Search tips
Search criteria

Results 1-25 (28)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
Document Types
1.  The Transcription Coactivator Cbp Is a Dynamic Component of the Promyelocytic Leukemia Nuclear Body 
The Journal of Cell Biology  2001;152(5):1099-1106.
The transcription coactivator and histone acetyltransferase CAMP response element–binding protein (CBP) has been demonstrated to accumulate in promyelocytic leukemia (PML) bodies. We show that this accumulation is cell type specific. In cells where CBP does not normally accumulate in PML bodies, it can be induced to accumulate in PML bodies through overexpression of either CBP or Pml, but not Sp100. Using fluorescence recovery after photobleaching, we demonstrate that CBP moves rapidly into and out of PML bodies. In contrast, Pml and Sp100 are relatively immobile in the nucleoplasm and within PML nuclear bodies. They possess the characteristics expected of proteins that would play a structural role in the integrity of these subnuclear domains. Our results are consistent with CBP being a dynamic component of PML bodies and that the steady-state level in these structures can be modulated by Pml.
PMCID: PMC2198823  PMID: 11238464
nuclear structure; promyelocytic leukemia; PML body; ND10; fluorescence recovery after photobleaching
2.  Reduced Mobility of the Alternate Splicing Factor (Asf) through the Nucleoplasm and Steady State Speckle Compartments 
The Journal of Cell Biology  2000;150(1):41-52.
Compartmentalization of the nucleus is now recognized as an important level of regulation influencing specific nuclear processes. The mechanism of factor organization and the movement of factors in nuclear space have not been fully determined. Splicing factors, for example, have been shown to move in a directed manner as large intact structures from sites of concentration to sites of active transcription, but splicing factors are also thought to exist in a freely diffusible state. In this study, we examined the movement of a splicing factor, ASF, green fluorescent fusion protein (ASF–GFP) using time-lapse microscopy and the technique fluorescence recovery after photobleaching (FRAP). We find that ASF–GFP moves at rates up to 100 times slower than free diffusion when it is associated with speckles and, surprisingly, also when it is dispersed in the nucleoplasm. The mobility of ASF is consistent with frequent but transient interactions with relatively immobile nuclear binding sites. This mobility is slightly increased in the presence of an RNA polymerase II transcription inhibitor and the ASF molecules further enrich in speckles. We propose that the nonrandom organization of splicing factors reflects spatial differences in the concentration of relatively immobile binding sites.
PMCID: PMC2185567  PMID: 10893255
ASF/SF2; IGCs; FRAP; cell nucleus; nuclear matrix
3.  Organization of Highly Acetylated Chromatin around Sites of Heterogeneous Nuclear RNA Accumulation 
Molecular Biology of the Cell  1998;9(9):2491-2507.
Histones found within transcriptionally competent and active regions of the genome are highly acetylated. Moreover, these highly acetylated histones have very short half-lives. Thus, both histone acetyltransferases and histone deacetylases must enrich within or near these euchromatic regions of the interphase chromatids. Using an antibody specific for highly acetylated histone H3, we have investigated the organization of transcriptionally active and competent chromatin as well as nuclear histone acetyltransferase and deacetylase activities. We observe an exclusion of highly acetylated chromatin around the periphery of the nucleus and an enrichment near interchromatin granule clusters (IGCs). The highly acetylated chromatin is found in foci that may reflect the organization of highly acetylated chromatin into “chromonema” fibers. Transmission electron microscopy of Indian muntjac fibroblast cell nuclei indicates that the chromatin associated with the periphery of IGCs remains relatively condensed, most commonly found in domains containing chromatin folded beyond 30 nm. Using electron spectroscopic imaging, we demonstrate that IGCs are clusters of ribonucleoprotein particles. The individual granules comprise RNA-rich fibrils or globular regions that fold into individual granules. Quantitative analysis of individual granules indicates that they contain variable amounts of RNA estimated between 1.5 and >10 kb. We propose that interchromatin granules are heterogeneous nuclear RNA-containing particles, some of which may be pre-mRNA generated by nearby transcribed chromatin. An intermediary zone between the IGC and surrounding chromatin is described that contains factors with the potential to provide specificity to the localization of sequences near IGCs.
PMCID: PMC25517  PMID: 9725908
4.  DNA ligase III acts as a DNA strand break sensor in the cellular orchestration of DNA strand break repair 
Nucleic Acids Research  2014;43(2):875-892.
