Search tips
Search criteria

Results 1-23 (23)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Glycan array analysis of influenza H1N1 binding and release 
Influenza viruses initiate infection by attaching to sialic acid receptors on the surface of host cells. It has been recognized for some time that avian influenza viruses usually bind to terminal sialic acid that is linked in the α2-3 configuration to the next sugar while human viruses show preference for α2-6 linked sialic acid. With developments in synthetic chemistry and chemo-enzymatic methods of synthesizing quite complex glycans, it has become clear that the binding specificity extends beyond the sialic acid, and this has led to considerable interest in developing glycan reagents that could be used either as a diagnostic tool for particular influenza viruses, or to identify cells that are susceptible to infection by certain influenza viruses. Here we describe the use of the Consortium for Functional Glycomics Glycan Array to investigate binding specificity of influenza hemagglutinin and cleavage by neuraminidase, using seasonal and pandemic H1N1 influenza viruses as examples, and compare the results with published data using other array methods.
PMCID: PMC4161021  PMID: 24643041
Influenza virus; hemagglutinin; neuraminidase; Glycan Array; Consortium for Functional Glycomics
2.  Quantitative Comparison of Human Parainfluenza Virus Hemagglutinin-Neuraminidase Receptor Binding and Receptor Cleavage 
Journal of Virology  2013;87(16):8962-8970.
The human parainfluenza virus (hPIV) hemagglutinin-neuraminidase (HN) protein binds (H) oligosaccharide receptors that contain N-acetylneuraminic acid (Neu5Ac) and cleaves (N) Neu5Ac from these oligosaccharides. In order to determine if one of HN′s two functions is predominant, we measured the affinity of H for its ligands by a solid-phase binding assay with two glycoprotein substrates and by surface plasmon resonance with three monovalent glycans. We compared the dissociation constant (Kd) values from these experiments with previously determined Michaelis-Menten constants (Kms) for the enzyme activity. We found that glycoprotein substrates and monovalent glycans containing Neu5Acα2-3Galβ1-4GlcNAc bind HN with Kd values in the 10 to 100 μM range. Km values for HN were previously determined to be on the order of 1 mM (M. M. Tappert, D. F. Smith, and G. M. Air, J. Virol. 85:12146–12159, 2011). A Km value greater than the Kd value indicates that cleavage occurs faster than the dissociation of binding and will dominate under N-permissive conditions. We propose, therefore, that HN is a neuraminidase that can hold its substrate long enough to act as a binding protein. The N activity can therefore regulate binding by reducing virus-receptor interactions when the concentration of receptor is high.
PMCID: PMC3754076  PMID: 23740997
3.  Editorial overview: virus–glycan interactions and pathogenesis 
PMCID: PMC4256938  PMID: 25128970
4.  Antibody quantity versus quality after influenza vaccination 
Vaccine  2009;27(45):6358-6362.
The correlates for protection against influenza infection are incompletely characterized. We have applied an ELISA strategy that distinguishes antibodies against native viral surface antigens (potentially neutralizing) from antibodies directed against internal and denatured viral proteins (not neutralizing) to three groups of vaccinated subjects: (1) participants in a study of repeated annual vaccination (2) elderly subjects and (3) patients with Systemic Lupus Erythematosus compared to control subjects. Antibody increase after vaccination was inversely related to the level of pre-existing antibodies in all groups; most subjects had significant initial antibody levels and showed little increase in amount of antibody after vaccination, but the avidity of their serum antibodies tended to increase. Antibodies against denatured virus proteins varied with vaccine formulation; vaccines that are more recent have less total protein for the same amount of native hemagglutinin. We propose an index consisting of rank order of antibody level plus antibody avidity, both measured against native virus, plus hemagglutination-inhibition antibody titer, as a useful measure of immunity against influenza.
PMCID: PMC2765411  PMID: 19840673
5.  Increased antibodies against unfolded viral antigens in the elderly after influenza vaccination 
Our studies aimed to measure the quality of antibody response to influenza vaccines in the elderly. The frequency of significant rise in hemagglutination inhibition (HAI) titer in the elderly is low and although annual vaccination reduces morbidity and mortality, better correlates of vaccine efficacy in the elderly are needed.
We measured the amount and avidity of serum antibodies against native H3N2 influenza glycoproteins or denatured virus (unfoldons) in pre- and post-vaccinated sera of 36 elderly subjects.
