Search tips
Search criteria

Results 1-25 (116)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Genetic Association of CD247 (CD3ζ) with SLE in a Large-Scale Multiethnic Study 
Genes and immunity  2015;16(2):142-150.
A classic T-cell phenotype in Systemic lupus erythematosus (SLE) is the downregulation and replacement of the CD3ζ chain that alters TCR signaling. However, genetic associations with SLE in the human CD247 locus that encodes CD3ζ are not well established and require replication in independent cohorts. Our aim was therefore to examine, localize and validate CD247-SLE association in a large multi-ethnic population. We typed 44 contiguous CD247 SNPs in 8 922 SLE patients and 8 077 controls from four ethnically distinct populations. The strongest associations were found in the Asian population (11 SNPs in intron 1, 4.99×10−4
PMCID: PMC4371129  PMID: 25569266
PLoS ONE  2015;10(7):e0129813.
Systemic lupus erythematosus (SLE) is characterized by the development of autoantibodies associated with specific clinical manifestations. Previous studies have shown an association between differential DNA methylation and SLE susceptibility, but have not investigated SLE-related autoantibodies. Our goal was to determine whether DNA methylation is associated with production of clinically relevant SLE-related autoantibodies, with an emphasis on the anti-dsDNA autoantibody. In this study, we characterized the methylation status of 467,314 CpG sites in 326 women with SLE. Using a discovery and replication study design, we identified and replicated significant associations between anti-dsDNA autoantibody production and the methylation status of 16 CpG sites (pdiscovery<1.07E-07 and preplication<0.0029) in 11 genes. Associations were further investigated using multivariable regression to adjust for estimated leukocyte cell proportions and population substructure. The adjusted mean DNA methylation difference between anti-dsDNA positive and negative cases ranged from 1.2% to 19%, and the adjusted odds ratio for anti-dsDNA autoantibody production comparing the lowest and highest methylation tertiles ranged from 6.8 to 18.2. Differential methylation for these CpG sites was also associated with anti-SSA, anti-Sm, and anti-RNP autoantibody production. Overall, associated CpG sites were hypomethylated in autoantibody positive compared to autoantibody negative cases. Differential methylation of CpG sites within the major histocompatibility region was not strongly associated with autoantibody production. Genes with differentially methylated CpG sites represent multiple biologic pathways, and have not been associated with autoantibody production in genetic association studies. In conclusion, hypomethylation of CpG sites within genes from different pathways is associated with anti-dsDNA, anti-SSA, anti-Sm, and anti-RNP production in SLE, and these associations are not explained by genetic variation. Thus, studies of epigenetic mechanisms such as DNA methylation represent a complementary method to genetic association studies to identify biologic pathways that may contribute to the clinical heterogeneity of autoimmune diseases.
PMCID: PMC4508022  PMID: 26192630
Genes and immunity  2014;16(1):15-23.
Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disorder characterized by inflammation of multiple organ systems and dysregulated interferon responses. SLE is both genetically and phenotypically heterogeneous, greatly reducing the power of case-control studies in SLE. Elevated circulating interferon alpha (IFN-α) is a stable, heritable trait in SLE, which has been implicated in primary disease pathogenesis. 40–50% of patients have high IFN-α, and high levels correspond with clinical differences. To study genetic heterogeneity in SLE, we performed a case-case study comparing patients with high vs. low IFN-α in over 1550 SLE cases, including GWAS and replication cohorts. In meta-analysis, the top associations in European ancestry were PRKG1 rs7897633 (PMeta=2.75 × 10−8) and PNP rs1049564 (PMeta=1.24 × 10−7). We also found evidence for cross-ancestral background associations with the ANKRD44 and PLEKHF2 loci. These loci have not been previously identified in case-control SLE genetic studies. Bioinformatic analyses implicated these loci functionally in dendritic cells and natural killer cells, both of which are involved in IFN-α production in SLE. As case-control studies of heterogeneous diseases reach a limit of feasibility with respect to subject number and detectable effect size, the study of informative pathogenic subphenotypes becomes an attractive strategy for genetic discovery in complex disease.
