PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-20 (20)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
Document Types
1.  Ribosomal and Immune Transcripts Associate with Relapse in Acquired ADAMTS13-Deficient Thrombotic Thrombocytopenic Purpura 
PLoS ONE  2015;10(2):e0117614.
Approximately 40% of patients who survive acute episodes of thrombotic thrombocytopenic purpura (TTP) associated with severe acquired ADAMTS13 deficiency experience one or more relapses. Risk factors for relapse other than severe ADAMTS13 deficiency and ADAMTS13 autoantibodies are unknown. ADAMTS13 autoantibodies, TTP episodes following infection or type I interferon treatment and reported ensuing systemic lupus erythematosus in some patients suggest immune dysregulation. This cross-sectional study asked whether autoantibodies against RNA-binding proteins or peripheral blood gene expression profiles measured during remission are associated with history of prior relapse in acquired ADAMTS13-deficient TTP. Peripheral blood from 38 well-characterized patients with autoimmune ADAMTS13-deficient TTP in remission was examined for autoantibodies and global gene expression. A subset of TTP patients (9 patients, 24%) exhibited a peripheral blood gene signature composed of elevated ribosomal transcripts that associated with prior relapse. A non-overlapping subset of TTP patients (9 patients, 24%) displayed a peripheral blood type I interferon gene signature that associated with autoantibodies to RNA-binding proteins but not with history of relapse. Patients who had relapsed bimodally expressed higher HLA transcript levels independently of ribosomal transcripts. Presence of any one potential risk factor (ribosomal gene signature, elevated HLA-DRB1, elevated HLA-DRB5) associated with relapse (OR = 38.4; p = 0.0002) more closely than any factor alone or all factors together. Levels of immune transcripts typical of natural killer (NK) and T lymphocytes positively correlated with ribosomal gene expression and number of prior episodes but not with time since the most recent episode. Flow cytometry confirmed elevated expression of cell surface markers encoded by these transcripts on T and/or NK cell subsets of patients who had relapsed. These data associate elevated ribosomal and immune transcripts with relapse history in acquired, ADAMTS13-deficient TTP.
doi:10.1371/journal.pone.0117614
PMCID: PMC4324966  PMID: 25671313
2.  Loss of cone cyclic nucleotide-gated channel leads to alterations in light response modulating system and cellular stress response pathways: a gene expression profiling study 
Human Molecular Genetics  2013;22(19):3906-3919.
The cone photoreceptor cyclic nucleotide-gated (CNG) channel is essential for central and color vision and visual acuity. Mutations in the channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophy. We investigated the gene expression profiles in mouse retina with CNG channel deficiency using whole genome expression microarrays. As cones comprise only 2 to 3% of the total photoreceptor population in the wild-type mouse retina, the mouse lines with CNG channel deficiency on a cone-dominant background, i.e. Cnga3−/−/Nrl−/− and Cngb3−/−/Nrl−/− mice, were used in our study. Comparative data analysis revealed a total of 105 genes altered in Cnga3−/−/Nrl−/− and 92 in Cngb3−/−/Nrl−/− retinas, relative to Nrl−/− retinas, with 27 genes changed in both genotypes. The differentially expressed genes primarily encode proteins associated with cell signaling, cellular function maintenance and gene expression. Ingenuity pathway analysis (IPA) identified 26 and 9 canonical pathways in Cnga3−/−/Nrl−/− and Cngb3−/−/Nrl−/− retinas, respectively, with 6 pathways being shared. The shared pathways include phototransduction, cAMP/PKA-mediated signaling, endothelin signaling, and EIF2/endoplasmic reticulum (ER) stress, whereas the IL-1, CREB, and purine metabolism signaling were found to specifically associate with Cnga3 deficiency. Thus, CNG channel deficiency differentially regulates genes that affect cell processes such as phototransduction, cellular survival and gene expression, and such regulations play a crucial role(s) in the retinal adaptation to impaired cone phototransduction. Though lack of Cnga3 and Cngb3 shares many common pathways, deficiency of Cnga3 causes more significant alterations in gene expression. This work provides insights into how cones respond to impaired phototransduction at the gene expression levels.
doi:10.1093/hmg/ddt245
PMCID: PMC3766184  PMID: 23740940
3.  Inflammation and Neurological Disease-Related Genes are Differentially Expressed in Depressed Patients with Mood Disorders and Correlate with Morphometric and Functional Imaging Abnormalities 
Brain, behavior, and immunity  2012;31:161-171.