Eighty percent of subjects had high pre-immunization antibody levels and only 13% showed ≥2fold increase after vaccination, but 33% showed ≥2fold increase in avidity. With increasing dosage there was a significant increase in avidity against unfoldons with 50% of subjects showing ≥2fold increase at the highest dose. Elderly subjects given subunit vaccine showed higher reactivity with unfoldons (78% of native) than younger subjects studied earlier who were given inactivated whole virus vaccine (19% of native).
The clear inverse relationship between pre-immunization antibody levels and antibody increase after vaccination implies that a major reason for the low frequency of antibody responses in elderly subjects is simply because they have high pre-immunization antibody levels. Only low reactivity was observed with earlier viruses. The increased proportion and avidity of antibodies against unfoldons is of concern, as these are not protective, and vaccine developers need to be aware of the role of age or vaccine formulation in inducing anti-unfoldon antibodies.
PMCID: PMC2367137  PMID: 18458742
Elderly; HA inhibition; influenza virus; native and denatured antigen; serum antibodies
6.  Pyrrolidinobenzoic Acid Inhibitors of Influenza Virus Neuraminidase: the Hydrophobic Side Chain Influences Type A Subtype Selectivity 
Bioorganic & medicinal chemistry  2012;20(14):4582-4589.
Neuraminidase (NA) plays a critical role in the life cycle of influenza virus and is a target for new therapeutic agents. A series of influenza neuraminidase inhibitors with the pyrrolidinobenzoic acid scaffold containing lipophilic side chains at the C3 position have been synthesized and evaluated for influenza neuraminidase inhibitory activity. The size and geometry of the C3 side chains have been modified in order to investigate structure-activity relationships. The results indicated that size and geometry of the C3-side chain are important for selectivity of inhibition against N1 vs N2 NA, important type A influenza variants that infect man, including the highly lethal avian influenza.
PMCID: PMC3401542  PMID: 22677529
Neuraminidase; avian influenza; pyrrolidinobenzoic acid
7.  Influenza Neuraminidase 
Influenza neuraminidase is the target of two licensed antivirals that have been very successful, with several more in development. However, neuraminidase has been largely ignored as a vaccine target despite evidence that inclusion of neuraminidase in the subunit vaccine gives increased protection. This article describes current knowledge on the structure, enzyme activity and antigenic significance of neuraminidase.
PMCID: PMC3290697  PMID: 22085243
8.  Human H3N2 Influenza Viruses Isolated from 1968 To 2012 Show Varying Preference for Receptor Substructures with No Apparent Consequences for Disease or Spread 
PLoS ONE  2013;8(6):e66325.
It is generally accepted that human influenza viruses bind glycans containing sialic acid linked α2–6 to the next sugar, that avian influenza viruses bind glycans containing the α2–3 linkage, and that mutations that change the binding specificity might change the host tropism. We noted that human H3N2 viruses showed dramatic differences in their binding specificity, and so we embarked on a study of representative human H3N2 influenza viruses, isolated from 1968 to 2012, that had been isolated and minimally passaged only in mammalian cells, never in eggs. The 45 viruses were grown in MDCK cells, purified, fluorescently labeled and screened on the Consortium for Functional Glycomics Glycan Array. Viruses isolated in the same season have similar binding specificity profiles but the profiles show marked year-to-year variation. None of the 610 glycans on the array (166 sialylated glycans) bound to all viruses; the closest was Neu5Acα2–6(Galβ1–4GlcNAc)3 in either a linear or biantennary form, that bound 42 of the 45 viruses. The earliest human H3N2 viruses preferentially bound short, branched sialylated glycans while recent viruses bind better to long polylactosamine chains terminating in sialic acid. Viruses isolated in 1996, 2006, 2010 and 2012 bind glycans with α2–3 linked sialic acid; for 2006, 2010 and 2012 viruses this binding was inhibited by oseltamivir, indicating binding of α2–3 sialylated glycans by neuraminidase. More significantly, oseltamivir inhibited virus entry of 2010 and 2012 viruses into MDCK cells. All of these viruses were representative of epidemic strains that spread around the world, so all could infect and transmit between humans with high efficiency. We conclude that the year-to-year variation in receptor binding specificity is a consequence of amino acid sequence changes driven by antigenic drift, and that viruses with quite different binding specificity and avidity are equally fit to infect and transmit in the human population.