In the current model of DNA SSBR, PARP1 is regarded as the sensor of single-strand breaks (SSBs). However, biochemical studies have implicated LIG3 as another possible SSB sensor. Using a laser micro-irradiation protocol that predominantly generates SSBs, we were able to demonstrate that PARP1 is dispensable for the accumulation of different single-strand break repair (SSBR) proteins at sites of DNA damage in live cells. Furthermore, we show in live cells for the first time that LIG3 plays a role in mediating the accumulation of the SSBR proteins XRCC1 and PNKP at sites of DNA damage. Importantly, the accumulation of LIG3 at sites of DNA damage did not require the BRCT domain-mediated interaction with XRCC1. We were able to show that the N-terminal ZnF domain of LIG3 plays a key role in the enzyme's SSB sensing function. Finally, we provide cellular evidence that LIG3 and not PARP1 acts as the sensor for DNA damage caused by the topoisomerase I inhibitor, irinotecan. Our results support the existence of a second damage-sensing mechanism in SSBR involving the detection of nicks in the genome by LIG3.
PMCID: PMC4333375  PMID: 25539916
5.  Polycomb repressive complex 2 contributes to DNA double-strand break repair 
Cell Cycle  2013;12(16):2675-2683.
Polycomb protein histone methyltransferase, enhancer of Zeste homolog 2 (EZH2), is frequently overexpressed in human malignancy and is implicated in cancer cell proliferation and invasion. However, it is largely unknown whether EZH2 has a role in modulating the DNA damage response. Here, we show that polycomb repressive complex 2 (PRC2) is recruited to sites of DNA damage. This recruitment is independent of histone 2A variant X (H2AX) and the PI-3-related kinases ATM and DNA-PKcs. We establish that PARP activity is required for retaining PRC2 at sites of DNA damage. Furthermore, depletion of EZH2 in cells decreases the efficiency of DSB repair and increases sensitivity of cells to gamma-irradiation. These data unravel a crucial role of PRC2 in determining cancer cellular sensitivity following DNA damage and suggest that therapeutic targeting of EZH2 activity might serve as a strategy for improving conventional chemotherapy in a given malignancy.
PMCID: PMC3865057  PMID: 23907130
PARP; DNA damage; polycomb group proteins; chromatin; epigenetics
6.  Pin1 promotes histone H1 dephosphorylation and stabilizes its binding to chromatin 
The Journal of Cell Biology  2013;203(1):57-71.
The prolyl isomerase Pin1 stimulates the dephosphorylation of histone H1, stabilizing its binding to chromatin at transcriptionally active chromatin.
Histone H1 plays a crucial role in stabilizing higher order chromatin structure. Transcriptional activation, DNA replication, and chromosome condensation all require changes in chromatin structure and are correlated with the phosphorylation of histone H1. In this study, we describe a novel interaction between Pin1, a phosphorylation-specific prolyl isomerase, and phosphorylated histone H1. A sub-stoichiometric amount of Pin1 stimulated the dephosphorylation of H1 in vitro and modulated the structure of the C-terminal domain of H1 in a phosphorylation-dependent manner. Depletion of Pin1 destabilized H1 binding to chromatin only when Pin1 binding sites on H1 were present. Pin1 recruitment and localized histone H1 phosphorylation were associated with transcriptional activation independent of RNA polymerase II. We thus identify a novel form of histone H1 regulation through phosphorylation-dependent proline isomerization, which has consequences on overall H1 phosphorylation levels and the stability of H1 binding to chromatin.
PMCID: PMC3798258  PMID: 24100296
7.  BMI1-mediated histone ubiquitylation promotes DNA double-strand break repair 
The Journal of Cell Biology  2010;191(1):45-60.
The polycomb repressor complex ubiquitylates γ-H2AX and other components of the DNA damage response pathway to facilitate genomic repair.
Polycomb group (PcG) proteins are major determinants of cell identity, stem cell pluripotency, and epigenetic gene silencing during development. The polycomb repressive complex 1, which contains BMI1, RING1, and RING2, functions as an E3-ubuiquitin ligase. We found that BMI1 and RING2 are recruited to sites of DNA double-strand breaks (DSBs) where they contribute to the ubiquitylation of γ-H2AX. In the absence of BMI1, several proteins dependent on ubiquitin signaling, including 53BP1, BRCA1, and RAP80, are impaired in recruitment to DSBs. Loss of BMI1 sensitizes cells to ionizing radiation to the same extent as loss of RNF8. The simultaneous depletion of both proteins revealed an additive increase in radiation sensitivity. These data uncover an unexpected link between the polycomb and the DNA damage response pathways, and suggest a novel function for BMI1 in maintaining genomic stability.
PMCID: PMC2953429  PMID: 20921134
8.  The Differential Mobilization of Histones H3.1 and H3.3 by Herpes Simplex Virus 1 Relates Histone Dynamics to the Assembly of Viral Chromatin 
PLoS Pathogens  2013;9(10):e1003695.