PMCID: PMC4305028  PMID: 25338677
Significant advances have been made in understanding the genetic basis of systemic sclerosis (SSc) in recent years. Genomewide association and other large-scale genetic studies have identified 30 largely immunity-related genes which are significantly associated with SSc. We review these studies, along with genomewide expression studies, proteomic studies, genetic mouse models, and insights from rare sclerodermatous diseases. Collectively, these studies have begun to identify pathways that are relevant to SSc pathogenesis. The findings presented in this review illustrate how both genetic and genomic aberrations play important roles in the development of SSc. However, despite these recent discoveries, there remain major gaps between current knowledge of SSc, a unified understanding of pathogenesis, and effective treatment. To this aim, we address the important issue of SSc heterogeneity and discuss how future research needs to address this in order to develop a clearer understanding of this devastating and complex disease.
PMCID: PMC4361757  PMID: 25777745
Scleroderma; Systemic sclerosis; Autoimmune disease; Genetics; Single nucleotide polymorphisms; Genomics; Mouse models; Heterogeneity
Genes and immunity  2014;15(6):347-354.
In a Genome Wide Association Study (GWAS) of individuals of European ancestry afflicted with Systemic Lupus Erythematosus (SLE) the extensive utilization of imputation, stepwise multiple regression, lasso regularization, and increasing study power by utilizing False Discovery Rate (FDR) instead of a Bonferroni multiple test correction enabled us to identify 13 novel non-human leukocyte antigen (HLA) genes and confirmed the association of 4 genes previously reported to be associated. Novel genes associated with SLE susceptibility included two transcription factors (EHF, and MED1), two components of the NFκB pathway (RASSF2 and RNF114), one gene involved in adhesion and endothelial migration (CNTN6), and two genes involved in antigen presentation (BIN1 and SEC61G). In addition, the strongly significant association of multiple single nucleotide polymorphisms (SNPs) in the HLA region was assigned to HLA alleles and serotypes and deconvoluted into four primary signals. The novel SLE-associated genes point to new directions for both the diagnosis and treatment of this debilitating autoimmune disease.
PMCID: PMC4156543  PMID: 24871463
Frontiers in Genetics  2015;5:450.
Genome wide association studies have identified variants in PXK that confer risk for humoral autoimmune diseases, including systemic lupus erythematosus (SLE or lupus), rheumatoid arthritis and more recently systemic sclerosis. While PXK is involved in trafficking of epidermal growth factor Receptor (EGFR) in COS-7 cells, mechanisms linking PXK to lupus pathophysiology have remained undefined. In an effort to uncover the mechanism at this locus that increases lupus-risk, we undertook a fine-mapping analysis in a large multi-ancestral study of lupus patients and controls. We define a large (257kb) common haplotype marking a single causal variant that confers lupus risk detected only in European ancestral populations and spans the promoter through the 3′ UTR of PXK. The strongest association was found at rs6445972 with P < 4.62 × 10−10, OR 0.81 (0.75–0.86). Using stepwise logistic regression analysis, we demonstrate that one signal drives the genetic association in the region. Bayesian analysis confirms our results, identifying a 95% credible set consisting of 172 variants spanning 202 kb. Functionally, we found that PXK operates on the B-cell antigen receptor (BCR); we confirmed that PXK influenced the rate of BCR internalization. Furthermore, we demonstrate that individuals carrying the risk haplotype exhibited a decreased rate of BCR internalization, a process known to impact B cell survival and cell fate. Taken together, these data define a new candidate mechanism for the genetic association of variants around PXK with lupus risk and highlight the regulation of intracellular trafficking as a genetically regulated pathway mediating human autoimmunity.
PMCID: PMC4288052  PMID: 25620976
lupus; PXK; fine-mapping; B cells; BCR
Annals of the rheumatic diseases  2013;73(1):10.1136/annrheumdis-2012-202099.
To examine disease activity versus treatment as lymphoma risk factors in systemic lupus erythematosus (SLE).
We performed case–cohort analyses within a multisite SLE cohort. Cancers were ascertained by regional registry linkages. Adjusted HRs for lymphoma were generated in regression models, for time-dependent exposures to immunomodulators (cyclophosphamide, azathioprine, methotrexate, mycophenolate, antimalarial drugs, glucocorticoids) demographics, calendar year, Sjogren’s syndrome, SLE duration and disease activity. We used adjusted mean SLE Disease Activity Index scores (SLEDAI-2K) over time, and drugs were treated both categorically (ever/never) and as estimated cumulative doses.
