PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("Cho, moonan")
1.  Effects of the Novel Compound DK223 ([1E,2E-1,2-Bis(6-methoxy-2H-chromen-3-yl)methylene]hydrazine) on Migration and Proliferation of Human Keratinocytes and Primary Dermal Fibroblasts 
Wound healing plays an important role in protecting the human body from external infection. Cell migration and proliferation of keratinocytes and dermal fibroblasts are essential for proper wound healing. Recently, several studies have demonstrated that secondary compounds produced in plants could affect skin cells migration and proliferation. In this study, we identified a novel compound DK223 ([1E,2E-1,2-bis(6-methoxy-2H-chromen-3-yl)methylene]hydrazine) that concomitantly induced human keratinocyte migration and dermal fibroblast proliferation. We evaluated the regulation of epithelial and mesenchymal protein markers, such as E-cadherin and Vimentin, in human keratinocytes, as well as extracellular matrix (ECM) secretion and metalloproteinase families in dermal fibroblasts. DK223 upregulated keratinocyte migration and significantly increased the epithelial marker E-cadherin in a time-dependent manner. We also found that reactive oxygen species (ROS) increased significantly in keratinocytes after 2 h of DK223 exposure, returning to normal levels after 24 h, which indicated that DK223 had an early shock effect on ROS production. DK223 also stimulated fibroblast proliferation, and induced significant secretion of ECM proteins, such as collagen I, III, and fibronectin. In dermal fibroblasts, DK223 treatment induced TGF-β1, which is involved in a signaling pathway that mediates proliferation. In conclusion, DK223 simultaneously induced both keratinocyte migration via ROS production and fibroblast proliferation via TGF-β1 induction.
doi:10.3390/ijms150713091
PMCID: PMC4139893  PMID: 25056546
wound healing; keratinocyte migration; fibroblast proliferation; scar formation; skin regeneration
2.  The Effect of Metformin Treatment on CRBP-I Level and Cancer Development in the Liver of HBx Transgenic Mice 
Retinoids regulate not only various cell functions including proliferation and differentiation but also glucose and lipid metabolism. After we observed a marked up-regulation of cellular retinol-binding protein-I (CRBP-I) in the liver of hepatitis B virus x antigen (HBx)-transgenic (HBx Tg) mice which are prone to hepatocellular carcinoma (HCC) and fatty liver, we aimed to evaluate retinoid pathway, including genes for the retinoid physiology, CRBP-I protein expression, and retinoid levels, in the liver of HBx Tg mice. We also assessed the effect of chronic metformin treatment on HCC development in the mice. Many genes involved in hepatic retinoid physiology, including CRBP-I, were altered and the tissue levels of retinol and all-trans retinoic acid (ATRA) were elevated in the liver of HBx Tg mice compared to those of wild type (WT) control mice. CRBP-I protein expression in liver, but not in white adipose tissue, of HBx Tg mice was significantly elevated compared to WT control mice while CRBP-I protein expressions in the liver and WAT of high-fat fed obese and db/db mice were comparable to WT control mice. Chronic treatment of HBx Tg mice with metformin did not affect the incidence of HCC, but slightly increased hepatic CRBP-I level. In conclusion, hepatic CRBP-I level was markedly up-regulated in HCC-prone HBx Tg mice and neither hepatic CRBP-I nor the development of HCC was suppressed by metformin treatment.
doi:10.4196/kjpp.2013.17.5.455
PMCID: PMC3823960  PMID: 24227948
Cellular retinol-binding protein-I; HBx protein; Hepatocellular carcinoma; Metformin; Retinoids
3.  Differential expression of immunomodulatory galectin-1 in peripheral leukocytes and adult tissues and its cytosolic organization in striated muscle 
Glycobiology  2010;20(5):507-520.
Galectin-1 (Gal-1) is important in immune function and muscle regeneration, but its expression and localization in adult tissues and primary leukocytes remain unclear. To address this, we generated a specific monoclonal antibody against Gal-1, termed αhGal-1, and defined a sequential peptide epitope that it recognizes, which is preserved in human and porcine Gal-1, but not in murine Gal-1. Using αhGal-1, we found that Gal-1 is expressed in a wide range of porcine tissues, including striated muscle, liver, lung, brain, kidney, spleen, and intestine. In most types of cells, Gal-1 exhibits diffuse cytosolic expression, but in cells within the splenic red pulp, Gal-1 showed both cytosolic and nuclear localization. Gal-1 was also expressed in arterial walls and exhibited prominent cytosolic and nuclear staining in cultured human endothelial cells. However, human peripheral leukocytes and promyelocytic HL60 cells lack detectable Gal-1 and also showed very low levels of Gal-1 mRNA. In striking contrast, Gal-1 exhibited an organized cytosolic staining pattern within striated muscle tissue of cardiac and skeletal muscle and colocalized with sarcomeric actin on I bands. These results provide insights into previously defined roles for Gal-1 in inflammation, immune regulation and muscle biology.