During lytic infections, HSV-1 genomes are assembled into unstable nucleosomes. The histones required for HSV-1 chromatin assembly, however, are in the cellular chromatin. We have shown that linker (H1) and core (H2B and H4) histones are mobilized during HSV-1 infection, and proposed that the mobilized histones are available for assembly into viral chromatin. However, the actual relevance of histone mobilization remained unknown. We now show that canonical H3.1 and variant H3.3 are also mobilized during HSV-1 infection. Mobilization required no HSV-1 protein expression, although immediate early or early proteins enhanced it. We used the previously known differential association of H3.3 and H3.1 with HSV-1 DNA to test the relevance of histone mobilization. H3.3 binds to HSV-1 genomes first, whereas H3.1 only binds after HSV-1 DNA replication initiates. Consistently, H3.3 and H3.1 were differentially mobilized. H3.1 mobilization decreased with HSV-1 DNA replication, whereas H3.3 mobilization was largely unaffected by it. These results support a model in which previously mobilized H3.1 is immobilized by assembly into viral chromatin during HSV-1 DNA replication, whereas H3.3 is mobilized and assembled into HSV-1 chromatin throughout infection. The differential mobilizations of H3.3 and H3.1 are consistent with their differential assembly into viral chromatin. These data therefore relate nuclear histone dynamics to the composition of viral chromatin and provide the first evidence that histone mobilization relates to viral chromatin assembly.
Author Summary
H3.1 is typically assembled into chromatin during DNA replication-dependent chromatin assembly. However, histones undergo exchange with those not bound in chromatin. During such exchanges, DNA replication-independent chromatin assembly incorporates histone variants, such as H3.3. The HSV-1 genomes are chromatinized, albeit in unstable nucleosomes. The viral genomes initially associate with H3.3, then associate with H3.1 only after HSV-1 DNA replication initiates. These differential interactions are consistent with the DNA replication-independent or -dependent assembly of H3.3 or H3.1, respectively, in cellular chromatin. We have shown that linker (H1) and core (H2B and H4) histones are mobilized during HSV-1 infection, but the significance of this mobilization remained unknown. We now find that H3.3 and H3.1 are also mobilized during infection. H3.3 is mobilized to a similar extent before or after HSV-1 DNA replication, which is consistent with its DNA replication-independent assembly into HSV-1 chromatin. In contrast, H3.1 mobilization decreases during HSV-1 DNA replication, which is consistent with the assembly of previously mobilized H3.1 into HSV-1 chromatin concomitant with HSV-1 DNA replication. The mobilizations of H3.1 and H3.3 are consistent with their kinetics of association with HSV-1 genomes, providing the first indication that histone mobilization relates to the assembly of viral chromatin.
PMCID: PMC3795045  PMID: 24130491
9.  Nucleoplasmic β-actin exists in a dynamic equilibrium between low-mobility polymeric species and rapidly diffusing populations 
The Journal of Cell Biology  2006;172(4):541-552.
β-Actin, once thought to be an exclusively cytoplasmic protein, is now known to have important functions within the nucleus. Nuclear β-actin associates with and functions in chromatin remodeling complexes, ribonucleic acid polymerase complexes, and at least some ribonucleoproteins. Proteins involved in regulating actin polymerization are also found in the interphase nucleus. We define the dynamic properties of nuclear actin molecules using fluorescence recovery after photobleaching. Our results indicate that actin and actin-containing complexes are reduced in their mobility through the nucleoplasm diffusing at ∼0.5 μm2 s−1. We also observed that ∼20% of the total nuclear actin pool has properties of polymeric actin that turns over rapidly. This pool could be detected in endogenous nuclear actin by using fluorescent polymeric actin binding proteins and was sensitive to drugs that alter actin polymerization. Our results validate previous reports of polymeric forms of nuclear actin observed in fixed specimens and reveal that these polymeric forms are very dynamic.
PMCID: PMC2063674  PMID: 16476775
10.  ATM-dependent DNA Damage-independent Mitotic Phosphorylation of H2AX in Normally Growing Mammalian CellsD⃞V⃞ 
Molecular Biology of the Cell  2005;16(10):5013-5025.
H2AX is a core histone H2A variant that contains an absolutely conserved serine/glutamine (SQ) motif within an extended carboxy-terminal tail. H2AX phosphorylation at the SQ motif (γ-H2AX) has been shown to increase dramatically upon exogenously introduced DNA double-strand breaks (DSBs). In this study, we use quantitative in situ approaches to investigate the spatial patterning and cell cycle dynamics of γ-H2AX in a panel of normally growing (unirradiated) mammalian cell lines and cultures. We provide the first evidence for the existence of two distinct yet highly discernible γ-H2AX focal populations: a small population of large amorphous foci that colocalize with numerous DNA DSB repair proteins and previously undescribed but much more abundant small foci. These small foci do not recruit proteins involved in DNA DSB repair. Cell cycle analyses reveal unexpected dynamics for γ-H2AX in unirradiated mammalian cells that include an ATM-dependent phosphorylation that is maximal during M phase. Based upon similarities drawn from other histone posttranslational modifications and previous observations in haploinsufficient (H2AX-/+) and null mice (H2AX-/-), γ-H2AX may contribute to the fidelity of the mitotic process, even in the absence of DNA damage, thereby ensuring the faithful transmission of genetic information from one generation to the next.