PMCID: PMC3689742  PMID: 23805213
9.  Influenza vaccination can induce new onset anticardiolipins but not β2-glycoprotein-I antibodies among patients with systemic lupus erythematosus 
Lupus  2012;21(2):168-174.
Antiphospholipid syndrome is characterized by autoantibodies against cardiolipins (aCL), lupus anticoagulant, and independent β2-glycoprotein (β2GPI). Controversy exists as to whether vaccination triggers the development of anti-phospholipid antibodies (aPL) in systemic lupus erythematosus (SLE) patients.
SLE patients (101) and matched controls (101) were enrolled from 2005 to 2009 and received seasonal influenza vaccinations. Sera were tested by ELISA for aCL at baseline, 2, 6, and 12 weeks after vaccination. Vaccine responses were ranked according to an overall anti-influenza antibody response index. Individuals with positive aCL were further tested for β2GPI antibodies.
SLE patients and healthy controls developed new onset aCL post-vaccination (12/101 cases and 7/101 controls, OR 1.81, p=0.34). New onset moderate aCL are slightly enriched in African American SLE patients (5/36 cases; p=0.094). The optical density (OD) measurements for aCL reactivity in patients were significantly higher than baseline at 2 weeks (p<0.05), 6 weeks (p<0.05), and 12 weeks (p<0.05) post vaccination. No new β2GPI antibodies were detected among patients with new aCL reactivity. Vaccine response was not different between patients with and without new onset aCL reactivity (p=0.43).
This study shows transient increases in aCL, but not anti-β2GPI responses, after influenza vaccination.
PMCID: PMC3268677  PMID: 22235049
Influenza; vaccine; antiphospholipid antibodies; systemic lupus erythematosus
10.  Evaluations for In Vitro Correlates of Immunogenicity of Inactivated Influenza A H5, H7 and H9 Vaccines in Humans 
PLoS ONE  2012;7(12):e50830.
Serum antibody responses in humans to inactivated influenza A (H5N1), (H9N2) and A (H7) vaccines have been varied but frequently low, particularly for subunit vaccines without adjuvant despite hemagglutinin (HA) concentrations expected to induce good responses.
To help understand the low responses to subunit vaccines, we evaluated influenza A (H5N1), (H9N2), (H7N7) vaccines and 2009 pandemic (H1N1) vaccines for antigen uptake, processing and presentation by dendritic cells to T cells, conformation of vaccine HA in antibody binding assays and gel analyses, HA titers with different red blood cells, and vaccine morphology in electron micrographs (EM).
Antigen uptake, processing and presentation of H5, H7, H9 and H1 vaccine preparations evaluated in humans appeared normal. No differences were detected in antibody interactions with vaccine and matched virus; although H7 trimer was not detected in western blots, no abnormalities in the conformation of the HA antigens were identified. The lowest HA titers for the vaccines were <1∶4 for the H7 vaccine and 1∶661 for an H9 vaccine; these vaccines induced the fewest antibody responses. A (H1N1) vaccines were the most immunogenic in humans; intact virus and virus pieces were prominent in EM. A good immunogenic A (H9N2) vaccine contained primarily particles of viral membrane with external HA and NA. A (H5N1) vaccines intermediate in immunogenicity were mostly indistinct structural units with stellates; the least immunogenic A (H7N7) vaccine contained mostly small 5 to 20 nm structures.
Antigen uptake, processing and presentation to human T cells and conformation of the HA appeared normal for each inactivated influenza A vaccine. Low HA titer was associated with low immunogenicity and presence of particles or split virus pieces was associated with higher immunogenicity.
PMCID: PMC3519816  PMID: 23239987
11.  Individual antibody and T cell responses to vaccination and infection with the 2009 pandemic swine-origin H1N1 influenza virus 
Journal of clinical immunology  2011;31(5):900-912.
The 2009 swine origin H1N1 influenza virus (swH1N1) provided an opportunity to study immune responses to a new influenza strain in the context of seasonal influenza vaccination. Our goals were: to assess whether analyzing multiple parameters of immune responsiveness to influenza has an advantage over evaluating hemagglutination inhibition (HAI) titer alone, to determine whether vaccination with the seasonal vaccine induced cross-reactive immunity to swH1N1 in some individuals, and to determine whether the immune response against swH1N1 is higher after infection than vaccination.
