PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Rab-geranylgeranyl transferase regulates glucose-stimulated insulin secretion from pancreatic β cells 
Islets  2012;4(5):354-358.
A growing body of evidence implicates essential roles for small molecular weight G-proteins (e.g., Cdc42, Rac1, Arf6 and Rab3A and Rab27A) in islet β-cell function including glucose-stimulated insulin secretion (GSIS). One of the known mechanisms for optimal activation of small G-proteins involves post-translational prenylation, which is mediated by farnesyltransferase (FTase) and geranylgeranyl transferases (GGTases I and II). The FTase catalyzes incorporation of a 15-carbon farnesyl group while the GGTase mediates incorporation of a 20-carbon geranylgeranyl group into the C-terminal cysteines of G-proteins. The FTase, GGTase I and GGTase II prenylate Ras, Cdc42/Rac1, and Rab G-proteins, respectively. While considerable evidence exists on FTase/GGTase I-mediated regulation of GSIS, very little is known about GGTase II (also referred to as Rab GGTase; RGGT) and its regulatory proteins in the cascade of events leading to GSIS. Herein, we provide the first immunological evidence to suggest expression of α- and β-subunits of RGGT in clonal INS 832/13 β-cells, normal rat islets and human islets. Furthermore, Rab escort protein1 (REP1), which has been shown to be critical for prenylation of Rab G-proteins, is also expressed in these cells. Furthermore, evidence is presented to suggest that siRNA-mediated knockdown of α- or β-subunits of RGGT and REP1 markedly attenuates GSIS in INS 832/13 cells. These findings provide the first evidence in support of key roles for RGGT and its regulatory proteins in GSIS.
doi:10.4161/isl.22538
PMCID: PMC3524143  PMID: 23114750
Geranylgeranylation; Rab G-proteins; Rab escort proteins; insulin secretion; pancreatic β-cells
2.  Increased Phagocyte-Like NADPH Oxidase and ROS Generation in Type 2 Diabetic ZDF Rat and Human Islets 
Diabetes  2011;60(11):2843-2852.
OBJECTIVE
To determine the subunit expression and functional activation of phagocyte-like NADPH oxidase (Nox), reactive oxygen species (ROS) generation and caspase-3 activation in the Zucker diabetic fatty (ZDF) rat and diabetic human islets.
RESEARCH DESIGN AND METHODS
Expression of core components of Nox was quantitated by Western blotting and densitometry. ROS levels were quantitated by the 2′,7′-dichlorofluorescein diacetate method. Rac1 activation was quantitated using the gold-labeled immunosorbent assay kit.
RESULTS
Levels of phosphorylated p47phox, active Rac1, Nox activity, ROS generation, Jun NH2-terminal kinase (JNK) 1/2 phosphorylation, and caspase-3 activity were significantly higher in the ZDF islets than the lean control rat islets. Chronic exposure of INS 832/13 cells to glucolipotoxic conditions resulted in increased JNK1/2 phosphorylation and caspase-3 activity; such effects were largely reversed by SP600125, a selective inhibitor of JNK. Incubation of normal human islets with high glucose also increased the activation of Rac1 and Nox. Lastly, in a manner akin to the ZDF diabetic rat islets, Rac1 expression, JNK1/2, and caspase-3 activation were also significantly increased in diabetic human islets.
CONCLUSIONS
We provide the first in vitro and in vivo evidence in support of an accelerated Rac1–Nox–ROS–JNK1/2 signaling pathway in the islet β-cell leading to the onset of mitochondrial dysregulation in diabetes.
doi:10.2337/db11-0809
PMCID: PMC3198065  PMID: 21911753
3.  Arf nucleotide binding site opener [ARNO] promotes sequential activation of Arf6, Cdc42 and Rac1 and insulin secretion in INS 832/13 β-cells and rat islets 
Biochemical pharmacology  2011;81(8):1016-1027.