We studied 75 patients with lymphoma (72 non-Hodgkin, three Hodgkin) and 4961 cancer-free controls. Most lymphomas were of B-cell origin. As is seen in the general population, lymphoma risk in SLE was higher in male than female patients and increased with age. Lymphomas occurred a mean of 12.4 years (median 10.9) after SLE diagnosis. Unadjusted and adjusted analyses failed to show a clear association of disease activity with lymphoma risk. There was a suggestion of greater exposure to cyclophosphamide and to higher cumulative steroids in lymphoma cases than the cancer-free controls.
In this large SLE sample, there was a suggestion of higher lymphoma risk with exposure to cyclophosphamide and high cumulative steroids. Disease activity itself was not clearly associated with lymphoma risk. Further work will focus on genetic profiles that might interact with medication exposure to influence lymphoma risk in SLE.
PMCID: PMC3855611  PMID: 23303389
Thrombosis is a serious complication of systemic lupus erythematosus (SLE). Studies that have investigated the genetics of thrombosis in SLE are limited. We undertook this study to assess the association of previously implicated candidate genes, particularly Toll-like receptor (TLR) genes, with pathogenesis of thrombosis.
We genotyped 3,587 SLE patients from 3 multiethnic populations for 77 single-nucleotide polymorphisms (SNPs) in 10 genes, primarily in TLRs 2, 4, 7, and 9, and we also genotyped 64 ancestry-informative markers (AIMs). We first analyzed association with arterial and venous thrombosis in the combined population via logistic regression, adjusting for top principal components of the AIMs and other covariates. We also subjected an associated SNP, rs893629, to meta-analysis (after stratification by ethnicity and study population) to confirm the association and to test for study population or ethnicity effects.
In the combined analysis, the SNP rs893629 in the KIAA0922/TLR2 region was significantly associated with arterial thrombosis (logistic P = 6.4 × 10−5, false discovery rate P = 0.0044). Two additional SNPs in TLR2 were also suggestive: rs1816702 (logistic P = 0.002) and rs4235232 (logistic P = 0.009). In the meta-analysis by study population, the odds ratio (OR) for arterial thrombosis with rs893629 was 2.44 (95% confidence interval 1.58–3.76), without evidence for heterogeneity (P = 0.78). By ethnicity, the effect was most significant among African Americans (OR 2.42, P = 3.5 × 10−4) and European Americans (OR 3.47, P = 0.024).
TLR2 gene variation is associated with thrombosis in SLE, particularly among African Americans and European Americans. There was no evidence of association among Hispanics, and results in Asian Americans were limited due to insufficient sample size. These results may help elucidate the pathogenesis of this important clinical manifestation.
PMCID: PMC4269184  PMID: 24578102
Nature genetics  2010;42(6):508-514.
To identify novel genetic risk factors for rheumatoid arthritis (RA), we conducted a genome-wide association study (GWAS) meta-analysis of 5,539 autoantibody positive RA cases and 20,169 controls of European descent, followed by replication in an independent set of 6,768 RA cases and 8,806 controls. Of 34 SNPs selected for replication, 7 novel RA risk alleles were identified at genome-wide significance (P<5×10−8) in analysis of all 41,282 samples. The associated SNPs are near genes of known immune function, including IL6ST, SPRED2, RBPJ, CCR6, IRF5, and PXK. We also refined the risk alleles at two established RA risk loci (IL2RA and CCL21) and confirmed the association at AFF3. These new associations bring the total number of confirmed RA risk loci to 31 among individuals of European ancestry. An additional 11 SNPs replicated at P<0.05, many of which are validated autoimmune risk alleles, suggesting that most represent bona fide RA risk alleles.
PMCID: PMC4243840  PMID: 20453842
Science translational medicine  2013;5(195):195ra96.