Antibody and T cell responses were studied in ten subjects who were first immunized with the 2009-10 seasonal influenza subunit vaccine, then six weeks later with the swH1N1 monovalent subunit vaccine. The amount of antibody against native virus glycoproteins, overall avidity of these antibodies, and HAI titer were measured. T cells were evaluated for proliferation and IFNγ secretion in response to the vaccine in vitro. Individuals with influenza-like illness were also evaluated, adding a microplate neuraminidase-inhibition (NAI) test.
The immune response to influenza was highly variable and immune parameters did not increase in parallel. The seasonal vaccine induced antibodies recognizing the pandemic virus in 50% of subjects. Antibody affinity and NAI activity to swH1N1 were higher after natural infection than vaccination.
Evaluation of several immune parameters gives a more complete measure of immune responsiveness to influenza infection or vaccination than the HAI test alone.
PMCID: PMC3197711  PMID: 21732013
pandemic 2009 H1N1 influenza; vaccine response; antibodies and T cells after infection
12.  Influenza vaccination responses in human systemic lupus erythematosus: impact of clinical and demographic features 
Arthritis and rheumatism  2011;63(8):2396-2406.
Vaccination against common pathogens, such as influenza, is recommended for SLE patients to decrease infections and improve health. However, most vaccination response reports are limited to evaluation of SLE patients with quiescent disease. This study focuses on understanding the clinical, serological, therapeutic, and demographic factors which influence the response to influenza vaccination in patients with a range of disease activities.
Blood specimens and disease activity information were collected from seventy-two SLE patients at baseline and 2, 6 and 12 weeks after influenza vaccination. Influenza-specific antibody responses were assessed for antibody concentration (Bmax), relative affinity (Ka), and hemagglutination inhibition (HAI). Using a cumulative score, the subjects were evenly divided into high and low responders. Autoantibody levels were evaluated at each time-point by immunofluorescence and standard ELISAs.
Low responders to the vaccine were more likely to have hematologic criteria (p=0.009), exhibit more ACR criteria (p=0.05), and be on concurrent prednisone treatment (p=0.04). Interestingly, European American patients were more likely to be low responders than African Americans (p = 0.03). Following vaccination, low responders were more likely to experience disease flares (p=0.01) and to have increased ANA titers (p = 0.04). Baseline serum interferon alpha activity was significantly higher in patients that experienced a flare after vaccination compared to a matched group of patients that did not flare (p= 0.04).
Ancestral background, prednisone treatment, hematological criteria and evidence of increased disease flares were associated with low antibody responses to influenza vaccination in SLE patients.
PMCID: PMC3149742  PMID: 21598235
13.  Immunodominance of Antigenic Site B over Site A of Hemagglutinin of Recent H3N2 Influenza Viruses 
PLoS ONE  2012;7(7):e41895.
H3N2 influenza viruses have now circulated in the human population for 43 years since the pandemic of 1968, accumulating sequence changes in the hemagglutinin (HA) and neuraminidase (NA) that are believed to be predominantly due to selection for escape from antibodies. Examination of mutations that persist and accumulate led to identification of antigenically significant mutations that are contained in five antigenic sites (A–E) mapped on to the H3 HA. In early H3N2 isolates, antigenic site A appeared to be dominant while in the 1990s site B seemed more important. To obtain experimental evidence for dominance of antigenic sites on modern H3 HAs, we have measured antibodies in plasma of human subjects who received the 2006–07 trivalent subunit influenza vaccine (H3 component A/Wisconsin/67/05) or the 2008–09 formulation (H3 component A/Uruguay/716/07). Plasmas were tested against expressed HA of Wisconsin-like influenza A/Oklahoma/309/06 and site-directed mutants in antigenic site A (NNES121-124ITEG, N126T, N133D, TSSS135-138GSNA, K140I, RSNNS142-146PGSG), and antigenic site B (HL156-157KS, KFK158-160GST, NDQI189-192QEQT, A196V). “Native ELISA” analysis and escape mutant selection with two human monoclonal antibodies demonstrated that antibody E05 binds to antigenic site A and 1_C02 binds to site B. We find that most individuals, after vaccination in seasons 2006–07 and/or 2008–09, showed dominance of antigenic site B recognition over antigenic site A. A minority showed dominance of site A in 2006 but these were reduced in 2008 when the vaccine virus had a site A mutation. A better understanding of immunodominance may allow prediction of future antigenic drift and assist in vaccine strain selection.
PMCID: PMC3405050  PMID: 22848649
14.  Fixation of Oligosaccharides to a Surface May Increase the Susceptibility to Human Parainfluenza Virus 1, 2, or 3 Hemagglutinin-Neuraminidase▿† 
Journal of Virology  2011;85(23):12146-12159.