Glucose-stimulated insulin secretion [GSIS] involves interplay between small G-proteins and their regulatory factors. Herein, we tested the hypothesis that Arf nucleotide binding site opener [ARNO], a guanine nucleotide exchange factor [GEF] for the small G-protein Arf6, mediates the functional activation of Arf6, and that ARNO/Arf6 signaling axis, in turn, controls the activation of Cdc42 and Rac1, which have been implicated in GSIS. Molecular biological [i.e., expression of inactive mutants or siRNA] and pharmacological approaches were employed to assess the roles for ARNO/Arf6 signaling pathway in insulin secretion in normal rat islets and INS 832/13 cells. Degrees of activation of Arf6 and Cdc42/Rac1 were quantitated by GST-GGA3 and PAK-1 kinase pull-down assays, respectively. ARNO is expressed in INS 832/13 cells, rat islets and human islets. Expression of inactive mutants of Arf6 [Arf6-T27N] or ARNO [ARNO-E156K] or siRNA-ARNO markedly reduced GSIS in isolated β-cells. secinH3, a selective inhibitor of ARNO/Arf6 signaling axis, also inhibited GSIS in INS 832/13 cells and rat islets. Stimulatory concentrations of glucose promoted Arf6 activation, which was inhibited by secinH3 or siRNA-ARNO, suggesting that ARNO/Arf6 signaling cascade is necessary for GSIS. secinH3 or siRNA-ARNO also inhibited glucose-induced activation of Cdc42 and Rac1 suggesting that ARNO/Arf6 might be upstream to Cdc42 and Rac1 activation steps, which are necessary for GSIS. Lastly, co-immunoprecipitation and confocal microscopic studies suggested increased association between Arf6 and ARNO in glucose-stimulated β-cells. These findings provide the first evidence to implicate ARNO in the sequential activation of Arf6, Cdc42 and Rac1 culminating in GSIS.
doi:10.1016/j.bcp.2011.01.006
PMCID: PMC3073812  PMID: 21276423
Insulin secretion; pancreatic islet; ARNO; Arf6; Rac1; secinH3
4.  Isoprenylcysteine carboxyl methyltransferase facilitates glucose-induced Rac1 activation, ROS generation and insulin secretion in INS 832/13 β-cells 
Islets  2011;3(2):48-57.
Isoprenylcysteine carboxyl methyltransferase (ICMT) catalyzes the post-translational methylation of C-terminal cysteines of isoprenylated proteins, including small G-proteins and the γ-subunits of heterotrimeric G-proteins. It is widely felt that carboxymethylation promotes efficient membrane association of the methylated proteins and specific protein-protein interactions. In the current study, we tested the hypothesis that ICMT-mediated carboxymethylation of specific proteins (e.g., Rac1) plays a regulatory role in glucose-stimulated insulin secretion (GSIS). Western-blot analysis indicated that ICMT is expressed and predominantly membrane associated in INS 832/13 β-cells. siRNA-mediated knockdown of endogenous expression of ICMT markedly attenuated glucose, but not KCl-induced insulin secretion. These findings were further supported by pharmacological observations, which suggested a marked reduction in glucose-, but not KCl-stimulated insulin secretion by acetyl farnesyl cysteine (AFC), a selective inhibitor of ICMT. In addition, glucose-induced Rac1 activation, a hallmark signaling step involved in glucose-stimulated insulin secretion, was markedly inhibited following pharmacological (AFC) or molecular biological (siRNA-ICMT) inhibition of ICMT. Lastly, we also noticed a marked reduction in glucose-induced acute increase in the generation of reactive oxygen species in INS 832/13 cells pre-treated with AFC or transfected with siRNA-ICMT. Together, these data suggest that ICMT regulates glucose-induced Rac1 activation, generation of reactive oxygen species and insulin secretion in pancreatic β-cells.
doi:10.4161/isl.3.2.15016
PMCID: PMC3092562  PMID: 21346419
Rac1; ROS; pancreatic islet; carboxymethylation and insulin secretion
5.  Tiam1/Rac1 signaling pathway mediates palmitate-induced, ceramide-sensitive generation of superoxides and lipid peroxides and the loss of mitochondrial membrane potential in pancreatic β-cells 
Biochemical pharmacology  2010;80(6):874-883.
The phagocytic NADPH-oxidase [NOX] has been implicated in the generation of superoxides in the pancreatic β-cell. Herein, using normal rat islets and clonal INS 832/13 cells, we tested the hypothesis that activation of the small G-protein Rac1, which is a member of the NOX holoenzyme, is necessary for palmitate [PA]-induced generation of superoxides in pancreatic β-cells. Incubation of isolated β-cells with PA potently increased the NOX activity culminating in a significant increase in the generation of superoxides and lipid peroxides in these cells; such effects of PA were attenuated by diphenyleneiodonium [DPI], a known inhibitor of NOX. In addition, PA caused a transient, but significant activation [i.e., GTP-bound form] of Rac1 in these cells. NSC23766, a selective inhibitor of Rac1, but not Cdc42 or Rho activation, inhibited Rac1 activation and the generation of superoxides and lipid peroxides induced by PA. Fumonisin B-1 [FB-1], which inhibits de novo synthesis of ceramide [CER] from PA, also attenuated PA-induced superoxide and lipid peroxide generation and NOX activity implicating intracellularly generated CER in the metabolic effects of PA; such effects were also demonstrable in the presence of the cell-permeable C2-CER. Further, NSC23766 prevented C2-CER-induced Rac1 activation and production of superoxides and lipid peroxides. Lastly, C2-CER, but not its inactive analogue, significantly reduced the mitochondrial membrane potential, which was prevented to a large degree by NSC23766. Together, our findings suggest that Tiam1/Rac1 signaling pathway regulates PA-induced, CER-dependent superoxide generation and mitochondrial dysfunction in pancreatic β-cells.