Primary Sjögren’s syndrome (pSS) is a chronic autoimmune disease characterized by a lymphocytic exocrinopathy. However, patients often have evidence of systemic autoimmunity and they are at markedly increased risk for the development of non- Hodgkin’s lymphoma. Similar to other autoimmune disorders, a strong interferon (IFN) signature is present among subsets of pSS patients, though the precise etiology remains uncertain. NCR3/NKp30 is a NK-specific activating receptor regulating the cross-talk between NK and dendritic cells and type II IFN secretion. We performed a case-control study of genetic polymorphisms of the NCR3/NKp30 gene and found that rs11575837 (G>A) residing in the promoter was associated with reduced gene transcription and function as well as protection to pSS. We also demonstrated that circulating levels of NCR3/NKp30 were markedly increased among pSS patients compared with controls and correlated with higher NCR3/NKp30 but not CD16-dependent IFN-γ secretion by NK cells. Excess accumulation of NK cells in minor salivary glands correlated with the severity of the exocrinopathy. B7H6, the ligand of NKp30, was expressed by salivary epithelial cells. These findings suggest that NK cells may promote an NKp30-dependent inflammatory state in salivary glands, and that blockade of the B7H6/NKp30 axis could be clinically relevant in pSS.
PMCID: PMC4237161  PMID: 23884468
Sjögren’s syndrome; autoimmunity; NK cells; innate immunity; NKp30/NCR3
Oncology  2013;85(4):10.1159/000350165.
To describe non-lymphoma hematological malignancies in SLE.
A large SLE cohort was linked to cancer registries. We examined the types of non-lymphoma hematological cancers.
In 16, 409 patients, 115 hematological cancers (including myelodysplastic syndrome) occurred. Among these, 33 were non-lymphoma. Of the 33 non-lymphoma cases, 13 were of lymphoid lineage: multiple myeloma (N=5), plasmacytoma (N=3), B-cell chronic lymphocytic leukemia, B-CLL (N=3), precursor cell lymphoblastic leukemia (N=1), and unspecified lymphoid leukemia (N=1). The remaining 20 cases were of myeloid lineage: myelodysplastic syndrome, MDS (N=7), acute myeloid leukemia, AML (N=7), chronic myeloid leukemia, CML (N=2), and 4 unspecified leukemias. Most of these malignancies occurred in female Caucasians, except for plasma cell neoplasms (4/5 multiple myeloma and 1/3 plasmacytoma cases occurred in blacks).
In this large SLE cohort, the most common non-lymphoma hematological malignancies were myeloid types (MDS and AML). This contrasts to the general population, where lymphoid types are 1.7 times more common than myeloid non-lymphoma hematological malignancies. Most (80%) multiple myeloma cases occurred in blacks, which requires further investigation.
PMCID: PMC3880772  PMID: 24107608
Systemic lupus erythematosus; malignancy; cancer
Annals of the rheumatic diseases  2012;72(8):1375-1381.
Treatment strategies blocking tumor necrosis factor (anti-TNF) have proven very successful in patients with rheumatoid arthritis (RA). However, a significant subset of patients does not respond for unknown reasons. Currently there are no means of identifying these patients prior to treatment. This study was aimed at identifying genetic factors predicting anti-TNF treatment outcome in patient with RA using a genome-wide association approach.
We conducted a multi-stage, genome-wide association study with a primary analysis of 2,557,253 single nucleotide polymorphisms (SNPs) in 882 RA patients receiving anti-TNF therapy included through the Dutch Rheumatoid Arthritis Monitoring (DREAM) registry and the database of Apotheekzorg. Linear regression analysis of changes in the Disease Activity Score in 28 joints after 14 weeks of treatment was performed using an additive model. Markers with a p<10−3 were selected for replication in 1,821 RA patients from three independent cohorts. Pathway analysis including all SNPs with a p-value < 10−3 was performed using Ingenuity.
Seven hundred seventy two markers demonstrated evidence of association with treatment outcome in the initial stage. Eight genetic loci showed improved p-value in the overall meta-analysis compared to the first stage, three of which (rs1568885, rs1813443 and rs4411591) showed directional consistency over all four studied cohorts. We were unable to replicate markers previously reported to be associated with anti-TNF outcome. Network analysis indicated strong involvement of biological processes underlying inflammatory response and cell morphology.
Using a multi-stage strategy, we have identified 8 genetic loci associated with response to anti-TNF treatment. Further studies are required to validate these findings in additional patient collections.
PMCID: PMC4169706  PMID: 23233654
anti-TNF; gene polymorphism; pharmacogenetics; rheumatoid arthritis; genome-wide association study
Journal of neurology, neurosurgery, and psychiatry  2013;84(9):10.1136/jnnp-2012-304644.