Depressed patients show evidence of both proinflammatory changes and neurophysiological abnormalities such as increased amygdala reactivity and volumetric decreases of the hippocampus and ventromedial prefrontal cortex (vmPFC). However, very little is known about the relationship between inflammation and neuroimaging abnormalities in mood disorders. A whole genome expression analysis of peripheral blood mononuclear cells yielded 12 protein-coding genes (ADM, APBB3, CD160, CFD, CITED2, CTSZ, IER5, NFKBIZ, NR4A2, NUCKS1, SERTAD1, TNF) that were differentially expressed between 29 unmedicated depressed patients with a mood disorder (8 bipolar disorder, 21 major depressive disorder) and 24 healthy controls (HCs). Several of these genes have been implicated in neurological disorders and/or apoptosis. Ingenuity Pathway Analysis yielded two genes networks, one centered around TNF with NFKβ, TGFβ, and ERK as connecting hubs, and the second network indicating cell cycle and/or kinase signaling anomalies. fMRI scanning was conducted using a backward-masking task in which subjects were presented with emotionally-valenced faces. Compared with HCs, the depressed subjects displayed a greater hemodynamic response in the right amygdala, left hippocampus, and the ventromedial prefrontal cortex to masked sad versus happy faces. The mRNA levels of several genes were significantly correlated with the hemodynamic response of the amygdala, vmPFC and hippocampus to masked sad versus happy faces. Differentially-expressed transcripts were significantly correlated with thickness of the left subgenual ACC, and volume of the hippocampus and caudate. Our results raise the possibility that molecular-level immune dysfunction can be mapped onto macro-level neuroimaging abnormalities, potentially elucidating a mechanism by which inflammation leads to depression.
doi:10.1016/j.bbi.2012.10.007
PMCID: PMC3577998  PMID: 23064081
4.  Early effects of Staphylococcus aureus biofilm secreted products on inflammatory responses of human epithelial keratinocytes 
Background
Chronic wounds such as diabetic foot ulcers, pressure ulcers, and venous leg ulcers contribute to a considerable amount of mortality in the U.S. annually. The inability of these wounds to heal has now been associated with the presence of microbial biofilms. The aim of this study was to determine if products secreted by S. aureus biofilms play an active role in chronic wounds by promoting inflammation, which is a hallmark of chronic wounds.
Methods
In vitro experiments were conducted to examine changes in gene expression profiles and inflammatory response of human epithelial keratinocytes (HEKa) exposed to products secreted by S. aureus grown in biofilms or products secreted by S. aureus grown planktonically.
Results
After only two hours of exposure, gene expression microarray data showed marked differences in inflammatory, apoptotic, and nitric oxide responses between HEKa cells exposed to S. aureus biofilm conditioned media (BCM) and HEKa cells exposed to S. aureus planktonic conditioned media (PCM). As early as 4 hours post exposure, ELISA results showed significant increases in IL-6, IL-8, TNFα, and CXCL2 production by HEKa cells exposed to BCM compared to HEKa cells exposed to PCM or controls. Nitric oxide assay data also showed significant increases in nitric oxide production by HEKa cells treated with BCM compared to HEKa cells treated with PCM, or controls.
Conclusions
Taken together, these results support and extend previous findings that indicate products secreted by S. aureus biofilms directly contribute to the chronic inflammation associated with chronic wounds.
doi:10.1186/1476-9255-11-17
PMCID: PMC4059087  PMID: 24936153
Staphylococcus aureus; Biofilms; Keratinocytes; Inflammation; Nitric oxide; Gene expression microarray
5.  Functional characterization of the MECP2/IRAK1 lupus risk haplotype in human T cells and a human MECP2 transgenic mouse 
Journal of autoimmunity  2013;41:168-174.