doi:10.1016/j.bcp.2010.05.006
PMCID: PMC2919057  PMID: 20493824
NADPH Oxidase; Rac1; Tiam1; palmitate; ceramide; oxidative stress; pancreatic β-cells
6.  Protein Farnesylation–Dependent Raf/Extracellular Signal–Related Kinase Signaling Links to Cytoskeletal Remodeling to Facilitate Glucose-Induced Insulin Secretion in Pancreatic β-Cells 
Diabetes  2010;59(4):967-977.
OBJECTIVE
Posttranslational prenylation (e.g., farnesylation) of small G-proteins is felt to be requisite for cytoskeletal remodeling and fusion of secretory vesicles with the plasma membrane. Here, we investigated roles of protein farnesylation in the signaling steps involved in Raf-1/extracellular signal–related kinase (ERK1/2) signaling pathway in glucose-induced Rac1 activation and insulin secretion in the pancreatic β-cell.
RESEARCH DESIGN AND METHODS
These studies were carried out in INS 832/13 cells and normal rat islets. Molecular biological (e.g., overexpression or small interfering RNA [siRNA]–mediated knockdown) and pharmacologic approaches were used to determine roles for farnesylation in glucose-mediated activation of ERK1/2, Rac1, and insulin secretion. Activation of ERK1/2 was determined by Western blotting. Rac1 activation (i.e., Rac1.GTP) was quantitated by p21-activated kinase pull-down assay. Insulin release was quantitated by enzyme-linked immunosorbent assay.
RESULTS
Coprovision of structure-specific inhibitors of farnesyl transferase (FTase; e.g., FTI-277 or FTI-2628) or siRNA-mediated knockdown of FTase β-subunit resulted in a significant inhibition of glucose-stimulated ERK1/2 and Rac1 activation and insulin secretion. Pharmacologic inhibition of Raf-1 kinase using GW-5074 markedly reduced the stimulatory effects of glucose on ERK1/2 phosphorylation, Rac1 activation, and insulin secretion, suggesting that Raf-1 kinase activation may be upstream to ERK1/2 and Rac1 activation leading to glucose-induced insulin release. Lastly, siRNA-mediated silencing of endogenous expression of ERK1/2 markedly attenuated glucose-induced Rac1 activation and insulin secretion.
CONCLUSIONS
Together, our findings provide the first evidence of a role for protein farnesylation in glucose-mediated regulation of the Raf/ERK signaling pathway culminating in the activation of Rac1, which has been shown to be necessary for cytoskeletal reorganization and exocytotic secretion of insulin.
doi:10.2337/db09-1334
PMCID: PMC2844844  PMID: 20071600
7.  Visualization of microarray gene expression data 
Bioinformation  2006;1(4):141-145.
Microarray gene expression data is used in various biological and medical investigations. Processing of gene expression data requires algorithms in data mining, process automation and knowledge discovery. Available data mining algorithms exploits various visualization techniques. Here, we describe the merits and demerits of various visualization parameters used in gene expression analysis.
PMCID: PMC1891671  PMID: 17597876
Bioinformatics; visualization; microarray gene expression data; data mining
8.  GEDAS ‐ Gene Expression Data Analysis Suite 
Bioinformation  2006;1(3):83-85.
Currently available micro-array gene expression data analysis tools lack standardization at various levels. We developed GEDAS (gene expression data analysis suite) to bring various tools and techniques in one system. It also provides a number of other features such as a large collection of distance measures and pre-processing techniques. The software is an extension of Cluster 3.0 (developed based on Eisen Lab's Cluster and Tree View software). GEDAS allows the usage of different datasets with algorithms such as k-means, HC, SVD/PCA and SVM, in addition to Kohonen's SOM and LVQ.
Availability
http://gedas.bizhat.com/gedas.htm
PMCID: PMC1891661  PMID: 17597861
gene expression; standardization; GEDAS; cluster; software

Results 1-8 (8)