Search tips
Search criteria

Results 1-12 (12)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("Qi, kenbo")
1.  High glucose inhibits receptor activator of nuclear factor-κB ligand-induced osteoclast differentiation via downregulation of v-ATPase V0 subunit d2 and dendritic cell-specific transmembrane protein 
Molecular Medicine Reports  2014;11(2):865-870.
The balance between bone formation and resorption is compromised in diabetes, which may contribute to the high risk of fractures in diabetic patients. However, the mechanism by which high glucose affects bone turnover remains to be elucidated. The present study demonstrated that high glucose inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis. In order to examine the mechanism involved in the inhibition of osteoclastogenesis, the present study examined several key molecules involved in osteoclast differentiation, including v-ATPase V0 subunit d2 (Atp6V0d2), dendritic cell-specific transmembrane protein (DC-STAMP), c-fos and nuclear factor of activated T cells c1 (NFATc1). The expression levels of Atp6V0d2 and DC-STAMP are regulated by NFATc1 and c-fos, and are required for osteoclast fusion, which is important for osteoclast maturation. To the best of our knowledge, the present study demonstrated for the first time that high glucose decreased the gene expression of ATP6v0d2 and DC-STAMP in RAW264.7 cells mediated by RANKL. Therefore, the suppression of pre-osteoclast or osteoclast fusion may be essential for the inhibition of osteoclast differentiation.
PMCID: PMC4262508  PMID: 25352342
diabetes; osteoclast differentiation; v-ATPase V0 subunit d2; dendritic cell-specific transmembrane protein
2.  Oxidative damage associated with obesity is prevented by overexpression of CuZn- or Mn-superoxide dismutase 
The development of insulin resistance is the primary step in the etiology of type 2 diabetes mellitus. There are several risk factors associated with insulin resistance, yet the basic biological mechanisms that promote its development are still unclear. There is growing literature that suggests mitochondrial dysfunction and/or oxidative stress play prominent roles in defects in glucose metabolism. Here, we tested whether increased expression of CuZn-superoxide dismutase (Sod1) or Mn-superoxide dismutase (Sod2) prevented obesity-induced changes in oxidative stress and metabolism. Both Sod1 and Sod2 overexpressing mice were protected from high fat diet-induced glucose intolerance. Lipid oxidation (F2-isoprostanes) was significantly increased in muscle and adipose with high fat feeding. Mice with increased expression of either Sod1 or Sod2 showed a significant reduction in this oxidative damage. Surprisingly, mitochondria from the muscle of high fat diet-fed mice showed no significant alteration in function. Together, our data suggest that targeting reduced oxidative damage in general may be a more applicable therapeutic target to prevent insulin resistance than by improving mitochondrial function.
PMCID: PMC3768142  PMID: 23872067
diabetes; mitochondria; F2-isoprostane; oxidative stress
3.  Dietary restriction attenuates the accelerated aging phenotype of Sod1−/− mice 
Dietary restriction is a powerful aging intervention that extends the life span of diverse biological species ranging from yeast to invertebrates to mammals, and it has been argued that the anti-aging action of dietary restriction occurs through reduced oxidative stress/damage. Using Sod1−/− mice, which have previously been shown to have increased levels of oxidative stress associated with a shorter life span and a high incidence of neoplasia, we were able to test directly the ability of dietary restriction to reverse an aging phenotype due to increased oxidative stress/damage. We found that dietary restriction increased the life span of Sod1−/− mice 30%, returning it to that of wild type, control mice fed ad libitum. Oxidative damage in Sod1−/− mice was markedly reduced by dietary restriction, as indicated by a reduction in liver and brain F2-isoprostanes, a marker of lipid peroxidation. Analysis of end of life pathology showed that dietary restriction significantly reduced the overall incidence of pathological lesions in the Sod1−/− mice fed the dietary restricted-diet compared to Sod1−/− mice fed ad libitum, including the incidence of lymphoma (27 vs 5%) and overall liver pathology. In addition to reduced incidence of overall and liver specific pathology, the burden and severity of both neoplastic and non-neoplastic lesions was also significantly reduced in the Sod1−/− mice fed the dietary restricted-diet. These data demonstrate that dietary restriction can significantly attenuate the accelerated aging phenotype observed in Sod1−/− mice that arises from increased oxidative stress/damage.