Genetic polymorphism in MECP2/IRAK1 on chromosome Xq28 is a confirmed and replicated susceptibility locus for lupus. High linkage disequilibrium in this locus suggests that both MECP2 and IRAK1 are candidate genes for the disease. DNA methylation changes in lupus T cells play a central role in the pathogenesis of lupus, and MeCp-2 (encoded by MECP2) is a master regulator of gene expression and is also known to recruit DNA methyltransferase 1 (DNMT1) during DNA synthesis. Using human T cells from normal individuals with either the lupus risk or the lupus protective haplotype in MECP2/IRAK1, we demonstrate that polymorphism in this locus increases MECP2 isoform 2 mRNA expression in stimulated but not unstimulated T cells. By assessing DNA methylation levels across over 485,000 methylation sites across the entire genome, we further demonstrate that the lupus risk variant in this locus is associated with significant DNA methylation changes, including in the HLA-DR and HLA-DQ loci, as well as interferon-related genes such as IFI6, IRF6, and BST2. Further, using a human MECP2 transgenic mouse, we show that overexpression of MECP2 alters gene expression in stimulated T cells. This includes overexpression of Eif2c2 that regulates the expression of multiple microRNAs (such as miR-21), and the histone demethylase Jhdm1d. In addition, we show that MECP2 transgenic mice develop antinuclear antibodies. Our data suggest that the lupus associated variant in the MECP2/IRAK1 locus has the potential to affect all 3 epigenetic mechanisms: DNA methylation, microRNA expression, and histone modification. Importantly, these data support the notion that variants within the MECP2 gene can alter DNA methylation in other genetic loci including the HLA and interferon-regulated genes, thereby providing evidence for genetic-epigenetic interaction in lupus.
doi:10.1016/j.jaut.2012.12.012
PMCID: PMC3622940  PMID: 23428850
MECP2; IRAK1; lupus; epigenetics; polymorphism; DNA methylation; T cells; transgenic mouse
6.  Genomic characterization of remission in juvenile idiopathic arthritis 
Arthritis Research & Therapy  2013;15(4):R100.
Introduction
The attainment of remission has become an important end point for clinical trials in juvenile idiopathic arthritis (JIA), although we do not yet have a full understanding of what remission is at the cell and molecular level.
Methods
Two independent cohorts of patients with JIA and healthy child controls were studied. RNA was prepared separately from peripheral blood mononuclear cells (PBMC) and granulocytes to identify differentially expressed genes using whole genome microarrays. Expression profiling results for selected genes were confirmed by quantitative, real-time polymerase chain reaction (RT-PCR).
Results
We found that remission in JIA induced by either methotrexate (MTX) or MTX plus a TNF inhibitor (etanercept, Et) (MTX + Et) is characterized by numerous differences in gene expression in peripheral blood mononuclear cells and in granulocytes compared with healthy control children; that is, remission is not a restoration of immunologic normalcy. Network analysis of the differentially expressed genes demonstrated that the steroid hormone receptor superfamily member hepatocyte nuclear factor 4 alpha (HNF4α) is a hub in several of the gene networks that distinguished children with arthritis from controls. Confocal microscopy revealed that HNF4a is present in both T lymphocytes and granulocytes, suggesting a previously unsuspected role for this transcription factor in regulating leukocyte function and therapeutic response in JIA.
Conclusions
These findings provide a framework from which to understand therapeutic response in JIA and, furthermore, may be used to develop strategies to increase the frequency with which remission is achieved in adult forms of rheumatoid arthritis.
doi:10.1186/ar4280
PMCID: PMC4062846  PMID: 24000795
juvenile idiopathic arthritis; methotrexate; TNF inhibitor; gene expression; biomarker; microarray
7.  External Qi of Yan Xin Qigong induces cell death and gene expression alterations promoting apoptosis and inhibiting proliferation, migration and glucose metabolism in small-cell lung cancer cells 
Molecular and cellular biochemistry  2011;363(1-2):245-255.
Small-cell lung cancer (SCLC) is a highly malignant carcinoma with poor long-term survival. Effective treatment remains highly demanded. In the present study, we demonstrated that External Qi of Yan Xin Qigong (YXQ-EQ) exerted potent cytotoxic effect towards SCLC cell line NCI-H82 via induction of apoptosis. Global gene expression profiling identified 39 genes whose expression was altered by YXQ-EQ in NCI-82 cells. Among them, semi-quantitative RT-PCR and real-time qPCR analyses confirmed that the gene expression levels of apoptotic proteins death-associated protein kinase 2 and cell death-inducing DFFA-like effector b were upregulated, whereas that of oncoproteins DEK and MYCL1, cell migration-promoting proteins CD24 and integrin-alpha 9, and glycolytic enzyme aldolase A were downregulated. These findings suggest that YXQ-EQ may exert anticancer effect through modulating gene expression in a way that facilitates cancer cell apoptosis while represses proliferation, metastasis, and glucose metabolism.
doi:10.1007/s11010-011-1176-8
PMCID: PMC3567610  PMID: 22160803
Small-cell lung cancer; Gene expression; Cell death; Anti-cancer effect
8.  Anthrax Lethal Toxin-Induced Gene Expression Changes in Mouse Lung 
Toxins  2011;3(9):1111-1130.