The hemagglutinin-neuraminidase (HN) protein of human parainfluenza viruses (hPIVs) both binds (H) and cleaves (N) oligosaccharides that contain N-acetylneuraminic acid (Neu5Ac). H is thought to correspond to receptor binding and N to receptor-destroying activity. At present, N′s role in infection remains unclear: does it destroy only receptors, or are there other targets? We previously demonstrated that hPIV1 and 3 HNs bind to oligosaccharides containing the motif Neu5Acα2-3Galβ1-4GlcNAc (M. Amonsen, D. F. Smith, R. D. Cummings, and G. M. Air, J. Virol. 81:8341–8345, 2007). In the present study, we tested the binding specificity of hPIV2 on the Consortium for Functional Glycomics' glycan array and found that hPIV2 binds to oligosaccharides containing the same motif. We determined the specificities of N on red blood cells, soluble small-molecule and glycoprotein substrates, and the glycan array and compared them to the specificities of H. hPIV2 and -3, but not hPIV1, cleaved their ligands on red blood cells. hPIV1, -2, and -3 cleaved their NeuAcα2-3 ligands on the glycan array; hPIV2 and -3 also cleaved NeuAcα2-6 ligands bound by influenza A virus. While all three HNs exhibited similar affinities for all cleavable soluble substrates, their activities were 5- to 10-fold higher on small molecules than on glycoproteins. In addition, some soluble glycoproteins were not cleaved, despite containing oligosaccharides that were cleaved on the glycan array. We conclude that the susceptibility of an oligosaccharide substrate to N increases when the substrate is fixed to a surface. These findings suggest that HN may undergo a conformational change that activates N upon receptor binding at a cell surface.
PMCID: PMC3209406  PMID: 21917945
15.  Influenza Virus Sequence Feature Variant Type Analysis: Evidence of a Role for NS1 in Influenza Virus Host Range Restriction 
Journal of Virology  2012;86(10):5857-5866.
Genetic drift of influenza virus genomic sequences occurs through the combined effects of sequence alterations introduced by a low-fidelity polymerase and the varying selective pressures experienced as the virus migrates through different host environments. While traditional phylogenetic analysis is useful in tracking the evolutionary heritage of these viruses, the specific genetic determinants that dictate important phenotypic characteristics are often difficult to discern within the complex genetic background arising through evolution. Here we describe a novel influenza virus sequence feature variant type (Flu-SFVT) approach, made available through the public Influenza Research Database resource (, in which variant types (VTs) identified in defined influenza virus protein sequence features (SFs) are used for genotype-phenotype association studies. Since SFs have been defined for all influenza virus proteins based on known structural, functional, and immune epitope recognition properties, the Flu-SFVT approach allows the rapid identification of the molecular genetic determinants of important influenza virus characteristics and their connection to underlying biological functions. We demonstrate the use of the SFVT approach to obtain statistical evidence for effects of NS1 protein sequence variations in dictating influenza virus host range restriction.
PMCID: PMC3347290  PMID: 22398283
16.  Crystal structure of a new benzoic acid inhibitor of influenza neuraminidase bound with a new tilt induced by overpacking subsite C6 
Influenza neuraminidase (NA) is an important target for antiviral inhibitors since its active site is highly conserved such that inhibitors can be cross-reactive against multiple types and subtypes of influenza. Here, we discuss the crystal structure of neuraminidase subtype N9 complexed with a new benzoic acid based inhibitor (2) that was designed to add contacts by overpacking one side of the active site pocket. Inhibitor 2 uses benzoic acid to mimic the pyranose ring, a bis-(hydroxymethyl)-substituted 2-pyrrolidinone ring in place of the N-acetyl group of the sialic acid, and a branched aliphatic structure to fill the sialic acid C6 subsite.
Inhibitor 2 {4-[2,2-bis(hydroxymethyl)-5-oxo-pyrrolidin-1-yl]-3-[(dipropylamino)methyl)]benzoic acid} was soaked into crystals of neuraminidase of A/tern/Australia/G70c/75 (N9), and the structure refined with 1.55 Å X-ray data. The benzene ring of the inhibitor tilted 8.9° compared to the previous compound (1), and the number of contacts, including hydrogen bonds, increased. However, the IC50 for compound 2 remained in the low micromolar range, likely because one propyl group was disordered. In this high-resolution structure of NA isolated from virus grown in chicken eggs, we found electron density for additional sugar units on the N-linked glycans compared to previous neuraminidase structures. In particular, seven mannoses and two N-acetylglucosamines are visible in the glycan attached to Asn200. This long, branched high-mannose glycan makes significant contacts with the neighboring subunit.