PMCID: PMC3696984  PMID: 23459073
dietary restriction; aging oxidative stress; CuZnSOD
4.  Impact of caloric restriction on health and survival in rhesus monkeys: the NIA study 
Nature  2012;489(7415):10.1038/nature11432.
Life extension by calorie restriction (CR) has been widely reported in a variety of species and remains on the forefront of anti-aging intervention studies. We report healthspan and survival effects of CR from a 23-year study in rhesus macaques conducted at the National Institute on Aging (NIA). CR initiated at older ages did not increase survival relative to Controls; however, CR monkeys demonstrated an improved metabolic profile and may have less oxidative stress as indicated by plasma isoprostane levels. When initiated in young monkeys, there was a trend (p=0.06) for a delay in age-associated disease onset in CR monkeys; but again, survival curves were not improved, in contrast to another study reported in the literature. This suggests that the effects of CR in a long-lived animal are complex and likely dependent on a variety of environmental, nutritional, and genetic factors.
PMCID: PMC3832985  PMID: 22932268
5.  Dietary restriction attenuates age-associated muscle atrophy by lowering oxidative stress in mice even in complete absence of CuZnSOD 
Aging cell  2012;11(5):770-782.
Age-related loss of muscle mass and function, sarcopenia, has a major impact on the quality of life in the elderly. Among the proposed causes of sarcopenia are mitochondrial dysfunction and accumulated oxidative damage during aging. Dietary restriction (DR), a robust dietary intervention that extends lifespan and modulates age-related pathology in a variety of species has been shown to protect from sarcopenia in rodents. Although the mechanism(s) by which DR modulates aging are still not defined, one potential mechanism is through modulation of oxidative stress and mitochondrial dysfunction. To directly test the protective effect of DR against oxidative stress induced muscle atrophy in vivo, we subjected mice lacking a key antioxidant enzyme, CuZnSOD (Sod1) to DR (40% of ad libitum fed diet). We have previously shown that the Sod1−/− mice exhibit an acceleration of sarcopenia associated with high oxidative stress, mitochondrial dysfunction, and severe neuromuscular innervation defects. Despite the dramatic atrophy phenotype in the Sod1−/− mice, DR led to a reversal or attenuation of reduced muscle function, loss of innervation and muscle atrophy in these mice. DR improves mitochondrial function as evidenced by enhanced Ca2+ regulation and reduction of mitochondrial reactive oxygen species (ROS). Furthermore, we show upregulation of SIRT3 and MnSOD in DR animals, consistent with reduced mitochondrial oxidative stress and reduced oxidative damage in muscle tissue measured as F2- isoprostanes. Collectively, our results demonstrate that DR is a powerful mediator of mitochondrial function, mitochondrial ROS production, and oxidative damage, providing a solid protection against oxidative stress induced neuromuscular defects and muscle atrophy in vivo even under conditions of high oxidative stress.
PMCID: PMC3444532  PMID: 22672615
6.  A Walnut-Enriched Diet Reduces the Growth of LNCaP Human Prostate Cancer Xenografts in Nude Mice 
Cancer Investigation  2013;31(6):365-373.
It was investigated whether a standard mouse diet (AIN-76A) supplemented with walnuts reduced the establishment and growth of LNCaP human prostate cancer cells in nude (nu/nu) mice. The walnut-enriched diet reduced the number of tumors and the growth of the LNCaP xenografts; 3 of 16 (18.7%) of the walnut-fed mice developed tumors; conversely, 14 of 32 mice (44.0%) of the control diet-fed animals developed tumors. Similarly, the xenografts in the walnut-fed animals grew more slowly than those in the control diet mice. The final average tumor size in the walnut-diet animals was roughly one-fourth the average size of the prostate tumors in the mice that ate the control diet.
PMCID: PMC3709881  PMID: 23758186
LNCaP cells; Prostate cancer; Walnuts; F2-isoprostanes
7.  Thioredoxin 1 Overexpression Extends Mainly the Earlier Part of Life Span in Mice 
We examined the effects of increased levels of thioredoxin 1 (Trx1) on resistance to oxidative stress and aging in transgenic mice overexpressing Trx1 [Tg(TRX1)+/0]. The Tg(TRX1)+/0 mice showed significantly higher Trx1 protein levels in all the tissues examined compared with the wild-type littermates. Oxidative damage to proteins and levels of lipid peroxidation were significantly lower in the livers of Tg(TRX1)+/0 mice compared with wild-type littermates. The survival study demonstrated that male Tg(TRX1)+/0 mice significantly extended the earlier part of life span compared with wild-type littermates, but no significant life extension was observed in females. Neither male nor female Tg(TRX1)+/0 mice showed changes in maximum life span. Our findings suggested that the increased levels of Trx1 in the Tg(TRX1)+/0 mice were correlated to increased resistance to oxidative stress, which could be beneficial in the earlier part of life span but not the maximum life span in the C57BL/6 mice.
