants were tagged. Significant SNP–SNP interaction (P = 0.02) was detected between rs13306575 and rs17849502 in HS, and a dramatically increased risk (OR = 6.55) with a risk allele at each locus. Molecular modeling predicts that these non-synonymous mutations could disrupt NADPHO complex assembly. The risk allele of rs17849501, located in a conserved transcriptional regulatory region, increased reporter gene activity, suggesting in vivo enhancer function. Our results not only establish allelic heterogeneity within NCF2 associated with SLE, but also emphasize the utility of multi-ethnic cohorts to identify predisposing variants explaining additional phenotypic variance (‘missing heritability’) of complex diseases like SLE.
doi:10.1093/hmg/ddt532
PMCID: PMC3929085  PMID: 24163247
Genes and immunity  2014;15(6):347-354.
In a Genome Wide Association Study (GWAS) of individuals of European ancestry afflicted with Systemic Lupus Erythematosus (SLE) the extensive utilization of imputation, stepwise multiple regression, lasso regularization, and increasing study power by utilizing False Discovery Rate (FDR) instead of a Bonferroni multiple test correction enabled us to identify 13 novel non-human leukocyte antigen (HLA) genes and confirmed the association of 4 genes previously reported to be associated. Novel genes associated with SLE susceptibility included two transcription factors (EHF, and MED1), two components of the NFκB pathway (RASSF2 and RNF114), one gene involved in adhesion and endothelial migration (CNTN6), and two genes involved in antigen presentation (BIN1 and SEC61G). In addition, the strongly significant association of multiple single nucleotide polymorphisms (SNPs) in the HLA region was assigned to HLA alleles and serotypes and deconvoluted into four primary signals. The novel SLE-associated genes point to new directions for both the diagnosis and treatment of this debilitating autoimmune disease.
doi:10.1038/gene.2014.23
PMCID: PMC4156543  PMID: 24871463
Objective
Macrophage activation syndrome (MAS), a life-threatening complication of systemic Juvenile Idiopathic Arthritis (SJIA), resembles Familial Hemophagocytic Lymphohistiocytosis (FHLH), a constellation of autosomal recessive immune disorders resulting from deficiency in cytolytic pathway proteins. We hypothesized that MAS predisposition in SJIA could be attributed to rare gene sequence variants affecting the cytotolytic pathway.
Methods
Whole exome sequencing (WES) was used in 14 SJIA/MAS patients and their parents to identify protein altering SNPs/indels in the known HLH-associated genes. To discover new candidate genes, the entire WES data were filtered to identify protein altering, rare recessive homozygous, compound heterozygous, and de novo variants with the potential to affect the cytolytic pathway.
Results
Heterozygous protein-altering rare variants in the known genes (LYST, MUNC13-4, and STXBP2) were found in 5 of 14 SJIA/MAS patients (35.7%). This was in contrast to only 4 variants in 4 of 29 (13,7%) SJIA patients without MAS. Homozygosity and compound heterozygosity analysis applied to the entire WES data in SJIAMAS, revealed 3 recessive pairs in 3 genes, and 76 compound heterozygotes in 75 genes. We also identified 22 heterozygous rare protein altering variants that occurred in at least two patients. Many of the identified genes encode proteins with a role in actin and microtubule reorganization and vesicle-mediated transport. “Cellular assembly and organization” was the top cellular function category based on Ingenuity Pathways Analysis (p<3.10E-05).
Conclusion
WES performed in SJIA/MAS patients identified rare protein altering variants in the known HLH associated genes as well as new candidate genes.
doi:10.1002/art.38793
PMCID: PMC4321811  PMID: 25047945
Nature genetics  2014;46(8):895-900.
Eosinophilic esophagitis (EoE) is a chronic inflammatory disorder associated with allergic hypersensitivity to food. We interrogated >1.5 million genetic variants in European EoE cases and subsequently in a multi-site cohort with local and out-of-study control subjects. In addition to replication of the 5q22 locus (meta-analysis p = 1.9×10−16), we identified association at 2p23 (encoding CAPN14, p = 2.5×10−10). CAPN14 was specifically expressed in the esophagus, dynamically upregulated as a function of disease activity and genetic haplotype and after exposure of epithelial cells to IL-13, and located in an epigenetic hotspot modified by IL-13. There was enriched esophageal expression for the genes neighboring the top 208 EoE sequence variants. Multiple allergic sensitization loci were associated with EoE susceptibility (4.8×10−2 < p < 5.1×10−11). We propose a model that elucidates the tissue specific nature of EoE that involves the interplay of allergic sensitization with an EoE-specific, IL-13–inducible esophageal response involving CAPN14.
doi:10.1038/ng.3033
PMCID: PMC4121957  PMID: 25017104
Frontiers in Genetics  2015;5:450.