We designed inhibitor 2 with an extended substituent at C4-corresponding to C6 of sialic acid-to increase the contact surface in the C6-subsite and to force the benzene ring to tilt to maximize these interactions while retaining the interactions of the carboxylate and the pyrolidinone substituents. The crystal structure at 1.55 Å showed that we partially succeeded in that the ring in 2 is tilted relative to 1 and the number of contacts increased, but one hydrophobic branch makes no contacts, perhaps explaining why the IC50 did not decrease. Future design efforts will include branches of unequal length so that both branches may be accommodated in the C6-subsite without conformational disorder. The high-mannose glycan attached to Asn200 makes several inter-subunit contacts and appears to stabilize the tetramer.
PMCID: PMC3416664  PMID: 22559154
Influenza neuraminidase inhibitor; Enzyme-ligand complex; Antiviral; Structure-based drug design; Glycoprotein; Glycan structure; Influenza virus; Benzoic acid; Pyrrolidinone
17.  The prototype HIV-1 maturation inhibitor, bevirimat, binds to the CA-SP1 cleavage site in immature Gag particles 
Retrovirology  2011;8:101.
Bevirimat, the prototype Human Immunodeficiency Virus type 1 (HIV-1) maturation inhibitor, is highly potent in cell culture and efficacious in HIV-1 infected patients. In contrast to inhibitors that target the active site of the viral protease, bevirimat specifically inhibits a single cleavage event, the final processing step for the Gag precursor where p25 (CA-SP1) is cleaved to p24 (CA) and SP1.
In this study, photoaffinity analogs of bevirimat and mass spectrometry were employed to map the binding site of bevirimat to Gag within immature virus-like particles. Bevirimat analogs were found to crosslink to sequences overlapping, or proximal to, the CA-SP1 cleavage site, consistent with previous biochemical data on the effect of bevirimat on Gag processing and with genetic data from resistance mutations, in a region predicted by NMR and mutational studies to have α-helical character. Unexpectedly, a second region of interaction was found within the Major Homology Region (MHR). Extensive prior genetic evidence suggests that the MHR is critical for virus assembly.
This is the first demonstration of a direct interaction between the maturation inhibitor, bevirimat, and its target, Gag. Information gained from this study sheds light on the mechanisms by which the virus develops resistance to this class of drug and may aid in the design of next-generation maturation inhibitors.
PMCID: PMC3267693  PMID: 22151792
18.  Deletions of neuraminidase and resistance to oseltamivir may be a consequence of restricted receptor specificity in recent H3N2 influenza viruses 
Virology Journal  2009;6:22.
Influenza viruses attach to cells via sialic acid receptors. The viral neuraminidase (NA) is needed to remove sialic acids so that newly budded virions can disperse. Known mechanisms of resistance to NA inhibitors include mutations in the inhibitor binding site, or mutations in the hemagglutinin that reduce avidity for sialic acid and therefore reduce the requirement for NA activity.
Influenza H3N2 isolates A/Oklahoma/323/03 (Fujian-like), A/Oklahoma/1992/05 (California-like), and A/Oklahoma/309/06 (Wisconsin-like) lost NA activity on passage in MDCK cells due to internal deletions in the NA-coding RNA segment. The viruses grow efficiently in MDCK cells despite diminished NA activity. The full length NA enzyme activity is sensitive to oseltamivir but replication of A/Oklahoma/323/03 and A/Oklahoma/309/06 in MDCK cells was resistant to this inhibitor, indicating that NA is not essential for replication. There was no change in HA activity or sequence after the NA activity was lost but the three viruses show distinct, quite restricted patterns of receptor specificity by Glycan Array analysis. Extensive predicted secondary structure in RNA segment 6 that codes for NA suggests the deletions are generated by polymerase skipping over base-paired stem regions. In general the NA deletions were not carried into subsequent passages, and we were unable to plaque-purify virus with a deleted NA RNA segment.