A major virulence factor of Bacillus anthracis is the anthrax Lethal Toxin (LeTx), a bipartite toxin composed of Protective Antigen and Lethal Factor. Systemic administration of LeTx to laboratory animals leads to death associated with vascular leakage and pulmonary edema. In this study, we investigated whether systemic exposure of mice to LeTx would induce gene expression changes associated with vascular/capillary leakage in lung tissue. We observed enhanced susceptibility of A/J mice to death by systemic LeTx administration compared to the C57BL/6 strain. LeTx-induced groups of both up- and down-regulated genes were observed in mouse lungs 6 h after systemic administration of wild type toxin compared to lungs of mice exposed to an inactive mutant form of the toxin. Lungs of the less susceptible C57BL/6 strain showed 80% fewer differentially expressed genes compared to lungs of the more sensitive A/J strain. Expression of genes known to regulate vascular permeability was modulated by LeTx in the lungs of the more susceptible A/J strain. Unexpectedly, the largest set of genes with altered expression was immune specific, characterized by the up-regulation of lymphoid genes and the down-regulation of myeloid genes. Transcripts encoding neutrophil chemoattractants, modulators of tumor regulation and angiogenesis were also differentially expressed in both mouse strains. These studies provide new directions for the investigation of vascular leakage and pulmonary edema induced by anthrax LeTx.
doi:10.3390/toxins3091111
PMCID: PMC3202878  PMID: 22039574
Lethal Toxin; lung; gene expression
9.  Anthrax Lethal Toxin-Induced Gene Expression Changes in Mouse Lung 
Toxins  2011;3(9):1111-1130.
A major virulence factor of Bacillus anthracis is the anthrax Lethal Toxin (LeTx), a bipartite toxin composed of Protective Antigen and Lethal Factor. Systemic administration of LeTx to laboratory animals leads to death associated with vascular leakage and pulmonary edema. In this study, we investigated whether systemic exposure of mice to LeTx would induce gene expression changes associated with vascular/capillary leakage in lung tissue. We observed enhanced susceptibility of A/J mice to death by systemic LeTx administration compared to the C57BL/6 strain. LeTx-induced groups of both up- and down-regulated genes were observed in mouse lungs 6 h after systemic administration of wild type toxin compared to lungs of mice exposed to an inactive mutant form of the toxin. Lungs of the less susceptible C57BL/6 strain showed 80% fewer differentially expressed genes compared to lungs of the more sensitive A/J strain. Expression of genes known to regulate vascular permeability was modulated by LeTx in the lungs of the more susceptible A/J strain. Unexpectedly, the largest set of genes with altered expression was immune specific, characterized by the up-regulation of lymphoid genes and the down-regulation of myeloid genes. Transcripts encoding neutrophil chemoattractants, modulators of tumor regulation and angiogenesis were also differentially expressed in both mouse strains. These studies provide new directions for the investigation of vascular leakage and pulmonary edema induced by anthrax LeTx.
doi:10.3390/toxins3091111
PMCID: PMC3202878  PMID: 22039574
Lethal Toxin; lung; gene expression
10.  Functional genomics and rheumatoid arthritis: where have we been and where should we go? 
Genome Medicine  2010;2(7):44.
Studies in model organisms and humans have begun to reveal the complexity of the transcriptome. In addition to serving as passive templates from which genes are translated, RNA molecules are active, functional elements of the cell whose products can detect, interact with, and modify other transcripts. Gene expression profiling is the method most commonly used thus far to enrich our understanding of the molecular basis of rheumatoid arthritis in adults and juvenile idiopathic arthritis in children. The feasibility of this approach for patient classification (for example, active versus inactive disease, disease subsets) and improving prognosis (for example, response to therapy) has been demonstrated over the past 7 years. Mechanistic understanding of disease-related differences in gene expression must be interpreted in the context of interactions with transcriptional regulatory molecules and epigenetic alterations of the genome. Ongoing work regarding such functional complexities in the human genome will likely bring both insight and surprise to our understanding of rheumatoid arthritis.
doi:10.1186/gm165
PMCID: PMC2923736  PMID: 20670388
11.  Gene Expression Profiling in Neutrophils From Children With Polyarticular Juvenile Idiopathic Arthritis 
Arthritis and rheumatism  2009;60(5):1488-1495.
Objective
We have previously reported a defect in neutrophil activation in children with polyarticular juvenile idiopathic arthritis (JIA). The current study was undertaken to determine whether gene expression abnormalities persist in JIA in remission and to use systems biology analysis to elucidate pathologic pathways in polyarticular JIA.