Genome wide association studies have identified variants in PXK that confer risk for humoral autoimmune diseases, including systemic lupus erythematosus (SLE or lupus), rheumatoid arthritis and more recently systemic sclerosis. While PXK is involved in trafficking of epidermal growth factor Receptor (EGFR) in COS-7 cells, mechanisms linking PXK to lupus pathophysiology have remained undefined. In an effort to uncover the mechanism at this locus that increases lupus-risk, we undertook a fine-mapping analysis in a large multi-ancestral study of lupus patients and controls. We define a large (257kb) common haplotype marking a single causal variant that confers lupus risk detected only in European ancestral populations and spans the promoter through the 3′ UTR of PXK. The strongest association was found at rs6445972 with P < 4.62 × 10−10, OR 0.81 (0.75–0.86). Using stepwise logistic regression analysis, we demonstrate that one signal drives the genetic association in the region. Bayesian analysis confirms our results, identifying a 95% credible set consisting of 172 variants spanning 202 kb. Functionally, we found that PXK operates on the B-cell antigen receptor (BCR); we confirmed that PXK influenced the rate of BCR internalization. Furthermore, we demonstrate that individuals carrying the risk haplotype exhibited a decreased rate of BCR internalization, a process known to impact B cell survival and cell fate. Taken together, these data define a new candidate mechanism for the genetic association of variants around PXK with lupus risk and highlight the regulation of intracellular trafficking as a genetically regulated pathway mediating human autoimmunity.
doi:10.3389/fgene.2014.00450
PMCID: PMC4288052  PMID: 25620976
lupus; PXK; fine-mapping; B cells; BCR
Frontiers in Genetics  2014;5:401.
Objective: We report the first pediatric specific Phenome-Wide Association Study (PheWAS) using electronic medical records (EMRs). Given the early success of PheWAS in adult populations, we investigated the feasibility of this approach in pediatric cohorts in which associations between a previously known genetic variant and a wide range of clinical or physiological traits were evaluated. Although computationally intensive, this approach has potential to reveal disease mechanistic relationships between a variant and a network of phenotypes.
Method: Data on 5049 samples of European ancestry were obtained from the EMRs of two large academic centers in five different genotyped cohorts. Recently, these samples have undergone whole genome imputation. After standard quality controls, removing missing data and outliers based on principal components analyses (PCA), 4268 samples were used for the PheWAS study. We scanned for associations between 2476 single-nucleotide polymorphisms (SNP) with available genotyping data from previously published GWAS studies and 539 EMR-derived phenotypes. The false discovery rate was calculated and, for any new PheWAS findings, a permutation approach (with up to 1,000,000 trials) was implemented.
Results: This PheWAS found a variety of common variants (MAF > 10%) with prior GWAS associations in our pediatric cohorts including Juvenile Rheumatoid Arthritis (JRA), Asthma, Autism and Pervasive Developmental Disorder (PDD) and Type 1 Diabetes with a false discovery rate < 0.05 and power of study above 80%. In addition, several new PheWAS findings were identified including a cluster of association near the NDFIP1 gene for mental retardation (best SNP rs10057309, p = 4.33 × 10−7, OR = 1.70, 95%CI = 1.38 − 2.09); association near PLCL1 gene for developmental delays and speech disorder [best SNP rs1595825, p = 1.13 × 10−8, OR = 0.65(0.57 − 0.76)]; a cluster of associations in the IL5-IL13 region with Eosinophilic Esophagitis (EoE) [best at rs12653750, p = 3.03 × 10−9, OR = 1.73 95%CI = (1.44 − 2.07)], previously implicated in asthma, allergy, and eosinophilia; and association of variants in GCKR and JAZF1 with allergic rhinitis in our pediatric cohorts [best SNP rs780093, p = 2.18 × 10−5, OR = 1.39, 95%CI = (1.19 − 1.61)], previously demonstrated in metabolic disease and diabetes in adults.
Conclusion: The PheWAS approach with re-mapping ICD-9 structured codes for our European-origin pediatric cohorts, as with the previous adult studies, finds many previously reported associations as well as presents the discovery of associations with potentially important clinical implications.
doi:10.3389/fgene.2014.00401
PMCID: PMC4235428  PMID: 25477900
PheWAS; ICD-9 code; genetic polymorphism
Nature genetics  2013;45(11):10.1038/ng.2792.
Sjögren’s syndrome is a common autoimmune disease (~0.7% of European Americans) typically presenting as keratoconjunctivitis sicca and xerostomia. In addition to strong association within the HLA region at 6p21 (Pmeta=7.65×10−114), we establish associations with IRF5-TNPO3 (Pmeta=2.73×10−19), STAT4 (Pmeta=6.80×10−15), IL12A (Pmeta =1.17×10−10), FAM167A-BLK (Pmeta=4.97×10−10), DDX6-CXCR5 (Pmeta=1.10×10−8), and TNIP1 (Pmeta=3.30×10−8). Suggestive associations with Pmeta<5×10−5 were observed with 29 regions including TNFAIP3, PTTG1, PRDM1, DGKQ, FCGR2A, IRAK1BP1, ITSN2, and PHIP amongst others. These results highlight the importance of genes involved in both innate and adaptive immunity in Sjögren’s syndrome.
doi:10.1038/ng.2792
PMCID: PMC3867192  PMID: 24097067

Results 1-25 (133)