PMCID: PMC3210956  PMID: 21873593
Thioredoxin; Transgenic mouse; Oxidative stress; Protein carbonylation; Aging
8.  Loss of manganese superoxide dismutase leads to abnormal growth and signal transduction in mouse embryonic fibroblasts 
Free radical biology & medicine  2010;49(8):1255-1262.
Manganese superoxide dismutase (MnSOD) in the mitochondria plays an important role in cellular defense against oxidative damage. Homozygous MnSOD knockout (Sod2−/−) mice are neonatal lethal, indicating the essential role of MnSOD in early development. To investigate the potential cellular abnormalities underlying the aborted development of Sod2−/− mice, we examined the growth of isolated mouse embryonic fibroblasts (MEF) from Sod2−/− mice. We found that the proliferation of Sod2−/− MEFs was significantly decreased when compared with wild type MEFs despite the absence of morphological differences. The Sod2−/− MEFs produced less cellular ATP, had lower O2 consumption, generated more superoxide, and expressed less Prdx3 protein. Furthermore, the loss of MnSOD dramatically altered several markers involved in cell proliferation and growth, including decreased growth stimulatory function of mTOR signaling and enhanced growth inhibitory function of GSK-3β signaling. Interestingly, the G protein coupled receptor-mediated intracellular Ca2+ ([Ca2+]i) signal transduction was also severely suppressed in Sod2−/− MEFs. Finally, the ratio of LC3-II/LC3-I, an index of autophagic activity, was increased in Sod2−/− MEFs, consistent with a reduction of mTOR signal transduction. These data demonstrate that MnSOD deficiency results in alterations in several key signaling pathways, which may contribute to the lethal phenotype of Sod2−/− mice.
PMCID: PMC3418666  PMID: 20638473
MnSOD; oxidative stress; ROS; signal transduction
9.  MnSOD deficiency results in elevated oxidative stress and decreased mitochondrial function but does not lead to muscle atrophy during aging 
Aging cell  2011;10(3):493-505.
In a previous study, we reported that a deficiency in MnSOD activity (approximately 80% reduction) targeted to type IIB skeletal muscle fibers was sufficient to elevate oxidative stress and to reduce muscle function in young adult mice (TnIFastCreSod2fl/fl mice). In the present study, we used TnIFastCreSod2fl/fl mice to examine the effect of elevated oxidative stress on mitochondrial function and to test the hypothesis that elevated oxidative stress and decreased mitochondrial function over the lifespan of the TnIFastCreSod2fl/fl mice would be sufficient to accelerate muscle atrophy associated with aging. We found that mitochondrial function is reduced in both young and old TnIFastCreSod2fl/fl mice, when compared with control mice. Complex II activity is reduced by 47% in young and by ~90% in old TnIFastCreSod2fl/fl mice, associated with reduced levels of the catalytic subunits for complex II, SDHA and SDHB. Complex II-linked mitochondrial respiration is reduced by approximately 70% in young TnIFastCreSod2fl/fl mice. Complex II-linked mitochondrial ATP production is reduced by 39% in young and was found to be almost completely absent in old TnIFastCreSod2fl/fl mice. Furthermore, in old TnIFastCreSod2fl/fl mice, aconitase activity is almost completely abolished; mitochondrial superoxide release remains greater than 2-fold elevated; and oxidative damage (measured as F2 isoprostanes) is increased by 30% relative to age-matched controls. These data show that despite elevated skeletal muscle-specific mitochondrial oxidative stress, oxidative damage and complex II-linked mitochondrial dysfunction, age-related muscle atrophy was not accelerated in old TnIFastCreSod2fl/fl mice, suggesting mitochondrial oxidative stress may not be causal for age-related muscle atrophy.