doi:10.1093/glycob/cwp203
PMCID: PMC2900886  PMID: 20053628
galectin-1 expression; leukocytes; monoclonal antibody; muscle; tissue localization
4.  Genetic Analysis of 10 Unrelated Korean Families with p22-phox-deficient Chronic Granulomatous Disease: An Unusually Identical Mutation of the CYBA Gene on Jeju Island, Korea 
Journal of Korean Medical Science  2009;24(6):1045-1050.
Chronic granulomatous disease (CGD) is a rare hereditary disorder characterized by recurrent life-threatening bacterial and fungal infections. The underlying defect in CGD is an inability of phagocytes to produce reactive oxygen species as a result of defects in NADPH oxidase. Considering that CGD generally affects about 3-4 in 1,000,000 individuals, it is surprising that the prevalence of CGD on Jeju Island is 20.7 in 1,000,000 individuals. We performed genetic analysis on 12 patients from 10 unrelated families and found that all patients had an identical homozygous single-base substitution of C to T in exon 1 (c.7C>T) of the CYBA gene, which was expected to result in a nonsense mutation (p.Q3X). Because Jeju Island has long been a geologically isolated region, the high prevalence of CGD on Jeju Island is presumably associated with an identical mutation inherited from a common ancestor or proband.
doi:10.3346/jkms.2009.24.6.1045
PMCID: PMC2775850  PMID: 19949658
Granulomatous Disease, Chronic; CYBA; NADPH Oxidase; Molecular Diagnosis; Codon, Nonsense; Korea
5.  Bactericidal Activity of Glycinecin A, a Bacteriocin Derived from Xanthomonas campestris pv. glycines, on Phytopathogenic Xanthomonas campestris pv. vesicatoria Cells 
The ability of glycinecin A, a bacteriocin derived from Xanthomonas campestris pv. glycines 8ra, to kill closely related bacteria has been demonstrated previously by our group (S. G. Heu et al., Appl. Environ. Microbiol. 67:4105-4110, 2001). In the present study, we aimed at determining the glycinecin A-induced cause of death. Treatment with glycinecin A caused slow dissipation of membrane potential and rapid depletion of the pH gradient. Glycinecin A treatment also induced leakage of potassium ions from X. campestris pv. vesicatoria YK93-4 cells and killed sensitive bacterial cells in a dose-dependent manner. Sensitive cells were killed within 2 h of incubation, most likely due to the potassium ion efflux caused by glycinecin A. These results suggest that the bactericidal mechanism of action of glycinecin A is correlated with the permeability of membranes to hydroxyl and potassium ions, leading to the lethal activity of the bacteriocin on the target bacteria.
doi:10.1128/AEM.70.8.4486-4490.2004
PMCID: PMC492317  PMID: 15294776
6.  gly Gene Cloning and Expression and Purification of Glycinecin A, a Bacteriocin Produced by Xanthomonas campestris pv. glycines 8ra 
Glycinecin A, a bacteriocin produced by Xanthomonas campestris pv. glycines, inhibits the growth of X. campestris pv. vesicatoria. We have cloned and expressed the genes encoding glycinecin A in Escherichia coli. Recombinant glycinecin A was purified from cell extracts by ammonium sulfate precipitation followed by chromatography on Q-Sepharose, Mono Q (ion exchange), and size exclusion columns. Purified glycinecin A is composed of two polypeptides, is active over a wide pH range (6 to 9), and is stable at temperatures up to 60°C. Glycinecin A is a heterodimer consisting of 39- and 14-kDa subunits, as revealed through size exclusion chromatography and cross-linking analysis. Two genes, glyA and glyB, encoding the 39- and 14-kDa subunits, respectively, were identified based on the N-terminal sequences of the subunits. From the nucleotide sequences of glyA and glyB, we conclude that both genes are translated as bacteriocin precursors that include N-terminal leader sequences. When expressed in E. coli, recombinant glycinecin A was found primarily in cell extracts. In contrast, most glycinecin A from Xanthomonas was found in the culture media. E. coli transformed with either glyA or glyB separately did not show the bacteriocin activity.
doi:10.1128/AEM.67.9.4105-4110.2001
PMCID: PMC93136  PMID: 11526012

Results 1-6 (6)