PMCID: PMC1237100  PMID: 16030261
11.  PARP activation regulates the RNA-binding protein NONO in the DNA damage response to DNA double-strand breaks 
Nucleic Acids Research  2012;40(20):10287-10301.
After the generation of DNA double-strand breaks (DSBs), poly(ADP-ribose) polymerase-1 (PARP-1) is one of the first proteins to be recruited and activated through its binding to the free DNA ends. Upon activation, PARP-1 uses NAD+ to generate large amounts of poly(ADP-ribose) (PAR), which facilitates the recruitment of DNA repair factors. Here, we identify the RNA-binding protein NONO, a partner protein of SFPQ, as a novel PAR-binding protein. The protein motif being primarily responsible for PAR-binding is the RNA recognition motif 1 (RRM1), which is also crucial for RNA-binding, highlighting a competition between RNA and PAR as they share the same binding site. Strikingly, the in vivo recruitment of NONO to DNA damage sites completely depends on PAR, generated by activated PARP-1. Furthermore, we show that upon PAR-dependent recruitment, NONO stimulates nonhomologous end joining (NHEJ) and represses homologous recombination (HR) in vivo. Our results therefore place NONO after PARP activation in the context of DNA DSB repair pathway decision. Understanding the mechanism of action of proteins that act in the same pathway as PARP-1 is crucial to shed more light onto the effect of interference on PAR-mediated pathways with PARP inhibitors, which have already reached phase III clinical trials but are until date poorly understood.
PMCID: PMC3488241  PMID: 22941645
12.  Core Histones H2B and H4 Are Mobilized during Infection with Herpes Simplex Virus 1 ▿  
Journal of Virology  2011;85(24):13234-13252.
The infecting genomes of herpes simplex virus 1 (HSV-1) are assembled into unstable nucleosomes soon after nuclear entry. The source of the histones that bind to these genomes has yet to be addressed. However, infection inhibits histone synthesis. The histones that bind to HSV-1 genomes are therefore most likely those previously bound in cellular chromatin. In order for preexisting cellular histones to associate with HSV-1 genomes, however, they must first disassociate from cellular chromatin. Consistently, we have shown that linker histones are mobilized during HSV-1 infection. Chromatinization of HSV-1 genomes would also require the association of core histones. We therefore evaluated the mobility of the core histones H2B and H4 as measures of the mobilization of H2A-H2B dimers and the more stable H3-H4 core tetramer. H2B and H4 were mobilized during infection. Their mobilization increased the levels of H2B and H4 in the free pools and decreased the rate of H2B fast chromatin exchange. The histones in the free pools would then be available to bind to HSV-1 genomes. The mobilization of H2B occurred independently from HSV-1 protein expression or DNA replication although expression of HSV-1 immediate-early (IE) or early (E) proteins enhanced it. The mobilization of core histones H2B and H4 supports a model in which the histones that associate with HSV-1 genomes are those that were previously bound in cellular chromatin. Moreover, this mobilization is consistent with the assembly of H2A-H2B and H3-H4 dimers into unstable nucleosomes with HSV-1 genomes.
PMCID: PMC3233158  PMID: 21994445
13.  CBX4-mediated SUMO modification regulates BMI1 recruitment at sites of DNA damage 
Nucleic Acids Research  2012;40(12):5497-5510.
Polycomb group (PcG) proteins are involved in epigenetic silencing where they function as major determinants of cell identity, stem cell pluripotency and the epigenetic gene silencing involved in cancer development. Recently numerous PcG proteins, including CBX4, have been shown to accumulate at sites of DNA damage. However, it remains unclear whether or not CBX4 or its E3 sumo ligase activity is directly involved in the DNA damage response (DDR). Here we define a novel role for CBX4 as an early DDR protein that mediates SUMO conjugation at sites of DNA lesions. DNA damage stimulates sumoylation of BMI1 by CBX4 at lysine 88, which is required for the accumulation of BMI1 at DNA damage sites. Moreover, we establish that CBX4 recruitment to the sites of laser micro-irradiation-induced DNA damage requires PARP activity but does not require H2AX, RNF8, BMI1 nor PI-3-related kinases. The importance of CBX4 in the DDR was confirmed by the depletion of CBX4, which resulted in decreased cellular resistance to ionizing radiation. Our results reveal a direct role for CBX4 in the DDR pathway.