The aetiology and pathogenesis of non-genetic forms of frontotemporal dementia (FTD) is unknown and even with the genetic forms of FTD, pathogenesis remains elusive. Given the association between systemic inflammation and other neurodegenerative processes, links between autoimmunity and FTD need to be explored.
To describe the prevalence of systemic autoimmune disease in semantic variant primary progressive aphasia (svPPA), a clinical cohort, and in progranulin (PGRN) mutation carriers compared to neurologically healthy normal controls (NC) and Alzheimer’s disease (AD) as dementia controls.
Case control.
Academic medical centres.
129 svPPA, 39 PGRN, 186 NC, and 158 AD patients underwent chart review for autoimmune conditions. A large subset of svPPA, PGRN, and NC cohorts underwent serum analysis for tumor necrosis factor α (TNF-α) levels.
Outcome Measures
Chi-square comparison of autoimmune prevalence and follow up logistic regression.
There was a significantly increased risk of autoimmune disorders clustered around inflammatory arthritides, cutaneous disorders, and gastrointestinal conditions in the svPPA and PGRN cohorts. Elevated TNF-α levels were observed in svPPA and PGRN compared to NC.
svPPA and PGRN are associated with increased prevalence of specific and related autoimmune diseases compared to NC and AD. These findings suggest a unique pattern of systemic inflammation in svPPA and PGRN and open new research avenues for understanding and treating disorders associated with underlying transactive response DNA-binding protein 43 (TDP-43) aggregation.
PMCID: PMC3840954  PMID: 23543794
Genes and immunity  2014;15(2):107-114.
To study genetic factors that influence quantitative anti-cyclic citrullinated peptide (anti-CCP) antibody levels in RA patients.
We carried out a genome wide association study (GWAS) meta-analysis using 1,975 anti-CCP+ RA patients from 3 large cohorts, the Brigham Rheumatoid Arthritis Sequential Study (BRASS), North American Rheumatoid Arthritis Consortium (NARAC), and the Epidemiological Investigation of RA (EIRA). We also carried out a genome-wide complex trait analysis (GCTA) to estimate the heritability of anti-CCP levels.
GWAS-meta analysis showed that anti-CCP levels were most strongly associated with the human leukocyte antigen (HLA) region with a p-value of 2×10−11 for rs1980493. There were 112 SNPs in this region that exceeded the genome-wide significance threshold of 5×10−8, and all were in linkage disequilibrium (LD) with the HLA- DRB1*03 allele with LD r2 in the range of 0.25-0.88. Suggestive novel associations outside of the HLA region were also observed for rs8063248 (near the GP2 gene) with a p-value of 3×10−7. None of the known RA risk alleles (~52 loci) were associated with anti-CCP level. Heritability analysis estimated that 44% of anti-CCP variation was attributable to genetic factors captured by GWAS variants.
Anti-CCP level is a heritable trait. HLA-DR3 and GP2 are associated with lower anti-CCP levels.
PMCID: PMC3948067  PMID: 24385024
RA; GWAS; anti-CCP; heritability
Okada, Yukinori | Wu, Di | Trynka, Gosia | Raj, Towfique | Terao, Chikashi | Ikari, Katsunori | Kochi, Yuta | Ohmura, Koichiro | Suzuki, Akari | Yoshida, Shinji | Graham, Robert R. | Manoharan, Arun | Ortmann, Ward | Bhangale, Tushar | Denny, Joshua C. | Carroll, Robert J. | Eyler, Anne E. | Greenberg, Jeffrey D. | Kremer, Joel M. | Pappas, Dimitrios A. | Jiang, Lei | Yin, Jian | Ye, Lingying | Su, Ding-Feng | Yang, Jian | Xie, Gang | Keystone, Ed | Westra, Harm-Jan | Esko, Tõnu | Metspalu, Andres | Zhou, Xuezhong | Gupta, Namrata | Mirel, Daniel | Stahl, Eli A. | Diogo, Dorothée | Cui, Jing | Liao, Katherine | Guo, Michael H. | Myouzen, Keiko | Kawaguchi, Takahisa | Coenen, Marieke J.H. | van Riel, Piet L.C.M. | van de Laar, Mart A.F.J. | Guchelaar, Henk-Jan | Huizinga, Tom W.J. | Dieudé, Philippe | Mariette, Xavier | Bridges, S. Louis | Zhernakova, Alexandra | Toes, Rene E.M. | Tak, Paul P. | Miceli-Richard, Corinne | Bang, So-Young | Lee, Hye-Soon | Martin, Javier | Gonzalez-Gay, Miguel A. | Rodriguez-Rodriguez, Luis | Rantapää-Dahlqvist, Solbritt | Ärlestig, Lisbeth | Choi, Hyon K. | Kamatani, Yoichiro | Galan, Pilar | Lathrop, Mark | Eyre, Steve | Bowes, John | Barton, Anne | de Vries, Niek | Moreland, Larry W. | Criswell, Lindsey A. | Karlson, Elizabeth W. | Taniguchi, Atsuo | Yamada, Ryo | Kubo, Michiaki | Liu, Jun S. | Bae, Sang-Cheol | Worthington, Jane | Padyukov, Leonid | Klareskog, Lars | Gregersen, Peter K. | Raychaudhuri, Soumya | Stranger, Barbara E. | De Jager, Philip L. | Franke, Lude | Visscher, Peter M. | Brown, Matthew A. | Yamanaka, Hisashi | Mimori, Tsuneyo | Takahashi, Atsushi | Xu, Huji | Behrens, Timothy W. | Siminovitch, Katherine A. | Momohara, Shigeki | Matsuda, Fumihiko | Yamamoto, Kazuhiko | Plenge, Robert M.