PMCID: PMC3094473  PMID: 21385310
10.  Mice Deficient in Both Mn Superoxide Dismutase and Glutathione Peroxidase-1 Have Increased Oxidative Damage and a Greater Incidence of Pathology but No Reduction in Longevity 
To test the impact of increased mitochondrial oxidative stress as a mechanism underlying aging and age-related pathologies, we generated mice with a combined deficiency in two mitochondrial-localized antioxidant enzymes, Mn superoxide dismutase (MnSOD) and glutathione peroxidase-1 (Gpx-1). We compared life span, pathology, and oxidative damage in Gpx1−/−, Sod2+/−Gpx1+/−, Sod2+/−Gpx1−/−, and wild-type control mice. Oxidative damage was elevated in Sod2+/−Gpx1−/− mice, as shown by increased DNA oxidation in liver and skeletal muscle and increased protein oxidation in brain. Surprisingly, Sod2+/−Gpx1−/− mice showed no reduction in life span, despite increased levels of oxidative damage. Consistent with the important role for oxidative stress in tumorigenesis during aging, the incidence of neoplasms was significantly increased in the older Sod2+/−Gpx1−/− mice (28–30 months). Thus, these data do not support a significant role for increased oxidative stress as a result of compromised mitochondrial antioxidant defenses in modulating life span in mice and do not support the oxidative stress theory of aging.
PMCID: PMC2781787  PMID: 19776219
Oxidative stress; Longevity
11.  Overexpression of Mn Superoxide Dismutase Does Not Increase Life Span in Mice 
Genetic manipulations of Mn superoxide dismutase (MnSOD), SOD2 expression have demonstrated that altering the level of MnSOD activity is critical for cellular function and life span in invertebrates. In mammals, Sod2 homozygous knockout mice die shortly after birth, and alterations of MnSOD levels are correlated with changes in oxidative damage and in the generation of mitochondrial reactive oxygen species. In this study, we directly tested the effects of overexpressing MnSOD in young (4–6 months) and old (26–28 months) mice on mitochondrial function, levels of oxidative damage or stress, life span, and end-of-life pathology. Our data show that an approximately twofold overexpression of MnSOD throughout life in mice resulted in decreased lipid peroxidation, increased resistance against paraquat-induced oxidative stress, and decreased age-related decline in mitochondrial ATP production. However, this change in MnSOD expression did not alter either life span or age-related pathology.
PMCID: PMC2759571  PMID: 19633237
Oxidative damage; Mn superoxide dismutase; Pathology; Aging
12.  The in vivo Gene Expression Signature of Oxidative Stress 
Physiological genomics  2008;34(1):112-126.
How higher organisms respond to elevated oxidative stress in vivo is poorly understood. Therefore, we measured oxidative stress parameters and gene expression alterations (Affymetrix arrays) in the liver caused by elevated reactive oxygen species induced in vivo by diquat or by genetic ablation of the major antioxidant enzymes, CuZn-Superoxide Dismutase (Sod1) and Glutathione Peroxidase-1 (Gpx1).
Diquat (50 mg/kg) treatment resulted in a significant increase in oxidative damage within 3 to 6 hours in wild type mice without any lethality. In contrast, treating Sod1−/− or Gpx1−/− mice with a similar concentration of diquat resulted in a significant increase in oxidative damage within an hour of treatment and was lethal, i.e., these mice are extremely sensitive to the oxidative stress generated by diquat. The expression response to elevated oxidative stress in vivo does not involve an upregulation of classical antioxidant genes, though long-term oxidative stress in the Sod1−/− mice leads to a significant upregulation of thiol antioxidants (e.g., Mt1, Srxn1, Gclc, Txnrd1), which appears to be mediated by the redox-sensitive transcription factor, Nrf2. The main finding of our study is that the common response to elevated oxidative stress, with diquat treatment in wild type, Gpx1−/−, Sod1−/− mice and in untreated Sod1−/− mice, is an upregulation of p53 target genes (p21, Gdf15, Plk3, Atf3, Trp53inp1, Ddit4, Gadd45a, Btg2, Ndrg1). A retrospective comparison with previous studies shows that induction of these p53-target genes is a conserved expression response to oxidative stress, in vivo and in vitro, in different species and different cells/organs.
PMCID: PMC2532791  PMID: 18445702
Oxidative Stress; Gene Expression; p53-target genes; Sod1; Gpx1

Results 1-12 (12)