H3N2 viruses from 2003 to the present have reduced requirement for NA when passaged in MDCK cells and are resistant to NA inhibitors, possibly by a novel mechanism of narrow receptor specificity such that virus particles do not self-aggregate. These viruses delete internal regions of the NA RNA during passage and are resistant to oseltamivir. However, deletions are independently generated at each passage, suggesting that virus with a full length NA RNA segment initiates the first round of infection.
PMCID: PMC2649058  PMID: 19216793
Nature  2008;453(7195):667-671.
Pre-existing neutralizing antibody provides the first line of defense against pathogens in general. For influenza virus, annual vaccinations are given to maintain protective levels of antibody against the currently circulating strains. Here we report that after booster vaccination there was a rapid and robust influenza-specific IgG+ antibody-secreting plasma cell (ASC) response that peaked at approximately day 7 and accounted for up to 6% of peripheral blood B cells. These ASCs could be distinguished from influenza-specific IgG+ memory B cells that peaked 14 to 21 days after vaccination and averaged 1% of all B cells. Importantly, as much as 80% of ASCs purified at the peak of the response were influenza specific. This ASC response was characterized by a highly restricted B cell receptor (BCR) repertoire that in some donors were dominated by only a few B cell clones. This pauci-clonal response, however, showed extensive intraclonal diversification from accumulated somatic mutations. We used the immunoglobulin variable regions isolated from sorted single ASCs to produce over fifty human monoclonal antibodies (mAbs) that bound to the three influenza vaccine strains with high affinity. This strategy demonstrates that we can generate multiple high affinity mAbs from humans within a month after vaccination. The panel of influenza virus specific human mAbs allowed us to address the issue of original antigenic sin (OAS) - the phenomenon where the induced antibody shows higher affinity to a previously encountered influenza virus strain compared to the virus strain present in the vaccine1. However, we found that the vast majority of the influenza virus specific mAbs showed the highest affinity for the current vaccine strain. Thus, OAS does not seem to be a common occurrence in normal healthy adults receiving influenza vaccination.
PMCID: PMC2515609  PMID: 18449194
20.  Human Parainfluenza Viruses hPIV1 and hPIV3 Bind Oligosaccharides with α2-3-Linked Sialic Acids That Are Distinct from Those Bound by H5 Avian Influenza Virus Hemagglutinin▿  
Journal of Virology  2007;81(15):8341-8345.
We investigated the binding of human parainfluenza virus types 1 and 3 (hPIV1 and hPIV3, respectively) to the glycan array of the Consortium for Functional Glycomics and binding and their release from erythrocytes under conditions where neuraminidase is inactive or active. hPIV1 and hPIV3 bind modifications of Neu5Acα2-3Galβ1-4GlcNAc, including the sialyl-Lewisx motif and structures containing 6-sulfogalactose. hPIV1 and hPIV3 thus bind typical N-linked glycans, in contrast to avian influenza virus H5 hemagglutinin (J. Stevens, O. Blixt, T. M. Tumpey, J. K. Taubenberger, J. C. Paulson, and I. A. Wilson, Science 312:404-410, 2006), which binds less-common motifs. While the receptor is not the sole determinant of tropism, hPIV or H5 influenza virus infection of specific cells that express receptors may contribute to their different pathologies.
PMCID: PMC1951310  PMID: 17522226
21.  Receptor binding specificity of recent human H3N2 influenza viruses 
Virology Journal  2007;4:42.
Human influenza viruses are known to bind to sialic acid linked α2-6 to galactose, but the binding specificity beyond that linkage has not been systematically examined. H3N2 human influenza isolates lost binding to chicken red cells in the 1990s but viruses isolated since 2003 have re-acquired the ability to agglutinate chicken erythrocytes. We have investigated specificity of binding, changes in hemagglutinin sequence of the recent viruses and the role of sialic acid in productive infection.
Viruses that agglutinate, or do not agglutinate, chicken red cells show identical binding to a Glycan Array of 264 oligosaccharides, binding exclusively to a subset of α2-6-sialylsaccharides. We identified an amino acid change in hemagglutinin that seemed to correlate with chicken red cell binding but when tested by mutagenesis there was no effect. Recombinant hemagglutinins expressed on Sf-9 cells bound chicken red cells but the released recombinant baculoviruses agglutinated only human red cells. Similarly, an isolate that does not agglutinate chicken red cells show hemadsorption of chicken red cells to infected MDCK cells. We suggest that binding of chicken red cells to cell surface hemagglutinin but not to virions is due to a more favorable hemagglutinin density on the cell surface. We investigated whether a virus specific for α2-6 sialyloligosaccharides shows differential entry into cells that have varying proportions of α2-6 and α2-3 sialic acids, including human A549 and HeLa cells with high levels of α2-6 sialic acid, and CHO cells that have only α2-3 sialic acid. We found that the virus enters all cell types tested and synthesizes viral nucleoprotein, localized in the nucleus, and hemagglutinin, transported to the cell surface, but infectious progeny viruses were released only from MDCK cells.