Nature  2013;506(7488):376-381.
A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological datasets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA)1. Here, we performed a genome-wide association study (GWAS) meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating ~10 million single nucleotide polymorphisms (SNPs). We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 1012–4. We devised an in-silico pipeline using established bioinformatics methods based on functional annotation5, cis-acting expression quantitative trait loci (cis-eQTL)6, and pathway analyses7–9 – as well as novel methods based on genetic overlap with human primary immunodeficiency (PID), hematological cancer somatic mutations and knock-out mouse phenotypes – to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.
PMCID: PMC3944098  PMID: 24390342
Journal of autoimmunity  2013;42:130-135.
To update estimates of cancer risk in SLE relative to the general population.
A multisite international SLE cohort was linked with regional tumor registries. Standardized incidence ratios (SIRs) were calculated as the ratio of observed to expected cancers.
Across 30 centres, 16,409 patients were observed for 121,283 (average 7.4) person-years. In total, 644 cancers occurred. Some cancers, notably hematologic malignancies, were substantially increased (SIR 3.02, 95% confidence interval, CI, 2.48, 3.63), particularly non-Hodgkin’s lymphoma, NHL (SIR 4.39, 95% CI 3.46, 5.49) and leukemia. In addition, increased risks of cancer of the vulva (SIR 3.78, 95% CI 1.52, 7.78), lung (SIR 1.30, 95% CI 1.04, 1.60), thyroid (SIR 1.76, 95% CI 1.13, 2.61) and possibly liver (SIR 1.87, 95% CI 0.97, 3.27) were suggested. However, a decreased risk was estimated for breast (SIR 0.73, 95% CI 0.61–0.88), endometrial (SIR 0.44, 95% CI 0.23–0.77), and possibly ovarian cancers (0.64, 95% CI 0.34–1.10). The variability of comparative rates across different cancers meant that only a small increased risk was estimated across all cancers (SIR 1.14, 95% CI 1.05, 1.23).
These data estimate only a small increased risk in SLE (versus the general population) for cancer over-all. However, there is clearly an increased risk of NHL, and cancers of the vulva, lung, thyroid, and possibly liver. It remains unclear to what extent the association with NHL is mediated by innate versus exogenous factors. Similarly, the etiology of the decreased breast, endometrial, and possibly ovarian cancer risk is uncertain, though investigations are ongoing.
PMCID: PMC3646904  PMID: 23410586
Systemic Lupus Erythematosus; Epidemiology; Treatment; Disease Activity
Lupus nephritis (LN) is a severe manifestation of systemic lupus erythematosus (SLE) that exhibits familial aggregation and may progress to end-stage renal disease (ESRD). LN is more prevalent among African Americans than among European Americans. This study was undertaken to investigate the hypothesis that the apolipoprotein L1 gene (APOL1) nephropathy risk alleles G1/G2, common in African Americans and rare in European Americans, contribute to the ethnic disparity in risk.