Methods
We performed gene expression profiling on neutrophils from children with polyarticular JIA. Children were grouped according to disease status. We studied 14 children with active disease who were taking medication, 8 children with clinical remission of disease who were taking medication (CRM status), and 6 children with clinical remission of disease who were not taking medication (CR status). We also studied 13 healthy children whose age ranges overlapped those of the patients.
Results
Neutrophil abnormalities persisted in children with polyarticular JIA even after disease remission was achieved. Children with active disease and those with CRM status showed no differences in expression of specific genes, although they could be separated on cluster analysis. A comparison of children with CR status and healthy control children revealed networks of pro- and antiinflammatory genes that suggested that remission is a state of homeostasis and balance rather than a return to normal immune function. Furthermore, gene overexpression in patients with CR status supports the hypothesis that neutrophils play a role in regulating adaptive immunity in this disease.
Conclusion
Neutrophil gene profiling in polyarticular JIA suggests important roles for neutrophils in disease pathogenesis. These findings suggest the presence of complex interactions between innate and adaptive immunity, that are not easily modeled in conventional, linear, reductionist systems.
doi:10.1002/art.24450
PMCID: PMC3063001  PMID: 19404961
12.  Unique Patterns of Molecular Profiling between Human Prostate Cancer LNCaP and PC-3 Cells 
The Prostate  2009;69(10):1077-1090.
BACKGROUND
Human prostate cancer LNCaP and PC-3 cell lines have been extensively used to study prostate cancer progression and to develop therapeutic agents. Although LNCaP and PC-3 cells are generally assumed to represent early and late stages of prostate cancer, respectively, there is limited information regarding gene expression patterns between these two cell lines and its relationship to prostate cancer.
METHODS
Comprehensive gene expression analysis was performed. Total RNA was isolated from cultured cells and hybridized to Illumina human BeadChips representing 24,526 transcripts. Bioinformatics analysis was applied to identify cell line specific genes as well as biological mechanisms, pathways, and functions related to the genes.
RESULTS
A total of 2,198 genes were differentially expressed between LNCaP and PC-3 cells. Using a robust statistical analysis and high significance criteria, 115 and 188 genes were identified to be unique to LNCaP and PC-3 cells, respectively. LNCaP cells maintained various metabolic pathways including a gene cluster that encodes UDP-glucuronosyltransferases. Several transcription factors including Talα/β, GATA-1, and c-Myc/Max may be responsible for regulating LNCaP cell specific genes. By contrast, PC-3 cells were characterized by their unique expression of cytoskeleton-related genes and other genes including VEGFC, IL8, and TGFβ2.
CONCLUSIONS
This study showed that LNCaP and PC-3 cells represent two distinct prostate cancer cell lineages. LNCaP cells retain many prostate cell specific properties, whereas PC-3 cells have acquired a more aggressive phenotype. Future studies for prostate cancer research need to consider similarities and differences between these two cells and their relationship to prostate cancer.
doi:10.1002/pros.20960
PMCID: PMC2755240  PMID: 19343732
prostate cancer; prostate cancer cells; microarray
13.  Variants within MECP2, a key transcriptional regulator, are associated with increased susceptibility to lupus and differential gene expression in lupus patients 
Arthritis and rheumatism  2009;60(4):1076-1084.
Objective
Both genetic and epigenetic factors play an important role in the pathogenesis of lupus. Herein, we study methyl-CpG-binding protein 2 (MECP2) polymorphism in a large cohort of lupus patients and controls, and determine functional consequences of the lupus-associated MECP2 haplotype.
Methods
We genotyped 18 SNPs within MECP2, located on chromosome Xq28, in a large cohort of European-derived lupus patients and controls. We studied the functional effects of the lupus-associated MECP2 haplotype by determining gene expression profiles in B cell lines from female lupus patients with and without the lupus-associated MECP2 risk haplotype.
Results
We confirm, replicate, and extend the genetic association between lupus and genetic markers within MECP2 in a large independent cohort of European-derived lupus patients and controls (OR= 1.35, p= 6.65×10−11). MECP2 is a dichotomous transcriptional regulator that either activates or represses gene expression. We identified 128 genes that are differentially expressed in lupus patients with the disease-associated MECP2 haplotype; most (~81%) are upregulated. Genes that were upregulated have significantly more CpG islands in their promoter regions compared to downregulated genes. Gene ontology analysis using the differentially expressed genes revealed significant association with epigenetic regulatory mechanisms suggesting that these genes are targets for MECP2 regulation in B cells. Further, at least 13 of the 104 upregulated genes are interferon-regulated genes. The disease-risk MECP2 haplotype is associated with increased expression of the MECP2 transcriptional co-activator CREB1, and decreased expression of the co-repressor HDAC1.
