Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("Feng, yanqi")
1.  Automatic Segmentation of Myocardium from Black-Blood MR Images Using Entropy and Local Neighborhood Information 
PLoS ONE  2015;10(3):e0120018.
By using entropy and local neighborhood information, we present in this study a robust adaptive Gaussian regularizing Chan–Vese (CV) model to segment the myocardium from magnetic resonance images with intensity inhomogeneity. By utilizing the circular Hough transformation (CHT) our model is able to detect epicardial and endocardial contours of the left ventricle (LV) as circles automatically, and the circles are used as the initialization. In the cost functional of our model, the interior and exterior energies are weighted by the entropy to improve the robustness of the evolving curve. Local neighborhood information is used to evolve the level set function to reduce the impact of the heterogeneity inside the regions and to improve the segmentation accuracy. An adaptive window is utilized to reduce the sensitivity to initialization. The Gaussian kernel is used to regularize the level set function, which can not only ensure the smoothness and stability of the level set function, but also eliminate the traditional Euclidean length term and re-initialization. Extensive validation of the proposed method on patient data demonstrates its superior performance over other state-of-the-art methods.
PMCID: PMC4374880  PMID: 25811976
2.  Denoising MR Images Using Non-Local Means Filter with Combined Patch and Pixel Similarity 
PLoS ONE  2014;9(6):e100240.
Denoising is critical for improving visual quality and reliability of associative quantitative analysis when magnetic resonance (MR) images are acquired with low signal-to-noise ratios. The classical non-local means (NLM) filter, which averages pixels weighted by the similarity of their neighborhoods, is adapted and demonstrated to effectively reduce Rician noise without affecting edge details in MR magnitude images. However, the Rician NLM (RNLM) filter usually blurs small high-contrast particle details which might be clinically relevant information. In this paper, we investigated the reason of this particle blurring problem and proposed a novel particle-preserving RNLM filter with combined patch and pixel (RNLM-CPP) similarity. The results of experiments on both synthetic and real MR data demonstrate that the proposed RNLM-CPP filter can preserve small high-contrast particle details better than the original RNLM filter while denoising MR images.
PMCID: PMC4059740  PMID: 24933024

Results 1-9 (9)