APOL1 G1 and G2 nephropathy alleles were genotyped in 855 African American SLE patients with LN-ESRD (cases) and 534 African American SLE patients without nephropathy (controls) and tested for association under a recessive genetic model, by logistic regression.
Ninety percent of the SLE patients were female. The mean ± SD age at SLE diagnosis was significantly lower in LN-ESRD cases than in SLE non-nephropathy controls (27.3 ± 10.9 years versus 39.5 ± 12.2 years). The mean ± SD time from SLE diagnosis to development of LN-ESRD in cases was 7.3 ± 7.2 years. The G1/G2 risk alleles were strongly associated with SLE-ESRD, with 25% of cases and 12% of controls having 2 nephropathy alleles (odds ratio [OR] 2.57, recessive model P = 1.49 × 10−9), and after adjustment for age, sex, and ancestry admixture (OR 2.72, P = 6.23 × 10−6). The age-, sex-, and admixture-adjusted population attributable risk for ESRD among patients with G1/G2 polymorphisms was 0.26, compared to 0.003 among European American patients. The mean time from SLE diagnosis to ESRD development was ~2 years earlier among individuals with APOL1 risk genotypes (P = 0.01).
APOL1 G1/G2 alleles strongly impact the risk of LN-ESRD in African Americans, as well as the time to progression to ESRD. The high frequency of these alleles in African Americans with near absence in European Americans explains an important proportion of the increased risk of LN-ESRD in African Americans.
PMCID: PMC4002759  PMID: 24504811
Genes and immunity  2009;11(6):515-521.
Previous work has demonstrated that northern and southern European ancestries are associated with specific systemic lupus erythematosus (SLE) manifestations. Here, 1855 SLE cases of European descent were genotyped for 4965 single nucleotide polymorphisms and principal components analysis of genotype information was used to define population substructure. The first principal component (PC1) distinguished northern from southern European ancestry, PC2 differentiated eastern from western European ancestry, and PC3 delineated Ashkenazi Jewish ancestry. Compared to northern European ancestry, southern European ancestry was associated with autoantibody production (OR=1.40, 95% CI 1.07-1.83) and renal involvement (OR 1.41, 95% CI 1.06-1.87), and was protective for discoid rash (OR=0.51, 95% CI 0.32-0.82) and photosensitivity (OR=0.74, 95% CI 0.56-0.97). Both serositis (OR=1.46, 95% CI 1.12-1.89) and autoantibody production (OR=1.38, 95% CI 1.06-1.80) were associated with Western compared to Eastern European ancestry. Ashkenazi Jewish ancestry was protective against neurologic manifestations of SLE (OR=0.62, 95% CI 0.40-0.94). Homogeneous clusters of cases defined by multiple PCs demonstrated stronger phenotypic associations. Genetic ancestry may contribute to the development of SLE endophenotypes and should be accounted for in genetic studies of disease characteristics.
PMCID: PMC3951966  PMID: 19847193
Systemic lupus erythematosus; epidemiology; population substructure; genetics
Nature genetics  2008;40(9):1062-1064.
The TNFAIP3 (tumor necrosis factor alpha–induced protein 3) gene encodes a ubiquitin editing enzyme, A20, that restricts NF-κB–dependent signaling and prevents inflammation. We show that three independent SNPs in the TNFAIP3 region (rs13192841, rs2230926 and rs6922466) are associated with systemic lupus erythematosus (SLE) among individuals of European ancestry. These findings provide critical links between A20 and the etiology of SLE.
PMCID: PMC3897246  PMID: 19165919
Arthritis and rheumatism  2013;65(1):211-215.
The increased risk of thrombosis in systemic lupus erythematosus (SLE) may be partially explained by interrelated genetic pathways for thrombosis and SLE. In a case-control analysis, we investigated whether 33 established and novel single nucleotide polymorphisms (SNP) in 20 genes involved in hemostasis pathways that have been associated with deep venous thrombosis in the general population were risk factors for SLE development among Asians.
Patients in the discovery cohort were enrolled in one of two North American SLE cohorts. Patients in the replication cohort were enrolled in one of four Asian or two North American cohorts. SLE cases met American College of Rheumatology classification criteria. We first genotyped 263 Asian SLE and 357 healthy Asian control individuals for 33 SNPs using Luminex multiplex technology in the discovery phase, and then used Taqman and Immunochip assays to examine 5 SNPs in up to an additional 1496 cases and 993 controls in the Replication phase. SLE patients were compared to healthy controls for association with minor alleles in allelic models. Principal components analysis was used to control for intra-Asian ancestry in an analysis of the replication cohort.