Agglutination of chicken red cells does not correlate with altered binding to any oligosaccharide on the Glycan Array, and may result from increased avidity due to density of hemagglutinin and not increased affinity. Absence of α2-6 sialic acid does not protect a cell from influenza infection and the presence of high levels of α2-6-sialic acids on a cell surface does not guarantee productive replication of a virus with α2-6 receptor specificity.
PMCID: PMC1876801  PMID: 17490484
22.  Antibody Epitopes on the Neuraminidase of a Recent H3N2 Influenza Virus (A/Memphis/31/98) 
Journal of Virology  2002;76(23):12274-12280.
We have characterized monoclonal antibodies raised against the neuraminidase (NA) of a Sydney-like influenza virus (A/Memphis/31/98, H3N2) in a reassortant virus A/NWS/33HA-A/Mem/31/98NA (H1N2) and nine escape mutants selected by these monoclonal antibodies. Five of the antibodies use the same heavy chain VDJ genes and may not be independent. Another antibody, Mem5, uses the same VH and J genes with a different D gene and different isotype. Sequence changes in escape mutants selected by these antibodies occur in two loops of the NA, at amino acid 198, 199, 220, or 221. These amino acids are located on the opposite side of the NA monomer to the major epitopes found in N9 and early N2 NAs. Escape mutants with a change at 198 have reduced NA activity compared to the wild-type virus. Asp198 points toward the substrate binding pocket, and we had previously found that a site-directed mutation of this amino acid resulted in a loss of enzyme activity (M. R. Lentz, R. G. Webster, and G. M. Air, Biochemistry 26:5351-5358, 1987). Mutations at residue 199, 220, or 221 did not alter the NA activity significantly compared to that of wild-type NA. A 3.5-Å structure of Mem5 Fab complexed with the Mem/98 NA shows that the Mem5 antibody binds at the sites of escape mutation selected by the other antibodies.
PMCID: PMC136895  PMID: 12414967
23.  Generation and Characterization of a Mutant of Influenza A Virus Selected with the Neuraminidase Inhibitor BCX-140 
Influenza neuraminidase (NA) plays an important role in viral replication, and characterization of viruses resistant to NA inhibitors will help elucidate the role of active-site residues. This information will assist in designing better inhibitors targeted to essential active-site residues that cannot generate drug-resistant mutations. In the present study we used the benzoic acid-based inhibitor BCX-140 to select and characterize resistant viruses. BCX-140 binds to the NA active site in an orientation that is opposite that of a sialic acid-based compound, 4-guanidino-2,4-dideoxy-2,3-dehydro-N-acetylneuraminic acid (GANA). Thus, the guanidino group of BCX-140 binds to Glu-276, whereas in GANA the guanidino group binds to Glu-119. We passaged influenza A/Singapore/1/57 (H2N2) in Madin-Darby canine kidney cells in the presence of BCX-140, and virus resistant to this inhibitor was selected after six passages. The NA of this mutant was still sensitive to inhibition by BCX-140. However, the mutant virus was resistant to BCX-140 in plaque and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Sequence analysis of hemagglutinin (HA) and NA genes revealed changes in both, although none were in the active site of the NA. Depending on the method of selection of the resistant virus, two types of changes associated with the sialic acid binding site were seen in the HA. One is a change in HA1 of Ala-133 to Thr, a residue close to the binding site, while the other change was Arg-132 of HA1 to Gln, which in HA1 of serotype H3 is a sialic acid contact (Asn-137). Binding studies revealed that both types of resistant viruses had reduced receptor binding affinity compared to that of the wild type. Thus, resistance to BCX-140 was generated by modifying the HA. NA active-site residue 276 may be essential for activity, and thus, it cannot be changed to generate resistance. However, drug-induced changes in the HA can result in a virus that is less dependent on NA activity for growth in cells and, hence, resistant to NA inhibitors.
PMCID: PMC105545  PMID: 9559786

Results 1-23 (23)