PMCID: PMC3384338  PMID: 22402492
14.  Notch signaling as a therapeutic target for breast cancer treatment? 
Aberrant Notch signaling can induce mammary gland carcinoma in transgenic mice, and high expressions of Notch receptors and ligands have been linked to poor clinical outcomes in human patients with breast cancer. This suggests that inhibition of Notch signaling may be beneficial for breast cancer treatment. In this review, we critically evaluate the evidence that supports or challenges the hypothesis that inhibition of Notch signaling would be advantageous in breast cancer management. We find that there are many remaining uncertainties that must be addressed experimentally if we are to exploit inhibition of Notch signaling as a treatment approach in breast cancer. Nonetheless, Notch inhibition, in combination with other therapies, is a promising avenue for future management of breast cancer. Furthermore, since aberrant Notch4 activity can induce mammary gland carcinoma in the absence of RBPjκ, a better understanding of the components of RBPjκ-independent oncogenic Notch signaling pathways and their contribution to Notch-induced tumorigenesis would facilitate the deployment of Notch inhibition strategies for effective treatment of breast cancer.
PMCID: PMC3218932  PMID: 21672271
15.  Phosphorylation of polynucleotide kinase/ phosphatase by DNA-dependent protein kinase and ataxia-telangiectasia mutated regulates its association with sites of DNA damage 
Nucleic Acids Research  2011;39(21):9224-9237.
Human polynucleotide kinase/phosphatase (PNKP) is a dual specificity 5′-DNA kinase/3′-DNA phosphatase, with roles in base excision repair, DNA single-strand break repair and non-homologous end joining (NHEJ); yet precisely how PNKP functions in the repair of DNA double strand breaks (DSBs) remains unclear. We demonstrate that PNKP is phosphorylated by the DNA-dependent protein kinase (DNA-PK) and ataxia-telangiectasia mutated (ATM) in vitro. The major phosphorylation site for both kinases was serine 114, with serine 126 being a minor site. Ionizing radiation (IR)-induced phosphorylation of cellular PNKP on S114 was ATM dependent, whereas phosphorylation of PNKP on S126 required both ATM and DNA-PK. Inactivation of DNA-PK and/or ATM led to reduced PNKP at DNA damage sites in vivo. Cells expressing PNKP with alanine or aspartic acid at serines 114 and 126 were modestly radiosensitive and IR enhanced the association of PNKP with XRCC4 and DNA ligase IV; however, this interaction was not affected by mutation of PNKP phosphorylation sites. Purified PNKP protein with mutation of serines 114 and 126 had decreased DNA kinase and DNA phosphatase activities and reduced affinity for DNA in vitro. Together, our results reveal that IR-induced phosphorylation of PNKP by ATM and DNA-PK regulates PNKP function at DSBs.
PMCID: PMC3241656  PMID: 21824916
16.  A Key Role for Poly(ADP-Ribose) Polymerase 3 in Ectodermal Specification and Neural Crest Development 
PLoS ONE  2011;6(1):e15834.
The PARP family member poly(ADP-ribose) polymerase 3 (PARP3) is structurally related to the well characterized PARP1 that orchestrates cellular responses to DNA strand breaks and cell death by the synthesis of poly(ADP-ribose). In contrast to PARP1 and PARP2, the functions of PARP3 are undefined. Here, we reveal critical functions for PARP3 during vertebrate development.
Principal Findings
We have used several in vitro and in vivo approaches to examine the possible functions of PARP3 as a transcriptional regulator, a function suggested from its previously reported association with several Polycomb group (PcG) proteins. We demonstrate that PARP3 gene occupancy in the human neuroblastoma cell line SK-N-SH occurs preferentially with developmental genes regulating cell fate specification, tissue patterning, craniofacial development and neurogenesis. Addressing the significance of this association during zebrafish development, we show that morpholino oligonucleotide-directed inhibition of parp3 expression in zebrafish impairs the expression of the neural crest cell specifier sox9a and of dlx3b/dlx4b, the formation of cranial sensory placodes, inner ears and pectoral fins. It delays pigmentation and severely impedes the development of the median fin fold and tail bud.
Our findings demonstrate that Parp3 is crucial in the early stages of zebrafish development, possibly by exerting its transcriptional regulatory functions as early as during the specification of the neural plate border.
PMCID: PMC3022025  PMID: 21264220
17.  PARP inhibition: PARP1 and beyond 
Nature reviews. Cancer  2010;10(4):293-301.