Conclusion
Polymorphism in the MECP2 locus is associated with lupus and, at least in part, contributes to the interferon signature observed in lupus patients.
doi:10.1002/art.24360
PMCID: PMC2734382  PMID: 19333917
14.  The Meaning of Clinical Remission in Polyarticular Juvenile Idiopathic Arthritis: Gene Expression Profiling in Peripheral Blood Mononuclear Cells Identifies Distinct Disease States 
Arthritis and rheumatism  2009;60(3):892-900.
Objective
The development of biomarkers to predict response to therapy in polyarticular juvenile idiopathic arthritis (JIA) is an important issue in pediatric rheumatology. An critical step in this process is determining whether there is biological meaning to clinically derived terms such as “active disease” and “remission.” We used a systems biology approach to address this question.
Methods
We performed gene transcriptional profiling on children who fit criteria for specific disease states as defined by consensus criteria developed by Wallace et al. (J Rheumatol 2005). Children with active disease (AD, n=14), clinical remission on medication (CRM, n=9) and clinical remission off medication (CR, n=6) were studied, in addition to healthy control children (n=13). Transcriptional profiles in peripheral blood mononuclear cells (PBMC) were obtained using Affymetrix U133 Plus 2.0 Arrays.
Results
Hierarchical cluster analysis and predictive modeling demonstrated that the clinically-derived criteria represent biologically-distinct states. Minimal differences were seen between children with AD and those with CRM. Thus, underlying immune/inflammatory abnormalities persist despite response to therapy. The PBMC transcriptional profiles of children in remission did not return to normal, but revealed networks of pro- and anti-inflammatory genes suggesting that “remission” is a state of homeostasis, not a return to normal.
Conclusions
Gene transcriptional profiling of PBMC reveals that clinically-derived criteria for JIA disease states reflect underlying biology. We also demonstrate that neither CRM nor CR states result in resolution of the underlying inflammatory process, but are more likely to be states of balanced homeostasis between pro- and anti-inflammatory mechanisms.
doi:10.1002/art.24298
PMCID: PMC2758237  PMID: 19248118
15.  Frankincense oil derived from Boswellia carteri induces tumor cell specific cytotoxicity 
Background
Originating from Africa, India, and the Middle East, frankincense oil has been important both socially and economically as an ingredient in incense and perfumes for thousands of years. Frankincense oil is prepared from aromatic hardened gum resins obtained by tapping Boswellia trees. One of the main components of frankincense oil is boswellic acid, a component known to have anti-neoplastic properties. The goal of this study was to evaluate frankincense oil for its anti-tumor activity and signaling pathways in bladder cancer cells.
Methods
Frankincense oil-induced cell viability was investigated in human bladder cancer J82 cells and immortalized normal bladder urothelial UROtsa cells. Temporal regulation of frankincense oil-activated gene expression in bladder cancer cells was identified by microarray and bioinformatics analysis.
Results
Within a range of concentration, frankincense oil suppressed cell viability in bladder transitional carcinoma J82 cells but not in UROtsa cells. Comprehensive gene expression analysis confirmed that frankincense oil activates genes that are responsible for cell cycle arrest, cell growth suppression, and apoptosis in J82 cells. However, frankincense oil-induced cell death in J82 cells did not result in DNA fragmentation, a hallmark of apoptosis.
Conclusion
Frankincense oil appears to distinguish cancerous from normal bladder cells and suppress cancer cell viability. Microarray and bioinformatics analysis proposed multiple pathways that can be activated by frankincense oil to induce bladder cancer cell death. Frankincense oil might represent an alternative intravesical agent for bladder cancer treatment.
doi:10.1186/1472-6882-9-6
PMCID: PMC2664784  PMID: 19296830
16.  Disease-associated pathophysiologic structures in pediatric rheumatic diseases show characteristics of scale-free networks seen in physiologic systems: implications for pathogenesis and treatment 
Background
While standard reductionist approaches have provided some insights into specific gene polymorphisms and molecular pathways involved in disease pathogenesis, our understanding of complex traits such as atherosclerosis or type 2 diabetes remains incomplete. Gene expression profiling provides an unprecedented opportunity to understand complex human diseases by providing a global view of the multiple interactions across the genome that are likely to contribute to disease pathogenesis. Thus, the goal of gene expression profiling is not to generate lists of differentially expressed genes, but to identify the physiologic or pathogenic processes and structures represented in the expression profile.
