PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
2.  The role of endothelin-1 in pulmonary arterial hypertension 
Pulmonary arterial hypertension (PAH) is a rare but debilitating disease, which if left untreated rapidly progresses to right ventricular failure and eventually death. In the quest to understand the pathogenesis of this disease differences in the profile, expression and action of vasoactive substances released by the endothelium have been identified in patients with PAH. Of these, endothelin-1 (ET-1) is of particular interest since it is known to be an extremely powerful vasoconstrictor and also involved in vascular remodelling. Identification of ET-1 as a target for pharmacological intervention has lead to the discovery of a number of compounds that can block the receptors via which ET-1 mediates its effects. This review sets out the evidence in support of a role for ET-1 in the onset and progression of the disease and reviews the data from the various clinical trials of ET-1 receptor antagonists for the treatment of PAH.
doi:10.5339/gcsp.2014.29
PMCID: PMC4220438  PMID: 25405182
3.  The living aortic valve: From molecules to function 
The aortic valve lies in a unique hemodynamic environment, one characterized by a range of stresses (shear stress, bending forces, loading forces and strain) that vary in intensity and direction throughout the cardiac cycle. Yet, despite its changing environment, the aortic valve opens and closes over 100,000 times a day and, in the majority of human beings, will function normally over a lifespan of 70–90 years. Until relatively recently heart valves were considered passive structures that play no active role in the functioning of a valve, or in the maintenance of its integrity and durability. However, through clinical experience and basic research the aortic valve can now be characterized as a living, dynamic organ with the capacity to adapt to its complex mechanical and biomechanical environment through active and passive communication between its constituent parts. The clinical relevance of a living valve substitute in patients requiring aortic valve replacement has been confirmed. This highlights the importance of using tissue engineering to develop heart valve substitutes containing living cells which have the ability to assume the complex functioning of the native valve.
doi:10.5339/gcsp.2014.11
PMCID: PMC4104380  PMID: 25054122
Cells; endothelium; nerves; developmental biology; mechanobiology; nanostructure aortic stenosis; calcification
4.  Characterization of Porcine Aortic Valvular Interstitial Cell ‘Calcified’ Nodules 
PLoS ONE  2012;7(10):e48154.
Valve interstitial cells populate aortic valve cusps and have been implicated in aortic valve calcification. Here we investigate a common in vitro model for aortic valve calcification by characterizing nodule formation in porcine aortic valve interstitial cells (PAVICs) cultured in osteogenic (OST) medium supplemented with transforming growth factor beta 1 (TGF-β1). Using a combination of materials science and biological techniques, we investigate the relevance of PAVICs nodules in modeling the mineralised material produced in calcified aortic valve disease. PAVICs were grown in OST medium supplemented with TGF-β1 (OST+TGF-β1) or basal (CTL) medium for up to 21 days. Murine calvarial osteoblasts (MOBs) were grown in OST medium for 28 days as a known mineralizing model for comparison. PAVICs grown in OST+TGF-β1 produced nodular structures staining positive for calcium content; however, micro-Raman spectroscopy allowed live, noninvasive imaging that showed an absence of mineralized material, which was readily identified in nodules formed by MOBs and has been identified in human valves. Gene expression analysis, immunostaining, and transmission electron microscopy imaging revealed that PAVICs grown in OST+TGF-β1 medium produced abundant extracellular matrix via the upregulation of the gene for Type I Collagen. PAVICs, nevertheless, did not appear to further transdifferentiate to osteoblasts. Our results demonstrate that ‘calcified’ nodules formed from PAVICs grown in OST+TGF-β1 medium do not mineralize after 21 days in culture, but rather they express a myofibroblast-like phenotype and produce a collagen-rich extracellular matrix. This study clarifies further the role of PAVICs as a model of calcification of the human aortic valve.
doi:10.1371/journal.pone.0048154
PMCID: PMC3482191  PMID: 23110195
5.  Scanning ion conductance microscopy: a convergent high-resolution technology for multi-parametric analysis of living cardiovascular cells 
Cardiovascular diseases are complex pathologies that include alterations of various cell functions at the levels of intact tissue, single cells and subcellular signalling compartments. Conventional techniques to study these processes are extremely divergent and rely on a combination of individual methods, which usually provide spatially and temporally limited information on single parameters of interest. This review describes scanning ion conductance microscopy (SICM) as a novel versatile technique capable of simultaneously reporting various structural and functional parameters at nanometre resolution in living cardiovascular cells at the level of the whole tissue, single cells and at the subcellular level, to investigate the mechanisms of cardiovascular disease. SICM is a multimodal imaging technology that allows concurrent and dynamic analysis of membrane morphology and various functional parameters (cell volume, membrane potentials, cellular contraction, single ion-channel currents and some parameters of intracellular signalling) in intact living cardiovascular cells and tissues with nanometre resolution at different levels of organization (tissue, cellular and subcellular levels). Using this technique, we showed that at the tissue level, cell orientation in the inner and outer aortic arch distinguishes atheroprone and atheroprotected regions. At the cellular level, heart failure leads to a pronounced loss of T-tubules in cardiac myocytes accompanied by a reduction in Z-groove ratio. We also demonstrated the capability of SICM to measure the entire cell volume as an index of cellular hypertrophy. This method can be further combined with fluorescence to simultaneously measure cardiomyocyte contraction and intracellular calcium transients or to map subcellular localization of membrane receptors coupled to cyclic adenosine monophosphate production. The SICM pipette can be used for patch-clamp recordings of membrane potential and single channel currents. In conclusion, SICM provides a highly informative multimodal imaging platform for functional analysis of the mechanisms of cardiovascular diseases, which should facilitate identification of novel therapeutic strategies.
doi:10.1098/rsif.2010.0597
PMCID: PMC3104336  PMID: 21325316
scanning ion conductance microscopy; vascular disease; heart failure; electrophysiology; receptors
6.  Molecular and functional characteristics of heart-valve interstitial cells 
The cells that reside within valve cusps play an integral role in the durability and function of heart valves. There are principally two types of cells found in cusp tissue: the endothelial cells that cover the surface of the cusps and the interstitial cells (ICs) that form a network within the extracellular matrix (ECM) within the body of the cusp. Both cell types exhibit unique functions that are unlike those of other endothelial and ICs found throughout the body. The valve ICs express a complex pattern of cell-surface, cytoskeletal and muscle proteins. They are able to bind to, and communicate with, each other and the ECM. The endothelial cells on the outflow and inflow surfaces of the valve differ from one another. Their individual characteristics and functions reflect the fact that they are exposed to separate patterns of flow and pressure. In addition to providing a structural role in the valve, it is now known that the biological function of valve cells is important in maintaining the integrity of the cusps and the optimum function of the valve. In response to inappropriate stimuli, valve interstitial and endothelial cells may also participate in processes that lead to valve degeneration and calcification. Understanding the complex biology of valve interstitial and endothelial cells is an important requirement in elucidating the mechanisms that regulate valve function in health and disease, as well as setting a benchmark for the function of cells that may be used to tissue engineer a heart valve.
doi:10.1098/rstb.2007.2126
PMCID: PMC2440406  PMID: 17569642
heart valves; valve interstitial cells; cell phenotype; cell communication

Results 1-6 (6)