Recent findings have thrust poly(ADP-ribose) polymerases (PARPs) into the limelight as potential chemotherapeutic targets. To provide a framework for understanding these recent observations, we review what is known about the structures and functions of the family of PARP enzymes, and then outline a series of questions that should be addressed to guide the rational development of PARP inhibitors as anticancer agents.
PMCID: PMC2910902  PMID: 20200537
18.  Investigation of PARP-1, PARP-2, and PARG interactomes by affinity-purification mass spectrometry 
Proteome Science  2010;8:22.
Poly(ADP-ribose) polymerases (PARPs) catalyze the formation of poly(ADP-ribose) (pADPr), a post-translational modification involved in several important biological processes, namely surveillance of genome integrity, cell cycle progression, initiation of the DNA damage response, apoptosis, and regulation of transcription. Poly(ADP-ribose) glycohydrolase (PARG), on the other hand, catabolizes pADPr and thereby accounts for the transient nature of poly(ADP-ribosyl)ation. Our investigation of the interactomes of PARP-1, PARP-2, and PARG by affinity-purification mass spectrometry (AP-MS) aimed, on the one hand, to confirm current knowledge on these interactomes and, on the other hand, to discover new protein partners which could offer insights into PARPs and PARG functions.
PARP-1, PARP-2, and PARG were immunoprecipitated from human cells, and pulled-down proteins were separated by gel electrophoresis prior to in-gel trypsin digestion. Peptides were identified by tandem mass spectrometry. Our AP-MS experiments resulted in the identifications of 179 interactions, 139 of which are novel interactions. Gene Ontology analysis of the identified protein interactors points to five biological processes in which PARP-1, PARP-2 and PARG may be involved: RNA metabolism for PARP-1, PARP-2 and PARG; DNA repair and apoptosis for PARP-1 and PARP-2; and glycolysis and cell cycle for PARP-1.
This study reveals several novel protein partners for PARP-1, PARP-2 and PARG. It provides a global view of the interactomes of these proteins as well as a roadmap to establish the systems biology of poly(ADP-ribose) metabolism.
PMCID: PMC2861645  PMID: 20388209
19.  Characterization of the histone H2A.Z-1 and H2A.Z-2 isoforms in vertebrates 
BMC Biology  2009;7:86.
Within chromatin, the histone variant H2A.Z plays a role in many diverse nuclear processes including transcription, preventing the spread of heterochromatin and epigenetic transcriptional memory. The molecular mechanisms of how H2A.Z mediates its effects are not entirely understood. However, it is now known that H2A.Z has two protein isoforms in vertebrates, H2A.Z-1 and H2A.Z-2, which are encoded by separate genes and differ by 3 amino acid residues.
We report that H2A.Z-1 and H2A.Z-2 are expressed across a wide range of human tissues, they are both acetylated at lysine residues within the N-terminal region and they exhibit similar, but nonidentical, distributions within chromatin. Our results suggest that H2A.Z-2 preferentially associates with H3 trimethylated at lysine 4 compared to H2A.Z-1. The phylogenetic analysis of the promoter regions of H2A.Z-1 and H2A.Z-2 indicate that they have evolved separately during vertebrate evolution.
Our biochemical, gene expression, and phylogenetic data suggest that the H2A.Z-1 and H2A.Z-2 variants function similarly yet they may have acquired a degree of functional independence.
PMCID: PMC2805615  PMID: 20003410
20.  H2A.Bbd: an X-chromosome-encoded histone involved in mammalian spermiogenesis 
Nucleic Acids Research  2009;38(6):1780-1789.
Despite the identification of H2A.Bbd as a new vertebrate-specific replacement histone variant several years ago, and despite the many in vitro structural characterizations using reconstituted chromatin complexes consisting of this variant, the existence of H2A.Bbd in the cell and its location has remained elusive. Here, we report that the native form of this variant is present in highly advanced spermiogenic fractions of mammalian testis at the time when histones are highly acetylated and being replaced by protamines. It is also present in the nucleosomal chromatin fraction of mature human sperm. The ectopically expressed non-tagged version of the protein is associated with micrococcal nuclease-refractory insoluble fractions of chromatin and in mouse (20T1/2) cell line, H2A.Bbd is enriched at the periphery of chromocenters. The exceedingly rapid evolution of this unique X-chromosome-linked histone variant is shared with other reproductive proteins including those associated with chromatin in the mature sperm (protamines) of many vertebrates. This common rate of evolution provides further support for the functional and structural involvement of this protein in male gametogenesis in mammals.