Methods
RNA was separately extracted from peripheral blood neutrophils and mononuclear leukocytes, labeled, and hybridized to genome level microarrays to generate expression profiles of children with polyarticular juvenile idiopathic arthritis, juvenile dermatomyositis relative to childhood controls. Statistically significantly differentially expressed genes were identified from samples of each disease relative to controls. Functional network analysis identified interactions between products of these differentially expressed genes.
Results
In silico models of both diseases demonstrated similar features with properties of scale-free networks previously described in physiologic systems. These networks were observable in both cells of the innate immune system (neutrophils) and cells of the adaptive immune system (peripheral blood mononuclear cells).
Conclusion
Genome-level transcriptional profiling from childhood onset rheumatic diseases suggested complex interactions in two arms of the immune system in both diseases. The disease associated networks showed scale-free network patterns similar to those reported in normal physiology. We postulate that these features have important implications for therapy as such networks are relatively resistant to perturbation.
doi:10.1186/1755-8794-2-9
PMCID: PMC2649160  PMID: 19236715
17.  Transcriptional modulation of TCR, Notch and Wnt signaling pathways in SEB Anergized CD4+ T cells 
Genes and immunity  2005;6(7):596-608.
Gene expression changes in CD4+Vβ8+ T cells anergized by in vivo exposure to staphylococcal enterotoxin B (SEB) bacterial superantigen compared to CD4+Vβ8+ non-anergic T cells were assessed using DNA microarrays containing 5,184 murine cDNAs. Anergy in splenic T cells of SEB-immunized BALB/c mice was verified by dramatically reduced proliferative capacity and an 8X overexpression of GRAIL mRNA in CD4+Vβ8+ T cells taken from mice 7 d after injection. At an associative t-test threshold of p<0.0005, 96 genes were over-expressed or detected only in anergic T cells, while 256 genes were suppressed or not detected in anergic T cells. Six of eight differential expressions tested using real-time quantitative PCR were validated. Message for B-raf was detected only in non-anergic cells, while expression of the TCR signaling modulator Slap and the TCR ζ-chain specific phosphatase Ptpn3 was enhanced. Modulation of multiple genes suggests down-regulation of Wnt/β-catenin signaling and enhanced Notch signaling in the anergic cells. Consistent with previous reports in a non-superantigen in vivo anergy model, mRNA for CD18 and the transcription factor SATB1 was increased in SEB-anergized T cells. This is the first report of global transcriptional changes in CD4+ T cells made anergic by superantigen exposure.
doi:10.1038/sj.gene.6364245
PMCID: PMC2593626  PMID: 16034473
T cell; anergy; superantigen; rodent; microarray
18.  Discriminators of mouse bladder response to intravesical Bacillus Calmette-Guerin (BCG) 
BMC Immunology  2007;8:6.
Background
Intravesical Bacillus Calmette-Guerin (BCG) is an effective treatment for bladder superficial carcinoma and it is being tested in interstitial cystitis patients, but its precise mechanism of action remains poorly understood. It is not clear whether BCG induces the release of a unique set of cytokines apart from its pro-inflammatory effects. Therefore, we quantified bladder inflammatory responses and alterations in urinary cytokine protein induced by intravesical BCG and compared the results to non-specific pro-inflammatory stimuli (LPS and TNF-α). We went further to determine whether BCG treatment alters cytokine gene expression in the urinary bladder.
Methods
C57BL/6 female mice received four weekly instillations of BCG, LPS, or TNF-α. Morphometric analyses were conducted in bladders isolated from all groups and urine was collected for multiplex analysis of 18 cytokines. In addition, chromatin immune precipitation combined with real-time polymerase chain reaction assay (CHIP/Q-PCR) was used to test whether intravesical BCG would alter bladder cytokine gene expression.
Results
Acute BCG instillation induced edema which was progressively replaced by an inflammatory infiltrate, composed primarily of neutrophils, in response to weekly administrations. Our morphological analysis suggests that these polymorphonuclear neutrophils are of prime importance for the bladder responses to BCG. Overall, the inflammation induced by BCG was higher than LPS or TNF-α treatment but the major difference observed was the unique granuloma formation in response to BCG. Among the cytokines measured, this study highlighted the importance of IL-1β, IL-2, IL-3, IL-4, IL-6, IL-10, IL-17, GM-CSF, KC, and Rantes as discriminators between generalized inflammation and BCG-specific inflammatory responses. CHIP/Q-PCR indicates that acute BCG instillation induced an up-regulation of IL-17A, IL-17B, and IL-17RA, whereas chronic BCG induced IL-17B, IL-17RA, and IL-17RB.