Two genetic variants in the gene VKORC1, rs9934438 and rs9923231, were highly significant in both the discovery and replication cohorts: OR(disc) = 2.45 (p=2×10−9), OR(rep) = 1.53 (p=5×10−6) and OR(disc) = 2.40 (p=6×10−9), OR(rep) = 1.53 (p=5×10−6), respectively. These associations were significant in the replication cohort after adjustment for intra-Asian ancestry: rs9934438 OR(adj) = 1.34 (p=0.0029) and rs9923231 OR(adj) = 1.34 (p=0.0032).
Genetic variants in VKORC1, involved in vitamin K reduction and associated with DVT, are associated with SLE development in Asians. These results suggest intersecting genetic pathways for the development of SLE and thrombosis.
PMCID: PMC3670944  PMID: 23124848
systemic lupus erythematosus; single nucleotide polymorphisms; genetic risk factors
Arthritis care & research  2013;65(1):62-70.
Determine prevalence of obesity and how accurately standard anthropometric measures identify obesity among men and women with RA.
Dual-energy x-ray absorptiometry (DXA) was performed for 141 persons with RA (56 men, 85 women). Two anthropometric proxies of obesity (body mass index [BMI], waist circumference [WC]) were compared to a DXA-based obesity criterion. Receiver operating characteristic (ROC) curves determined optimal cut-points for each anthropometric measure, relative to DXA. Association of body fat and anthropometric obesity measures with disease status and cardiovascular risk was assessed in multiple regression analyses, controlling for age and glucocorticoid use. All analyses were performed separately for men and women.
20%, 32%, and 44% of women, and 41%, 36%, and 80% of men were classified as obese by BMI, WC, and DXA, respectively. Cut-points were identified for anthropometric measures to better approximate DXA estimates of percent body fat (BMI: women, ≥26.1 kg/m2; men ≥24.7 kg/m2. WC: women, ≥83 cm; men, ≥96 cm). For women and men, higher % fat was associated with poorer RA status. Anthropometric measures were more closely linked to RA status for women, but identified cardiovascular risk for both women and men.
A large percentage of this RA sample was overfat; DXA-defined obesity was twice as common in men than in women. Utility of revised BMI and WC cut-points compared to traditional cut-points remains to be examined in prospective studies, but results suggest that lower, sex-specific cut-points may be warrented to better identify individuals at risk for poor RA and/or cardiovascular outcomes.
PMCID: PMC3501549  PMID: 22833513
Arthritis and rheumatism  2012;64(10):10.1002/art.34567.
African Americans, East Asians, and Hispanics with systemic lupus erythematosus (SLE) are more likely to develop renal disease than SLE patients of European descent. We investigated whether European genetic ancestry protects against the development of lupus nephritis and explored genetic and socioeconomic factors that might explain this effect.
This was a cross-sectional study of 1906 adults with SLE. Participants were genotyped for 126 single nucleotide polymorphisms (SNPs) informative for ancestry. A subset of participants was also genotyped for 80 SNPs in 14 candidate genes for renal disease in SLE. We used logistic regression to test the association between European ancestry and renal disease. Analyses adjusted for continental ancestries, socioeconomic status, and candidate genes.
Participants (n=1906) had on average 62.4% European, 15.8% African, 11.5% East Asian, 6.5% Amerindian, and 3.8% South Asian ancestry. Among participants, 34% (n=656) had renal disease. A 10% increase in European ancestry was associated with a 15% reduction in the odds of having renal disease after adjustment for disease duration and sex (OR 0.85, 95% CI 0.82-0.87, p=1.9 × 10−30). Adjusting for other genetic ancestries, measures of socioeconomic status, or SNPs in genes most associated with renal disease (IRF5 (rs4728142), BLK (rs2736340), STAT4 (rs3024912), ITGAM (rs9937837) and HLA-DRB1*0301 and DRB1*1501, p<0.05) did not substantively alter this relationship.
European ancestry is protective against the development of renal disease in SLE, an effect independent of other genetic ancestries, common risk alleles, and socioeconomic status.
PMCID: PMC3865923  PMID: 23023776

Results 1-25 (116)