PMCID: PMC2847216  PMID: 20008104
21.  The cytotoxicity of γ-secretase inhibitor I to breast cancer cells is mediated by proteasome inhibition, not by γ-secretase inhibition 
Notch is a family of transmembrane protein receptors whose activation requires proteolytic cleavage by γ-secretase. Since aberrant Notch signaling can induce mammary carcinomas in transgenic mice and high expression levels of Notch receptors and ligands correlates with overall poor clinical outcomes, inhibiting γ-secretase with small molecules may be a promising approach for breast cancer treatment. Consistent with this hypothesis, two recent papers reported that γ-secretase inhibitor I (GSI I), Z-LLNle-CHO, is toxic to breast cancer cells both in vitro and in vivo. In this study, we compared the activity and cytotoxicity of Z-LLNle-CHO to that of two highly specific GSIs, DAPT and L-685,458 and three structurally unrelated proteasome inhibitors, MG132, lactacystin, and bortezomib in order to study the mechanism underlying the cytotoxicity of Z-LLNle-CHO in breast cancer cells.
Three estrogen receptor (ER) positive cell lines, MCF-7, BT474, and T47D, and three ER negative cell lines, SKBR3, MDA-MB-231, and MDA-MB-468, were used in this study. Both SKBR3 and BT474 cells also overexpress HER2/neu. Cytotoxicity was measured by using an MTS cell viability/proliferation assay. Inhibition of γ-secretase activity was measured by both immunoblotting and immunofluorescent microscopy in order to detect active Notch1 intracellular domain. Proteasome inhibition was determined by using a cell-based proteasome activity assay kit, by immunoblotting to detect accumulation of polyubiquitylated protein, and by immunofluorescent microscopy to detect redistribution of cellular ubiquitin.
We found that blocking γ-secretase activity by DAPT and L-685,458 had no effect on the survival and proliferation of a panel of six breast cancer cell lines while Z-LLNle-CHO could cause cell death even at concentrations that inhibited γ-secretase activity less efficiently. Furthermore, we observed that Z-LLNle-CHO could inhibit proteasome activity and the relative cellular sensitivity of these six breast cancer cell lines to Z-LLNle-CHO was the same as observed for three proteasome inhibitors. Finally, we found that the cell killing effect of Z-LLNle-CHO could be reversed by a chemical that restored the proteasome activity.
We conclude that the cytotoxicity of Z-LLNle-CHO in breast cancer cells is mediated by proteasome inhibition, not by γ-secretase inhibition.
PMCID: PMC2750119  PMID: 19660128
22.  Linker Histones Are Mobilized during Infection with Herpes Simplex Virus Type 1▿  
Journal of Virology  2008;82(17):8629-8646.
Histones interact with herpes simplex virus type 1 (HSV-1) genomes and localize to replication compartments early during infections. However, HSV-1 genomes do not interact with histones in virions and are deposited in nuclear domains devoid of histones. Moreover, late viral replication compartments are also devoid of histones. The processes whereby histones come to interact with HSV-1 genomes, to be later displaced, remain unknown. However, they would involve the early movement of histones to the domains containing HSV-1 genomes and the later movement away from them. Histones unbind from chromatin, diffuse through the nucleoplasm, and rebind at different sites. Such mobility is upregulated by, for example, phosphorylation or acetylation. We evaluated whether HSV-1 infection modulates histone mobility, using fluorescence recovery after photobleaching. All somatic H1 variants were mobilized to different degrees. H1.2, the most mobilized, was mobilized at 4 h and further so at 7 h after infection, resulting in increases in its “free” pools. H1.2 was mobilized to a “basal” degree under conditions of little to no HSV-1 protein expression. This basal mobilization required nuclear native HSV-1 genomes but was independent of HSV-1 proteins and most likely due to cellular responses. Mobilization above this basal degree, and increases in H1.2 free pools, however, depended on immediate-early or early HSV-1 proteins, but not on HSV-1 genome replication or late proteins. Linker histone mobilization is a novel consequence of cell-virus interactions, which is consistent with the dynamic interactions between histones and HSV-1 genomes during lytic infection; it may also participate in the regulation of viral gene expression.
PMCID: PMC2519646  PMID: 18579611
23.  Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes 
Nucleic Acids Research  2008;36(22):6959-6976.
Poly(ADP-ribose) (pADPr) is a polymer assembled from the enzymatic polymerization of the ADP-ribosyl moiety of NAD by poly(ADP-ribose) polymerases (PARPs). The dynamic turnover of pADPr within the cell is essential for a number of cellular processes including progression through the cell cycle, DNA repair and the maintenance of genomic integrity, and apoptosis. In spite of the considerable advances in the knowledge of the physiological conditions modulated by poly(ADP-ribosyl)ation reactions, and notwithstanding the fact that pADPr can play a role of mediator in a wide spectrum of biological processes, few pADPr binding proteins have been identified so far. In this study, refined in silico prediction of pADPr binding proteins and large-scale mass spectrometry-based proteome analysis of pADPr binding proteins were used to establish a comprehensive repertoire of pADPr-associated proteins. Visualization and modeling of these pADPr-associated proteins in networks not only reflect the widespread involvement of poly(ADP-ribosyl)ation in several pathways but also identify protein targets that could shed new light on the regulatory functions of pADPr in normal physiological conditions as well as after exposure to genotoxic stimuli.