Conclusion
To the best of our knowledge, the present work is the first to report that BCG induces an increase in the IL-17 family genes. In addition, BCG induces a unique type of persisting bladder inflammation different from TNF-α, LPS, and, most likely, other classical pro-inflammatory stimuli.
doi:10.1186/1471-2172-8-6
PMCID: PMC1891101  PMID: 17506885
19.  Evidence for chronic, peripheral activation of neutrophils in polyarticular juvenile rheumatoid arthritis 
Although strong epidemiologic evidence suggests an important role for adaptive immunity in the pathogenesis of polyarticular juvenile rheumatoid arthritis (JRA), there remain many aspects of the disease that suggest equally important contributions of the innate immune system. We used gene expression arrays and computer modeling to examine the function in neutrophils of 25 children with polyarticular JRA. Computer analysis identified 712 genes that were differentially expressed between patients and healthy controls. Computer-assisted analysis of the differentially expressed genes demonstrated functional connections linked to both interleukin (IL)-8- and interferon-γ (IFN-γ)-regulated processes. Of special note is that the gene expression fingerprint of children with active JRA remained essentially unchanged even after they had responded to therapy. This result differed markedly from our previously reported work, in which gene expression profiles in buffy coats of children with polyarticular JRA reverted to normal after disease control was achieved pharmacologically. These findings suggest that JRA neutrophils remain in an activated state even during disease quiescence. Computer modeling of array data further demonstrated disruption of gene regulatory networks in clusters of genes modulated by IFN-γ and IL-8. These cytokines have previously been shown to independently regulate the frequency (IFN-γ) and amplitude (IL-8) of the oscillations of key metabolites in neutrophils, including nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and superoxide ion. Using real-time, high-speed, single-cell photoimaging, we observed that 6/6 JRA patients displayed a characteristic defect in 12% to 23% of the neutrophils tested. Reagents known to induce only frequency fluctuations of NAD(P)H and superoxide ion induced both frequency and amplitude fluctuations in JRA neutrophils. This is a novel finding that was observed in children with both active (n = 4) and inactive (n = 2) JRA. A subpopulation of polyarticular JRA neutrophils are in a chronic, activated state, a state that persists when the disease is well controlled pharmacologically. Furthermore, polyarticular JRA neutrophils exhibit an intrinsic defect in the regulation of metabolic oscillations and superoxide ion production. Our data are consistent with the hypothesis that neutrophils play an essential role in the pathogenesis of polyarticular JRA.
doi:10.1186/ar2048
PMCID: PMC1779452  PMID: 17002793
20.  Novel approaches to gene expression analysis of active polyarticular juvenile rheumatoid arthritis 
Arthritis Research & Therapy  2003;6(1):R15-R32.
Juvenile rheumatoid arthritis (JRA) has a complex, poorly characterized pathophysiology. Modeling of transcriptosome behavior in pathologic specimens using microarrays allows molecular dissection of complex autoimmune diseases. However, conventional analyses rely on identifying statistically significant differences in gene expression distributions between patients and controls. Since the principal aspects of disease pathophysiology vary significantly among patients, these analyses are biased. Genes with highly variable expression, those most likely to regulate and affect pathologic processes, are excluded from selection, as their distribution among healthy and affected individuals may overlap significantly. Here we describe a novel method for analyzing microarray data that assesses statistically significant changes in gene behavior at the population level. This method was applied to expression profiles of peripheral blood leukocytes from a group of children with polyarticular JRA and healthy control subjects. Results from this method are compared with those from a conventional analysis of differential gene expression and shown to identify discrete subsets of functionally related genes relevant to disease pathophysiology. These results reveal the complex action of the innate and adaptive immune responses in patients and specifically underscore the role of IFN-γ in disease pathophysiology. Discriminant function analysis of data from a cohort of patients treated with conventional therapy identified additional subsets of functionally related genes; the results may predict treatment outcomes. While data from only 9 patients and 12 healthy controls was used, this preliminary investigation of the inflammatory genomics of JRA illustrates the significant potential of utilizing complementary sets of bioinformatics tools to maximize the clinical relevance of microarray data from patients with autoimmune disease, even in small cohorts.
doi:10.1186/ar1018
PMCID: PMC400410  PMID: 14979934
arthritis; autoimmunity; bioinformatics; juvenile rheumatoid arthritis; microarray

Results 1-20 (20)