PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-15 (15)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
5.  Reproducibility of in-vivo diffusion tensor cardiovascular magnetic resonance in hypertrophic cardiomyopathy 
Background
Myocardial disarray is an important histological feature of hypertrophic cardiomyopathy (HCM) which has been studied post-mortem, but its in-vivo prevalence and extent is unknown. Cardiac Diffusion Tensor Imaging (cDTI) provides information on mean intravoxel myocyte orientation and potentially myocardial disarray. Recent technical advances have improved in-vivo cDTI, and the aim of this study was to assess the interstudy reproducibility of quantitative in-vivo cDTI in patients with HCM.
Methods and results
A stimulated-echo single-shot-EPI sequence with zonal excitation and parallel imaging was implemented. Ten patients with HCM were each scanned on 2 different days. For each scan 3 short axis mid-ventricular slices were acquired with cDTI at end systole. Fractional anisotropy (FA), mean diffusivity (MD), and helix angle (HA) maps were created using a cDTI post-processing platform developed in-house. The mean ± SD global FA was 0.613 ± 0.044, MD was 0.750 ± 0.154 × 10-3 mm2/s and HA was epicardium −34.3 ± 7.6°, mesocardium 3.5 ± 6.9° and endocardium 38.9 ± 8.1°. Comparison of initial and repeat studies showed global interstudy reproducibility for FA (SD = ± 0.045, Coefficient of Variation (CoV) = 7.2%), MD (SD = ± 0.135 × 10-3 mm2/s, CoV = 18.6%) and HA (epicardium SD = ± 4.8°; mesocardium SD = ± 3.4°; endocardium SD = ± 2.9°). Reproducibility of FA was superior to MD (p = 0.003). Global MD was significantly higher in the septum than the reference lateral wall (0.784 ± 0.188 vs 0.750 ± 0.154 x10-3 mm2/s, p < 0.001). Septal HA was significantly lower than the reference lateral wall in all 3 transmural layers (from −8.3° to −10.4°, all p < 0.001).
Conclusions
To the best of our knowledge, this is the first study to assess the interstudy reproducibility of DTI in the human HCM heart in-vivo and the largest cDTI study in HCM to date. Our results show good reproducibility of FA, MD and HA which indicates that current technology yields robust in-vivo measurements that have potential clinical value. The interpretation of regional differences in the septum requires further investigation.
doi:10.1186/1532-429X-14-86
PMCID: PMC3551746  PMID: 23259835
Hypertrophic cardiomyopathy; Diffusion tensor imaging; Diffusion weighted imaging; Cardiovascular magnetic resonance; Disarray
15.  Right ventricular dysfunction is a predictor of non-response and clinical outcome following cardiac resynchronization therapy 
Background
Cardiac resynchronization therapy (CRT) is an established treatment in advanced heart failure (HF). However, an important subset does not derive a significant benefit. Despite an established predictive role in HF, the significance of right ventricular (RV) dysfunction in predicting clinical benefit from CRT remains unclear. We investigated the role of RV function, assessed by cardiovascular magnetic resonance (CMR), in predicting response to and major adverse clinical events in HF patients undergoing CRT.
Methods
Sixty consecutive patients were evaluated with CMR prior to CRT implantation in a tertiary cardiac centre. The primary end-point was a composite of death from any cause or unplanned hospitalization for a major cardiovascular event. The secondary end-point was response to therapy, defined as improvement in left ventricular ejection fraction ≥ 5% on echocardiography at one year.
Results
Eighteen patients (30%) met the primary end-point over a median follow-up period of 26 months, and 27 out of 56 patients (48%) were considered responders to CRT. On time-to-event analysis, only atrial fibrillation (HR 2.6, 95% CI 1.02-6.84, p = 0.047) and RV dysfunction, either by a reduced right ventricular ejection fraction-RVEF (HR 0.96, 95% CI 0.94-0.99, p = 0.006) or tricuspid annular plane systolic excursion-TAPSE (HR 0.88, 95% CI, 0.80-0.96, p = 0.006), were significant predictors of adverse events. On logistic regression analysis, preserved RVEF (OR 1.05, 95% CI 1.01-1.09, p = 0.01) and myocardial scar burden (OR 0.90, 95% CI 0.83-0.96, p = 0.004) were the sole independent predictors of response to CRT. Patients with marked RV dysfunction (RVEF < 30%) had a particularly low response rate (18.2%) to CRT.
Conclusions
Right ventricular function is an important predictor of both response to CRT and long-term clinical outcome. Routine assessment of the right ventricle should be considered in the evaluation of patients for CRT.
doi:10.1186/1532-429X-13-68
PMCID: PMC3217913  PMID: 22040270
heart failure; cardiac resynchronization therapy; right ventricular function; cardiovascular magnetic resonance

Results 1-15 (15)