PMCID: PMC2602769  PMID: 18981049
24.  The Transcriptional Regulator CBP Has Defined Spatial Associations within Interphase Nuclei 
PLoS Computational Biology  2006;2(10):e139.
It is becoming increasingly clear that nuclear macromolecules and macromolecular complexes are compartmentalized through binding interactions into an apparent three-dimensionally ordered structure. This ordering, however, does not appear to be deterministic to the extent that chromatin and nonchromatin structures maintain a strict 3-D arrangement. Rather, spatial ordering within the cell nucleus appears to conform to stochastic rather than deterministic spatial relationships. The stochastic nature of organization becomes particularly problematic when any attempt is made to describe the spatial relationship between proteins involved in the regulation of the genome. The CREB–binding protein (CBP) is one such transcriptional regulator that, when visualised by confocal microscopy, reveals a highly punctate staining pattern comprising several hundred individual foci distributed within the nuclear volume. Markers for euchromatic sequences have similar patterns. Surprisingly, in most cases, the predicted one-to-one relationship between transcription factor and chromatin sequence is not observed. Consequently, to understand whether spatial relationships that are not coincident are nonrandom and potentially biologically important, it is necessary to develop statistical approaches. In this study, we report on the development of such an approach and apply it to understanding the role of CBP in mediating chromatin modification and transcriptional regulation. We have used nearest-neighbor distance measurements and probability analyses to study the spatial relationship between CBP and other nuclear subcompartments enriched in transcription factors, chromatin, and splicing factors. Our results demonstrate that CBP has an order of spatial association with other nuclear subcompartments. We observe closer associations between CBP and RNA polymerase II–enriched foci and SC35 speckles than nascent RNA or specific acetylated histones. Furthermore, we find that CBP has a significantly higher probability of being close to its known in vivo substrate histone H4 lysine 5 compared with the closely related H4 lysine 12. This study demonstrates that complex relationships not described by colocalization exist in the interphase nucleus and can be characterized and quantified. The subnuclear distribution of CBP is difficult to reconcile with a model where chromatin organization is the sole determinant of the nuclear organization of proteins that regulate transcription but is consistent with a close link between spatial associations and nuclear functions.
The cell nucleus is the part of the cell that houses the genome and the associated machinery that are responsible for its duplication, maintenance, and expression. It has become apparent that the individual chromosomes that comprise the genome and the machinery that act on the genome and its RNA products are organized within the nuclear volume. The nature of this organization has been difficult to define because simple mapping has shown that it is not defined by predefined 3-D locations for each component. In this study, McManus and colleagues have developed a statistical tool to facilitate the characterization of spatial relationships, their relationship between organization and function, and the identification of rules defining these relationships. With the specific example of the CREB–binding protein, the authors have used this new statistical tool to determine how the organization of the CREB–binding protein relates to the varying protein–protein complexes, catalytic activity, and functions of the protein. Their results demonstrate that this statistical approach can identify spatial relationships that cannot be defined by the more simple techniques employed to date and can open the door for determining the rules of nuclear organization.
PMCID: PMC1617132  PMID: 17054391
25.  Quantitative Analysis of CBP- and P300-Induced Histone Acetylations In Vivo Using Native Chromatin 
Molecular and Cellular Biology  2003;23(21):7611-7627.
In vivo, histone tails are involved in numerous interactions, including those with DNA, adjacent histones, and other, nonhistone proteins. The amino termini are also the substrates for a number of enzymes, including histone acetyltransferases (HATs), histone deacetylases, and histone methyltransferases. Traditional biochemical approaches defining the substrate specificity profiles of HATs have been performed using purified histone tails, recombinant histones, or purified mononucleosomes as substrates. It is clear that the in vivo presentation of the substrate cannot be accurately represented by using these in vitro approaches. Because of the difficulty in translating in vitro results into in vivo situations, we developed a novel single-cell HAT assay that provides quantitative measurements of endogenous HAT activity. The HAT assay is performed under in vivo conditions by using the native chromatin structure as the physiological substrate. The assay combines the spatial resolving power of laser scanning confocal microscopy with simple statistical analyses to characterize CREB binding protein (CBP)- and P300-induced changes in global histone acetylation levels at specific lysine residues. Here we show that CBP and P300 exhibit unique substrate specificity profiles, consistent with the developmental and functional differences between the two HATs.
PMCID: PMC207635  PMID: 14560007

Results 1-25 (28)